1
|
Shakeel K, Olamendi-Portugal T, Naseem MU, Becerril B, Zamudio FZ, Delgado-Prudencio G, Possani LD, Panyi G. Of Seven New K + Channel Inhibitor Peptides of Centruroides bonito, α-KTx 2.24 Has a Picomolar Affinity for Kv1.2. Toxins (Basel) 2023; 15:506. [PMID: 37624263 PMCID: PMC10467108 DOI: 10.3390/toxins15080506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Seven new peptides denominated CboK1 to CboK7 were isolated from the venom of the Mexican scorpion Centruroides bonito and their primary structures were determined. The molecular weights ranged between 3760.4 Da and 4357.9 Da, containing 32 to 39 amino acid residues with three putative disulfide bridges. The comparison of amino acid sequences with known potassium scorpion toxins (KTx) and phylogenetic analysis revealed that CboK1 (α-KTx 10.5) and CboK2 (α-KTx 10.6) belong to the α-KTx 10.x subfamily, whereas CboK3 (α-KTx 2.22), CboK4 (α-KTx 2.23), CboK6 (α-KTx 2.21), and CboK7 (α-KTx 2.24) bear > 95% amino acid similarity with members of the α-KTx 2.x subfamily, and CboK5 is identical to Ce3 toxin (α-KTx 2.10). Electrophysiological assays demonstrated that except CboK1, all six other peptides blocked the Kv1.2 channel with Kd values in the picomolar range (24-763 pM) and inhibited the Kv1.3 channel with comparatively less potency (Kd values between 20-171 nM). CboK3 and CboK4 inhibited less than 10% and CboK7 inhibited about 42% of Kv1.1 currents at 100 nM concentration. Among all, CboK7 showed out-standing affinity for Kv1.2 (Kd = 24 pM), as well as high selectivity over Kv1.3 (850-fold) and Kv1.1 (~6000-fold). These characteristics of CboK7 may provide a framework for developing tools to treat Kv1.2-related channelopathies.
Collapse
Affiliation(s)
- Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (T.O.-P.); (B.B.); (F.Z.Z.); (G.D.-P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary; (K.S.); (M.U.N.)
| |
Collapse
|
2
|
Naseem MU, Gurrola-Briones G, Romero-Imbachi MR, Borrego J, Carcamo-Noriega E, Beltrán-Vidal J, Zamudio FZ, Shakeel K, Possani LD, Panyi G. Characterization and Chemical Synthesis of Cm39 (α-KTx 4.8): A Scorpion Toxin That Inhibits Voltage-Gated K + Channel K V1.2 and Small- and Intermediate-Conductance Ca 2+-Activated K + Channels K Ca2.2 and K Ca3.1. Toxins (Basel) 2023; 15:41. [PMID: 36668861 PMCID: PMC9866218 DOI: 10.3390/toxins15010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 μM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Georgina Gurrola-Briones
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Margarita R. Romero-Imbachi
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Explanation of Structure and Function of kv1.3 Potent Blocker From Mesobuthus eupeus Venom Gland: A New Promise in Drug Development. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp.120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Scorpions and other venomous animals are sought with great concern because venom is a source of novel peptides with exciting features. Some toxins of scorpion venom are effectors of potassium channels. Previous studies strongly support the importance of potassium channel toxins for use as pharmacological tools or potential drugs. Objectives: Here, a three-dimensional (3-D) structure and function of a potent acidic blocker of the human voltage-gated potassium ion channel, Kv1.3, previously identified in the scorpion Mesobuthus eupeus venom gland, were interpreted. Methods: The 3-D structure of meuK2-2 was generated using homology modeling. The interaction of meuK2-2 with the Kv1.3 channel was evaluated using a computational protocol employing peptide-protein docking experiments, pose clustering, and 100 ns molecular dynamic simulations to make the 3-D models of the meuK2-2/Kv1.3 complex trustworthy. Results: A CSα/β (cysteine-stabilized α-helical and β-sheet) fold was found for the 3-D structure of meuK2-2. In a different mechanism from what was identified so far, meuK2-2 binds to both turret and pore loop of Kv1.3 through two key residues (Ala28 and Ser11) and H-bonds. The binding of meuK2-2 induces some conformational changes to Kv1.3. Eventually, the side chain of a positively charged amino acid (His9) occupies the channel's pore. All together blocks the ion permeation pathway. Conclusions: MeuK2-2 could block Kv1.3 by a new mechanism. So, it could be a unique target for further investigations to develop a pharmacological tool and potential drug.
