1
|
Mohran S, McMillen TS, Mandrycky C, Tu AY, Kooiker KB, Qian W, Neys S, Osegueda B, Moussavi-Harami F, Irving TC, Regnier M, Ma W. Calcium has a direct effect on thick filament activation in porcine myocardium. J Gen Physiol 2024; 156:e202413545. [PMID: 39302315 PMCID: PMC11415303 DOI: 10.1085/jgp.202413545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Sarcomere activation in striated muscle requires both thin filament-based and thick filament-based activation mechanisms. Recent studies have shown that myosin heads on the thick filaments undergo OFF to ON structural transitions in response to calcium (Ca2+) in permeabilized porcine myocardium in the presence of a small molecule inhibitor that eliminated active force. The changes in X-ray diffraction signatures of OFF to ON transitions were interpreted as Ca2+ acting to activate the thick filaments. Alternatively, Ca2+ binding to troponin could initiate a Ca2+-dependent crosstalk from the thin filament to the thick filament via interfilament connections such as the myosin binding protein-C. Here, we exchanged native troponin in permeabilized porcine myocardium for troponin containing the cTnC D65A mutation, which disallows the activation of troponin through Ca2+ binding to determine if Ca2+-dependent thick filament activation persists in the absence of thin filament activation. After the exchange protocol, over 95% of the Ca2+-activated force was eliminated. Equatorial intensity ratio increased significantly in both WT and D65A exchanged myocardium with increasing Ca2+ concentration. The degree of helical ordering of the myosin heads decreased by the same amount in WT and D65A myocardium when Ca2+ concentration increased. These results are consistent with a direct effect of Ca2+ in activating the thick filament rather than an indirect effect due to Ca2+-mediated crosstalk between the thick and thin filaments.
Collapse
Affiliation(s)
- Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Timothy S. McMillen
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
| | - Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kristina B. Kooiker
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Wenjing Qian
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Stephanie Neys
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brayan Osegueda
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
2
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Emerson JI, Ariel P, Shi W, Conlon FL. Sex Differences in Mouse Cardiac Electrophysiology Revealed by Simultaneous Imaging of Excitation-Contraction Coupling. J Cardiovasc Dev Dis 2023; 10:479. [PMID: 38132647 PMCID: PMC10743987 DOI: 10.3390/jcdd10120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Males and females differ in the basic anatomy and physiology of the heart. Sex differences are evident in cardiac repolarization in humans; women have longer corrected QT and JT intervals. However, the molecular mechanisms that lead to these differences are incompletely understood. Here, we present that, like in humans, sex differences in QT and JT intervals exist in mouse models; female mice had longer corrected QT and JT intervals compared with age-matched males. To further understand the molecular underpinning of these sex differences, we developed a novel technology using fluorescent confocal microscopy that allows the simultaneous visualization of action potential, Ca2+ transients, and contractions in isolated cardiomyocytes at a high temporal resolution. From this approach, we uncovered that females at baseline have increased action potential duration, decreased Ca2+ release and reuptake rates, and decreased contraction and relaxation velocities compared with males. Additionally, males had a shorter overall time from action potential onset to peak contraction. In aggregate, our studies uncovered male and female differences in excitation-contraction coupling that account for differences observed in the EKG. Overall, a better understanding of sex differences in electrophysiology is essential for equitably treating cardiac disease.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
5
|
Marston S. Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A. J Muscle Res Cell Motil 2023; 44:201-208. [PMID: 36131171 PMCID: PMC10541847 DOI: 10.1007/s10974-022-09630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Ca2+ acts on troponin and tropomyosin to switch the thin filament on and off, however in cardiac muscle a more graded form of regulation is essential to tailor cardiac output to the body's needs. This is achieved by the action of adrenaline on β1 receptors of heart muscle cells leading to enhanced contractility, faster heart rate and faster relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. PKA phosphorylates serines 22 and 23 in the N-terminal peptide of cardiac troponin I. As a consequence the rate of Ca2+release from troponin is increased. This is the key determinant of lusitropy. The molecular mechanism of this process has remained unknown long after the mechanism of the troponin Ca2+ switch itself was defined. Investigation of this subtle process at the atomic level poses a challenge, since the change in Ca2+-sensitivity is only about twofold and key parts of the troponin modulation and regulation system are disordered and cannot be fully resolved by conventional structural approaches. We will review recent studies using molecular dynamics simulations together with functional, cryo-em and NMR techniques that have started to give us a precise picture of how phosphorylation of troponin I modulates the dynamics of troponin to produce the lusitropic effect.