Collapse
|
4
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
5
|
Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochem Pharmacol 2020; 174:113782. [DOI: 10.1016/j.bcp.2019.113782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
6
|
Structural Characterization of the S-glycosylated Bacteriocin ASM1 from Lactobacillus plantarum. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to protect their environmental niche, most bacteria secret antimicrobial substances designed to target specific bacterial strains that are often closely related to the producer strain. Bacteriocins, small, ribosomally synthesised antimicrobial peptides, comprise a class of such substances and can either inhibit (bacteriostatic) or kill (bactericidal) target cells. Glycocins are a class of bacteriocin that are post-translationally modified by one or more carbohydrate moieties that are either β-O-linked to either a serine or threonine and/or β-S-linked to a cysteine. The solution nuclear magnetic resonance structure (NMR) of the glycocin ASM1 (produced by Lactobacillus plantarum A-1), an orthologue of GccF, has been determined. In both structures, the disulfide bonds are essential for activity and restrict the mobility of the N-acetyl-glucosamine (GlcNAc) attached to Ser-18 (O-linked), compared to the much more flexible GlcNAc moiety on Cys-43 (S-linked). Interestingly, despite 88% sequence identity, the helical structure of ASM1 is less pronounced which appears to be consistent with the far ultra-violet circular dichroism (UV CD) spectra.
Collapse
|
7
|
Baradaran M, Jalali A, Naderi Soorki M, Jokar M, Galehdari H. Three New Scorpion Chloride Channel Toxins as Potential Anti-Cancer Drugs: Computational Prediction of The Interactions With Hmmp-2 by Docking and Steered Molecular Dynamics Simulations. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:720-734. [PMID: 31531056 PMCID: PMC6706747 DOI: 10.22037/ijpr.2019.1100659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, M. eupeus (Buthidea family), show high sequence identity (71.4%) with Chlorotoxin. Here, 3-D homology model of new ClTxs were constructed. The models were optimized by Molecular Dynamics simulation based on MDFF (molecular dynamics flexible fitting) method. New ClTxs indicate the presence of CSαβ folding of other scorpion toxins. A docking followed by steered molecular dynamics (SMD) simulations to investigate the interactions of meuCl14, meuCl15, and meuCl16 with hMMP-2 was applied. The current study creates a correlation between the unbinding force and the inhibition activities of meuCl14, meuCl15 and meuCl16 to shed some insights as to which toxin may be used as a drug deliverer. To this aim, SMD simulations using Constant Force Pulling method were carried out. The SMD provided useful details related to the changes of electrostatic, van de Waals (vdW), and hydrogen-bonding (H-bonding) interactions between ligands and receptor during the pathway of unbinding. According to SMD results, the interaction of hMMP-2 with meuCl14 is more stable. In addition, Arginine residue was found to contribute significantly in interaction of ClTxs with hMMP-2. All in all, the present study is a dynamical approach whose results are capable of being implemented in structure-based drug design.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Jalali
- Department of Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Naderi Soorki
- Genetics Department, Sciences Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahmoud Jokar
- Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Hamid Galehdari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Shen Y, Xu L, Huang J, Serra A, Yang H, Tam JP. Potentides: New Cysteine-Rich Peptides with Unusual Disulfide Connectivity from Potentilla anserina. Chembiochem 2019; 20:1995-2004. [PMID: 30927482 DOI: 10.1002/cbic.201900127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/06/2022]
Abstract
Cysteine-rich peptides (CRPs), which are disulfide-constrained peptides with 3 to 5 disulfide bonds and molecular weights of 2 to 6 kDa, are generally hyperstable and resistant to thermal, chemical, and enzymatic degradation. Herein, the discovery and characterization of a novel suite of CRPs, collectively named potentides pA1-pA16 from the root of the medicinal herb Potentilla anserina L, are described. Through a combination of proteomic and transcriptomic methods, it is shown that 35-residue potentide pA3, which is the most abundant member of potentides, exhibits high stability against heat, acidic, and proteolytic degradation. Transcriptomic analysis revealed that potentide precursor sequences contained four tandem repeats in the mature domain, which is the first report on tandem repeats being found in the Rosaceae family. Disulfide mapping showed that potentide pA3 displayed a novel disulfide connectivity of C1-C3, C2-C6, and C4-C5; a cystine motif that has not been reported in plant CRPs. Transcriptomic data mining and a neighbor-joining clustering analysis revealed 56 potentide homologues and their distribution in the families of Rosaceae and Ranunculaceae in angiosperm. Altogether, these results reveal a new plant CRP structure with an unusual cystine connectivity. Additionally, this study expands the families and structure diversity of CRPs as potentially active peptide pharmaceuticals.
Collapse
Affiliation(s)
- Yuping Shen
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Lili Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Jiayi Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
9
|
Dash TS, Shafee T, Harvey PJ, Zhang C, Peigneur S, Deuis JR, Vetter I, Tytgat J, Anderson MA, Craik DJ, Durek T, Undheim EAB. A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure 2018; 27:315-326.e7. [PMID: 30554841 DOI: 10.1016/j.str.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Disulfide-rich peptides (DRPs) play diverse physiological roles and have emerged as attractive sources of pharmacological tools and drug leads. Here we describe the 3D structure of a centipede venom peptide, U-SLPTX15-Sm2a, whose family defines a unique class of one of the most widespread DRP folds known, the cystine-stabilized α/β fold (CSαβ). This class, which we have named the two-disulfide CSαβ fold (2ds-CSαβ), contains only two internal disulfide bonds as opposed to at least three in all other confirmed CSαβ peptides, and constitutes one of the major neurotoxic peptide families in centipede venoms. We show the 2ds-CSαβ is widely distributed outside centipedes and is likely an ancient fold predating the split between prokaryotes and eukaryotes. Our results provide insights into the ancient evolutionary history of a widespread DRP fold and highlight the usefulness of 3D structures as evolutionary tools.
Collapse
Affiliation(s)
- Thomas S Dash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Marilyn A Anderson
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
10
|
K V1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology 2018; 143:228-238. [PMID: 30248306 DOI: 10.1016/j.neuropharm.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/25/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom is an unmatched source of selective high-affinity ligands of potassium channels. There is a high demand for such compounds to identify and manipulate the activity of particular channel isoforms. The objective of this study was to obtain and characterize a specific ligand of voltage-gated potassium channel KV1.2. As a result, we report the remarkable selectivity of the peptide MeKTx11-1 (α-KTx 1.16) from Mesobuthus eupeus scorpion venom to this channel isoform. MeKTx11-1 is a high-affinity blocker of KV1.2 (IC50 ∼0.2 nM), while its activity against KV1.1, KV1.3, and KV1.6 is 10 000, 330 and 45 000 fold lower, respectively, as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. Two substitutions, G9V and P37S, convert MeKTx11-1 to its natural analog MeKTx11-3 (α-KTx 1.17) having 15 times lower activity and reduced selectivity to KV1.2. We produced MeKTx11-1 and MeKTx11-3 as well as their mutants MeKTx11-1(G9V) and MeKTx11-1(P37S) recombinantly and demonstrated that point mutations provide an intermediate effect on selectivity. Key structural elements that explain MeKTx11-1 specificity were identified by molecular modeling of the toxin-channel complexes. Confirming our molecular modeling predictions, site-directed transfer of these elements from the pore region of KV1.2 to KV1.3 resulted in the enhanced sensitivity of mutant KV1.3 channels to MeKTx11-1. We conclude that MeKTx11-1 may be used as a selective tool in neurobiology.