Collapse
|
6
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
7
|
Dvornikov AV, Bunch TA, Lepak VC, Colson BA. Fluorescence lifetime-based assay reports structural changes in cardiac muscle mediated by effectors of contractile regulation. J Gen Physiol 2023; 155:e202113054. [PMID: 36633587 PMCID: PMC9859762 DOI: 10.1085/jgp.202113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac muscle contraction is regulated by Ca2+-induced structural changes of the thin filaments to permit myosin cross-bridge cycling driven by ATP hydrolysis in the sarcomere. In congestive heart failure, contraction is weakened, and thus targeting the contractile proteins of the sarcomere is a promising approach to therapy. However, development of novel therapeutic interventions has been challenging due to a lack of precise discovery tools. We have developed a fluorescence lifetime-based assay using an existing site-directed probe, N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) attached to human cardiac troponin C (cTnC) mutant cTnCT53C, exchanged into porcine cardiac myofibrils. We hypothesized that IANBD-cTnCT53C fluorescence lifetime measurements provide insight into the activation state of the thin filament. The sensitivity and precision of detecting structural changes in cTnC due to physiological and therapeutic modulators of thick and thin filament functions were determined. The effects of Ca2+ binding to cTnC and myosin binding to the thin filament were readily detected by this assay in mock high-throughput screen tests using a fluorescence lifetime plate reader. We then evaluated known effectors of altered cTnC-Ca2+ binding, W7 and pimobendan, and myosin-binding drugs, mavacamten and omecamtiv mecarbil, used to treat cardiac diseases. Screening assays were determined to be of high quality as indicated by the Z' factor. We conclude that cTnC lifetime-based probes allow for precise evaluation of the thin filament activation in functioning myofibrils that can be used in future high-throughput screens of small-molecule modulators of function of the thin and thick filaments.
Collapse
Affiliation(s)
- Alexey V. Dvornikov
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas A. Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Victoria C. Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Marston S, Pinto JR. Suppression of lusitropy as a disease mechanism in cardiomyopathies. Front Cardiovasc Med 2023; 9:1080965. [PMID: 36698941 PMCID: PMC9870330 DOI: 10.3389/fcvm.2022.1080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
In cardiac muscle the action of adrenaline on β1 receptors of heart muscle cells is essential to adjust cardiac output to the body's needs. Adrenergic activation leads to enhanced contractility (inotropy), faster heart rate (chronotropy) and faster relaxation (lusitropy), mainly through activation of protein kinase A (PKA). Efficient enhancement of heart output under stress requires all of these responses to work together. Lusitropy is essential for shortening the heartbeat when heart rate increases. It therefore follows that, if the lusitropic response is not present, heart function under stress will be compromised. Current literature suggests that lusitropy is primarily achieved due to PKA phosphorylation of troponin I (TnI) and phospholamban (PLB). It has been well documented that PKA-induced phosphorylation of TnI releases Ca2+ from troponin C faster and increases the rate of cardiac muscle relaxation, while phosphorylation of PLB increases SERCA activity, speeding up Ca2+ removal from the cytoplasm. In this review we consider the current scientific evidences for the connection between suppression of lusitropy and cardiac dysfunction in the context of mutations in phospholamban and thin filament proteins that are associated with cardiomyopathies. We will discuss what advances have been made into understanding the physiological mechanism of lusitropy due to TnI and PLB phosphorylation and its suppression by mutations and we will evaluate the evidence whether lack of lusitropy is sufficient to cause cardiomyopathy, and under what circumstances, and consider the range of pathologies associated with loss of lusitropy. Finally, we will discuss whether suppressed lusitropy due to mutations in thin filament proteins can be therapeutically restored.
Collapse
Affiliation(s)
- Steven Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
9
|
Knight WE, Ali HR, Nakano SJ, Wilson CE, Walker LA, Woulfe KC. Ex vivo Methods for Measuring Cardiac Muscle Mechanical Properties. Front Physiol 2021; 11:616996. [PMID: 33488406 PMCID: PMC7820907 DOI: 10.3389/fphys.2020.616996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease continues to be the leading cause of morbidity and mortality in the United States and thousands of manuscripts each year are aimed at elucidating mechanisms underlying cardiac disease. The methods for quantifying cardiac performance are quite varied, with each technique assessing unique features of cardiac muscle mechanical properties. Accordingly, in this review, we discuss current ex vivo methods for quantifying cardiac muscle performance, highlighting what can be learned from each method, and how each technique can be used in conjunction to complement others for a more comprehensive understanding of cardiac function. Importantly, cardiac function can be assessed at several different levels, from the whole organ down to individual protein-protein interactions. Here, we take a reductionist view of methods that are commonly used to measure the distinct aspects of cardiac mechanical function, beginning with whole heart preparations and finishing with the in vitro motility assay. While each of the techniques are individually well-documented in the literature, there is a significant need for a comparison of the techniques, delineating the mechanical parameters that can are best measured with each technique, as well as the strengths and weaknesses inherent to each method. Additionally, we will consider complementary techniques and how these methods can be used in combination to improve our understanding of cardiac mechanical function. By presenting each of these methods, with their strengths and limitations, in a single manuscript, this review will assist cardiovascular biologists in understanding the existing literature on cardiac mechanical function, as well as designing future experiments.