Collapse
|
11
|
Amorim FG, Cordeiro FA, Pinheiro-Júnior EL, Boldrini-França J, Arantes EC. Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biotechnol 2018; 102:6319-6331. [PMID: 29858954 DOI: 10.1007/s00253-018-9122-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom are composed mainly of bioactive proteins and peptides that may serve as lead compounds for the design of biotechnological tools and therapeutic drugs. However, exploring the therapeutic potential of scorpion venom components is mainly impaired by the low yield of purified toxins from milked venom. Therefore, production of toxin-derived peptides and proteins by heterologous expression is the strategy of choice for research groups and pharmaceutical industry to overcome this limitation. Recombinant expression in microorganisms is often the first choice, since bacteria and yeast systems combine high level of recombinant protein expression, fast cell growth and multiplication and simple media requirement. Herein, we present a comprehensive revision, which describes the scorpion venom components that were produced in their recombinant forms using microbial systems. In addition, we highlight the pros and cons of performing the heterologous expression of these compounds, regarding the particularities of each microorganism and how these processes can affect the application of these venom components. The most used microbial system in the heterologous expression of scorpion venom components is Escherichia coli (85%), and among all the recombinant venom components produced, 69% were neurotoxins. This review may light up future researchers in the choice of the best expression system to produce scorpion venom components of interest.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Francielle Almeida Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Johara Boldrini-França
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
12
|
Bisset SW, Yang SH, Amso Z, Harris PWR, Patchett ML, Brimble MA, Norris GE. Using Chemical Synthesis to Probe Structure-Activity Relationships of the Glycoactive Bacteriocin Glycocin F. ACS Chem Biol 2018; 13:1270-1278. [PMID: 29701461 DOI: 10.1021/acschembio.8b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycocin F, a bacteriocin produced by Lactobacillus plantarum KW30, is glycosylated with two N-acetyl-d-glucosamine sugars, and has been shown to exhibit a rapid and reversible bacteriostasis on susceptible cells. The roles of certain structural features of glycocin F have not been studied to date. We report here the synthesis of various glycocin F analogues through solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL), allowing us to probe the roles of different structural features of this peptide. Our results indicate that the bacteriostatic activity of glycocin F is controlled by the glycosylated interhelical loop, while the glycosylated flexible tail appears to be involved in localizing the peptide to its cellular target.
Collapse
Affiliation(s)
- Sean W. Bisset
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Zaid Amso
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Paul W. R. Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Mark L. Patchett
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
| | - Margaret A. Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Gillian E. Norris
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| |
Collapse
|
13
|
Moreels L, Peigneur S, Yamaguchi Y, Vriens K, Waelkens E, Zhu S, Thevissen K, Cammue BPA, Sato K, Tytgat J. Expanding the pharmacological profile of κ-hefutoxin 1 and analogues: A focus on the inhibitory effect on the oncogenic channel K v10.1. Peptides 2017; 98:43-50. [PMID: 27578329 DOI: 10.1016/j.peptides.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50∼26μM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100μM).
Collapse
Affiliation(s)
- Lien Moreels
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| | - Yoko Yamaguchi
- Department of Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan.
| | - Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, PO Box 901, 3000 Leuven, Belgium.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium.
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, PO Box 2460, 3001 Leuven, Belgium; VIB Department of Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kazuki Sato
- Department of Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
15
|
Zhang S, Gao B, Zhu S. Independent Origins of Scorpion Toxins Affecting Potassium and Sodium Channels. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|
17
|
The glycocins: in a class of their own. Curr Opin Struct Biol 2016; 40:112-119. [DOI: 10.1016/j.sbi.2016.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 01/28/2023]
|
18
|
Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AAA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AMC, Arantes EC, Tytgat J. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins (Basel) 2016; 8:toxins8100288. [PMID: 27706049 PMCID: PMC5086648 DOI: 10.3390/toxins8100288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
To date, several families of peptide toxins specifically interacting with ion channels in scorpion venom have been described. One of these families comprise peptide toxins (called KTxs), known to modulate potassium channels. Thus far, 202 KTxs have been reported, belonging to several subfamilies of KTxs (called α, β, γ, κ, δ, and λ-KTxs). Here we report on a previously described orphan toxin from Tityus serrulatus venom, named Ts11. We carried out an in-depth structure-function analysis combining 3D structure elucidation of Ts11 and electrophysiological characterization of the toxin. The Ts11 structure is highlighted by an Inhibitor Cystine Knot (ICK) type scaffold, completely devoid of the classical secondary structure elements (α-helix and/or β-strand). This has, to the best of our knowledge, never been described before for scorpion toxins and therefore represents a novel, 6th type of structural fold for these scorpion peptides. On the basis of their preferred interaction with voltage-gated K channels, as compared to all the other targets tested, it can be postulated that Ts11 is the first member of a new subfamily, designated as ε-KTx.
Collapse
Affiliation(s)
- Caroline M Cremonez
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| | - Juliana Silva Cassoli
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Alexandre A A Dutra
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Maria Elena de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Adriano M C Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Eliane C Arantes
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| |
Collapse
|
19
|
Wu B, Wu BF, Feng YJ, Tao J, Ji YH. Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel. Sci Rep 2016; 6:29431. [PMID: 27403813 PMCID: PMC4941521 DOI: 10.1038/srep29431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10–16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02’s β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.
Collapse
Affiliation(s)
- B Wu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China
| | - B F Wu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China
| | - Y J Feng
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China
| | - J Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi road, Shanghai 200062, China
| | - Y H Ji
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China
| |
Collapse
|
20
|
Cerni FA, Pucca MB, Amorim FG, de Castro Figueiredo Bordon K, Echterbille J, Quinton L, De Pauw E, Peigneur S, Tytgat J, Arantes EC. Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides 2016; 80:9-17. [PMID: 26116782 DOI: 10.1016/j.peptides.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.
Collapse
Affiliation(s)
- Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Julien Echterbille
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Dang B, Kubota T, Mandal K, Correa AM, Bezanilla F, Kent SBH. Elucidation of the Covalent and Tertiary Structures of Biologically Active Ts3 Toxin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bobo Dang
- Department of Chemistry; University of Chicago; Chicago IL 60637 USA
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
- Institute for Biophysical Dynamics; University of Chicago; Chicago IL 60637 USA
| | - Tomoya Kubota
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
| | - Kalyaneswar Mandal
- Department of Chemistry; University of Chicago; Chicago IL 60637 USA
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
- Institute for Biophysical Dynamics; University of Chicago; Chicago IL 60637 USA
| | - Ana M. Correa
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
| | - Francisco Bezanilla
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
- Institute for Biophysical Dynamics; University of Chicago; Chicago IL 60637 USA
| | - Stephen B. H. Kent
- Department of Chemistry; University of Chicago; Chicago IL 60637 USA
- Department of Biochemistry & Molecular Biology; University of Chicago; Chicago IL 60637 USA
- Institute for Biophysical Dynamics; University of Chicago; Chicago IL 60637 USA
| |
Collapse
|
22
|
Dang B, Kubota T, Mandal K, Correa AM, Bezanilla F, Kent SBH. Elucidation of the Covalent and Tertiary Structures of Biologically Active Ts3 Toxin. Angew Chem Int Ed Engl 2016; 55:8639-42. [PMID: 27244051 DOI: 10.1002/anie.201603420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Indexed: 11/07/2022]
Abstract
Ts3 is an alpha scorpion toxin from the venom of the Brazilian scorpion Tityus serrulatus. Ts3 binds to the domain IV voltage sensor of voltage-gated sodium channels (Nav ) and slows down their fast inactivation. The covalent structure of the Ts3 toxin is uncertain, and the structure of the folded protein molecule is unknown. Herein, we report the total chemical synthesis of four candidate Ts3 toxin protein molecules and the results of structure-activity studies that enabled us to establish the covalent structure of biologically active Ts3 toxin. We also report the synthesis of the mirror image form of the Ts3 protein molecule, and the use of racemic protein crystallography to determine the folded (tertiary) structure of biologically active Ts3 toxin by X-ray diffraction.