Collapse
Affiliation(s)
- Walter E Knight
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hadi R Ali
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephanie J Nakano
- Department of Pediatrics, Division of Cardiology, Children's Hospital, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cortney E Wilson
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Species differences in cardiovascular physiology that affect pharmacology and toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kieu TT, Awinda PO, Tanner BCW. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophys J 2019; 116:2149-2160. [PMID: 31103235 DOI: 10.1016/j.bpj.2019.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure is a life-threatening condition that occurs when the heart muscle becomes weakened and cannot adequately circulate blood and nutrients around the body. Omecamtiv mecarbil (OM) is a compound that has been developed to treat systolic heart failure via targeting the cardiac myosin heavy chain to increase myocardial contractility. Biophysical and biochemical studies have found that OM increases calcium (Ca2+) sensitivity of contraction by prolonging the myosin working stroke and increasing the actin-myosin cross-bridge duty ratio. Most in vitro studies probing the effects of OM on cross-bridge kinetics and muscle force production have been conducted at subphysiological temperature, even though temperature plays a critical role in enzyme activity and cross-bridge function. Herein, we used skinned, ventricular papillary muscle strips from rats to investigate the effects of [OM] on Ca2+-activated force production, cross-bridge kinetics, and myocardial viscoelasticity at physiological temperature (37°C). We find that OM only increases myocardial contractility at submaximal Ca2+ activation levels and not maximal Ca2+ activation levels. As [OM] increased, the kinetic rate constants for cross-bridge recruitment and detachment slowed for both submaximal and maximal Ca2+-activated conditions. These findings support a mechanism by which OM increases cardiac contractility at physiological temperature via increasing cross-bridge contributions to thin-filament activation as cross-bridge kinetics slow and the duration of cross-bridge attachment increases. Thus, force only increases at submaximal Ca2+ activation due to cooperative recruitment of neighboring cross-bridges, because thin-filament activation is not already saturated. In contrast, OM does not increase myocardial force production for maximal Ca2+-activated conditions at physiological temperature because cooperative activation of thin filaments may already be saturated.
Collapse
Affiliation(s)
- Thinh T Kieu
- Department of Integrative Physiology and Neuroscience
| | | | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience; Washington Center for Muscle Biology, Washington State University, Pullman, Washington.
| |
Collapse
|
12
|
Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC. Chronic Calmodulin-Kinase II Activation Drives Disease Progression in Mutation-Specific Hypertrophic Cardiomyopathy. Circulation 2019; 139:1517-1529. [PMID: 30586744 PMCID: PMC6461395 DOI: 10.1161/circulationaha.118.034549] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Although the genetic causes of hypertrophic cardiomyopathy (HCM) are widely recognized, considerable lag in the development of targeted therapeutics has limited interventions to symptom palliation. This is in part attributable to an incomplete understanding of how point mutations trigger pathogenic remodeling. As a further complication, similar mutations within sarcomeric genes can result in differential disease severity, highlighting the need to understand the mechanism of progression at the molecular level. One pathway commonly linked to HCM progression is calcium homeostasis dysregulation, though how specific mutations disrupt calcium homeostasis remains unclear. METHODS To evaluate the effects of early intervention in calcium homeostasis, we used 2 mouse models of sarcomeric HCM (cardiac troponin T R92L and R92W) with differential myocellular calcium dysregulation and disease presentation. Two modes of intervention were tested: inhibition of the autoactivated calcium-dependent kinase (calmodulin kinase II [CaMKII]) via the AC3I peptide and diltiazem, an L-type calcium channel antagonist. Two-dimensional echocardiography was used to determine cardiac function and left ventricular remodeling, and atrial remodeling was monitored via atrial mass. Sarcoplasmic reticulum Ca2+ATPase activity was measured as an index of myocellular calcium handling and coupled to its regulation via the phosphorylation status of phospholamban. RESULTS We measured an increase in phosphorylation of CaMKII in R92W animals by 6 months of age, indicating increased autonomous activity of the kinase in these animals. Inhibition of CaMKII led to recovery of diastolic function and partially blunted atrial remodeling in R92W mice. This improved function was coupled to increased sarcoplasmic reticulum Ca2+ATPase activity in the R92W animals despite reduction of CaMKII activation, likely indicating improvement in myocellular calcium handling. In contrast, inhibition of CaMKII in R92L animals led to worsened myocellular calcium handling, remodeling, and function. Diltiazem-HCl arrested diastolic dysfunction progression in R92W animals only, with no improvement in cardiac remodeling in either genotype. CONCLUSIONS We propose a highly specific, mutation-dependent role of activated CaMKII in HCM progression and a precise therapeutic target for clinical management of HCM in selected cohorts. Moreover, the mutation-specific response elicited with diltiazem highlights the necessity to understand mutation-dependent progression at a molecular level to precisely intervene in disease progression.