Collapse
Affiliation(s)
- Bobo Dang
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.,Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Tomoya Kubota
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Kalyaneswar Mandal
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.,Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Ana M Correa
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Francisco Bezanilla
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Stephen B H Kent
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA. .,Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, 60637, USA. .,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Kuzmenkov AI, Krylov NA, Chugunov AO, Grishin EV, Vassilevski AA. Kalium: a database of potassium channel toxins from scorpion venom. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw056. [PMID: 27087309 PMCID: PMC4834203 DOI: 10.1093/database/baw056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/20/2016] [Indexed: 12/16/2022]
Abstract
Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community. Database URL: http://kaliumdb.org/
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia Joint Supercomputer Center, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anton O Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
24
|
Kuzmenkov AI, Grishin EV, Vassilevski AA. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. BIOCHEMISTRY (MOSCOW) 2016; 80:1764-99. [DOI: 10.1134/s0006297915130118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Kumari G, Serra A, Shin J, Nguyen PQT, Sze SK, Yoon HS, Tam JP. Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac. JOURNAL OF NATURAL PRODUCTS 2015; 78:2791-9. [PMID: 26555361 DOI: 10.1021/acs.jnatprod.5b00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs.
Collapse
Affiliation(s)
- Geeta Kumari
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong Q T Nguyen
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
26
|
Abstract
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references).
Collapse
|
27
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
28
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
29
|
Pucca MB, Cerni FA, Peigneur S, Bordon KCF, Tytgat J, Arantes EC. Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom. Toxins (Basel) 2015; 7:2534-50. [PMID: 26153865 PMCID: PMC4516927 DOI: 10.3390/toxins7072534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
The toxin, previously described as a "non-toxic" toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a "non-toxic peptide". Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
30
|
Coronas FIV, Diego-García E, Restano-Cassulini R, de Roodt AR, Possani LD. Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus. Peptides 2015; 68:11-6. [PMID: 24862827 DOI: 10.1016/j.peptides.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023]
Abstract
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.
Collapse
Affiliation(s)
- Fredy I V Coronas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Elia Diego-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires and Ministerio de Salud de la Nación, Argentina.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
31
|
Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon KDCF, Faccioli LH, Tytgat J, Arantes EC. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie 2015; 115:8-16. [PMID: 25906692 DOI: 10.1016/j.biochi.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Camila T Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Kuzmenkov AI, Vassilevski AA, Kudryashova KS, Nekrasova OV, Peigneur S, Tytgat J, Feofanov AV, Kirpichnikov MP, Grishin EV. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY. J Biol Chem 2015; 290:12195-209. [PMID: 25792741 DOI: 10.1074/jbc.m115.637611] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,
| | - Kseniya S Kudryashova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Oksana V Nekrasova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Alexey V Feofanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Mikhail P Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Eugene V Grishin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
33
|
Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteomics 2014; 114:28-37. [PMID: 25449838 DOI: 10.1016/j.jprot.2014.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/25/2023]
Abstract
UNLABELLED Centipedes are one of the oldest venomous arthropods using toxin as their weapon to capture prey. But little attention was focused on them and only few centipede toxins were demonstrated with activity on ion channels. Therefore, more deep works are needed to understand the diversity of centipede venom. In the present study, we use peptidomics combined with cDNA library to uncover the diversity of centipede Scolopendra subspinipes mutilans L. Koch. 192 peptides were identified by LC-MS/MS and 79 precursors were deduced by cDNA library. Surprisingly, the signal peptides of centipede toxins were more complicated than any other animal toxins and even exhibited large differences in homologues. Meanwhile, a large number of variants generated by alternative cleavage sites were detected by mass spectra. Odd number of cystein (3, 5, 7) found in the mature peptides were seldom seen in peptide toxins. In additional, two novel cysteine frameworks (C-C-C-CCC, C-C-C-C-CC-CC) were identified from 16 different cysteine frameworks from centipede peptides. Only 29 precursors have clear targets, while others may provide a potential diversity function for centipede. These findings highlight the extensive diversity of centipede toxins and provide powerful tools to understand the capture and defense weapon of centipede. BIOLOGICAL SIGNIFICANCE Peptide toxins from venomous animal have attracted increasing attentions due to their extraordinary chemical and pharmacological diversity. Centipedes are one of the most used Chinese traditional medicines, but little was known about the active components. The venom of Scolopendra subspinipes mutilans L. Koch is first deeply analyzed in this work and most of peptides were never discovered before. Interestingly, the number and arrangement of cysteine showed a larger different to known peptide toxins such spider or scorpion toxins. Moreover, only 29 peptides from this centipede venom were identified with known function. It suggested that our work not only important to understand the composition of centipede venom, but also provide many valuable peptides for potential biological functions.
Collapse
Affiliation(s)
- Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guoxiang Mo
- School of Biological Sciences, Nanjing Agriculture University, Nanjing, Jiangshu 210095, China
| | - Di Kang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Jie Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | | | - Wenbin Jiang
- College of Life Science and Technology, Kunming University of Science and Technology, China
| | - Bowen Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | | | - Shuanjuan Yang
- Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen 518083, China; Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| |
Collapse
|
34
|
Berkut AA, Usmanova DR, Peigneur S, Oparin PB, Mineev KS, Odintsova TI, Tytgat J, Arseniev AS, Grishin EV, Vassilevski AA. Structural similarity between defense peptide from wheat and scorpion neurotoxin permits rational functional design. J Biol Chem 2014; 289:14331-40. [PMID: 24671422 DOI: 10.1074/jbc.m113.530477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.
Collapse
Affiliation(s)
- Antonina A Berkut
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, Moscow Institute of Physics and Technology (State University), Moscow 117303, Russia
| | - Dinara R Usmanova
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, Moscow Institute of Physics and Technology (State University), Moscow 117303, Russia
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium, and
| | - Peter B Oparin
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Konstantin S Mineev
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Tatyana I Odintsova
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium, and
| | - Alexander S Arseniev
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene V Grishin
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- From the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,
| |
Collapse
|
35
|
Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol 2014; 31:546-59. [PMID: 24425781 DOI: 10.1093/molbev/msu038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scorpion K(+) channel toxins and insect defensins share a conserved three-dimensional structure and related biological activities (defense against competitors or invasive microbes by disrupting their membrane functions), which provides an ideal system to study how functional evolution occurs in a conserved structural scaffold. Using an experimental approach, we show that the deletion of a small loop of a parasitoid venom defensin possessing the "scorpion toxin signature" (STS) can remove steric hindrance of peptide-channel interactions and result in a neurotoxin selectively inhibiting K(+) channels with high affinities. This insect defensin-derived toxin adopts a hallmark scorpion toxin fold with a common cysteine-stabilized α-helical and β-sheet motif, as determined by nuclear magnetic resonance analysis. Mutations of two key residues located in STS completely diminish or significantly decrease the affinity of the toxin on the channels, demonstrating that this toxin binds to K(+) channels in the same manner as scorpion toxins. Taken together, these results provide new structural and functional evidence supporting the predictability of toxin evolution. The experimental strategy is the first employed to establish an evolutionary relationship of two distantly related protein families.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | | | |
Collapse
|
36
|
Quintero-Hernández V, Jiménez-Vargas J, Gurrola G, Valdivia H, Possani L. Scorpion venom components that affect ion-channels function. Toxicon 2013; 76:328-42. [PMID: 23891887 PMCID: PMC4089097 DOI: 10.1016/j.toxicon.2013.07.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na(+)-, K(+)- and Ca(++)-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are nowadays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na(+)-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K(+)-channels are normally pore blocking agents. The Ryanodine Ca(++)-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells.
Collapse
Affiliation(s)
- V. Quintero-Hernández
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - J.M. Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - G.B. Gurrola
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - H.H.F. Valdivia
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - L.D. Possani
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
37
|
Kövér KE, Batta G. NMR investigation of disulfide containing peptides and proteins. AMINO ACIDS, PEPTIDES AND PROTEINS 2013:37-59. [DOI: 10.1039/9781849737081-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Peptides and proteins with disulfide bonds are abundant in all kingdoms and play essential role in many biological events. Because small disulfide-rich peptides (proteins) are usually difficult to crystallize, nuclear magnetic resonance (NMR) is by far one of the most powerful techniques for the determination of their solution structure. Besides the “static” three-dimensional structure, NMR has unique opportunities to acquire additional information about molecular dynamics and folding at atomic resolution. Nowadays it is becoming increasingly evident, that “excited”, “disordered” or “fuzzy” protein states may exhibit biological function and disulfide proteins are also promising targets for such studies. In this short two-three years overview those disulfide peptides and proteins were cited from the literature that were studied by NMR. Though we may have missed some, their structural diversity and complexity as well as their wide repertoire of biological functions is impressive. We emphasised especially antimicrobial peptides and peptide based toxins in addition to some biologically important other structures. Besides the general NMR methods we reviewed some contemporary techniques suitable for disclosing the peculiar properties of disulfide bonds. Interesting dynamics and folding studies of disulfide proteins were also mentioned. It is important to disclose the essential structure, dynamics, function aspects of disulfide proteins since this aids the design of new compounds with improved activity and reduced toxicity. Undoubtedly, NMR has the potential to accelerate the development of new disulfide peptides/proteins with pharmacological activity.
Collapse
|
38
|
Abstract
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon–intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.
Collapse
|
39
|
Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:238-45. [DOI: 10.1016/j.cbpb.2012.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
|
40
|
Chen ZY, Zeng DY, Hu YT, He YW, Pan N, Ding JP, Cao ZJ, Liu ML, Li WX, Yi H, Jiang L, Wu YL. Structural and functional diversity of acidic scorpion potassium channel toxins. PLoS One 2012; 7:e35154. [PMID: 22511981 PMCID: PMC3325286 DOI: 10.1371/journal.pone.0035154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Although the basic scorpion K+ channel toxins (KTxs) are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K+ channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. Principal Findings Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new α-KTx subfamilies (α-KTx28, α-KTx29, and α-KTx30), and two are new members of the known κ-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the α-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif that has no apparent α-helixs and β-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a Kd of 11.69 µM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized α-helix-loop-helix (CS-α/α) fold scaffold motif, blocked both Kv1.3 and KCNQ1 channels. StKTx23 toxin, with a cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif, could inhibit Kv1.3 channel, but not the KCNQ1 channel. Conclusions/Significance These findings characterize the structural and functional diversity of acidic KTxs, and could accelerate the development and clinical use of acidic KTxs as pharmacological tools and potential drugs.
Collapse
Affiliation(s)
- Zong-Yun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dan-Yun Zeng
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - You-Tian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ya-Wen He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Na Pan
- Key Laboratory of Molecular Biophysics, Ministry of Education,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiu-Ping Ding
- Key Laboratory of Molecular Biophysics, Ministry of Education,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mai-Li Liu
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wen-Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hong Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (LJ); (HY); (YW)
| | - Ling Jiang
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
- * E-mail: (LJ); (HY); (YW)
| | - Ying-Liang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (LJ); (HY); (YW)
| |
Collapse
|