Collapse
Affiliation(s)
- Sarah J. Lehman
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona 85724, USA
| | - Lauren Tal-Grinspan
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Melissa L. Lynn
- Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Grace E. Benitez
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85724, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Jil C. Tardiff
- Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| |
Collapse
|
13
|
Obata K, Takeshita D, Morita H, Takaki M. Left ventricular mechanoenergetics in excised, cross-circulated rat hearts under hypo-, normo-, and hyperthermic conditions. Sci Rep 2018; 8:16246. [PMID: 30390094 PMCID: PMC6214925 DOI: 10.1038/s41598-018-34666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022] Open
Abstract
We investigated the effects of altering cardiac temperature on left ventricular (LV) myocardial mechanical work and energetics using the excised, cross-circulated rat heart model. We analyzed the LV end-systolic pressure-volume relationship (ESPVR) and linear relationship between myocardial oxygen consumption per beat (VO2) and systolic pressure-volume area (PVA; total mechanical energy per beat) in isovolumically contracting rat hearts during hypo- (32 °C), normo- (37 °C), and hyperthermia (42 °C) under a 300-beats per minute pacing. LV ESPVR shifted downward with increasing cardiac temperature. The VO2-PVA relationship was superimposable in these different thermal conditions; however, each data point of VO2-PVA shifted left-downward during increasing cardiac temperature on the superimposable VO2-PVA relationship line. VO2 for Ca2+ handling in excitation-contraction coupling decreased, which was associated with increasing cardiac temperature, during which sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity was suppressed, due to phospholamban phosphorylation inhibition, and instead, O2 consumption for basal metabolism was increased. The O2 cost of LV contractility for Ca2+ also increased with increasing cardiac temperature. Logistic time constants evaluating LV relaxation time were significantly shortened with increasing cardiac temperature related to the acceleration of the detachment in cross-bridge (CB) cycling, indicating increased myosin ATPase activity. The results suggested that increasing cardiac temperature induced a negative inotropic action related to SERCA activity suppression in Ca2+ handling and increased myosin ATPase activity in CB cycling. We concluded that thermal intervention could modulate cardiac inotropism by changing CB cycling, Ca2+ handling, and basal metabolism in rat hearts.
Collapse
Affiliation(s)
- Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Daisuke Takeshita
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Miyako Takaki
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery, Nara Medical University, School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
14
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Land S, Park-Holohan SJ, Smith NP, Dos Remedios CG, Kentish JC, Niederer SA. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J Mol Cell Cardiol 2017; 106:68-83. [PMID: 28392437 DOI: 10.1016/j.yjmcc.2017.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022]
Abstract
Experimental data from human cardiac myocytes at body temperature is crucial for a quantitative understanding of clinically relevant cardiac function and development of whole-organ computational models. However, such experimental data is currently very limited. Specifically, important measurements to characterize changes in tension development in human cardiomyocytes that occur with perturbations in cell length are not available. To address this deficiency, in this study we present an experimental data set collected from skinned human cardiac myocytes, including the passive and viscoelastic properties of isolated myocytes, the steady-state force calcium relationship at different sarcomere lengths, and changes in tension following a rapid increase or decrease in length, and after constant velocity shortening. This data set is, to our knowledge, the first characterization of length and velocity-dependence of tension generation in human skinned cardiac myocytes at body temperature. We use this data to develop a computational model of contraction and passive viscoelasticity in human myocytes. Our model includes troponin C kinetics, tropomyosin kinetics, a three-state crossbridge model that accounts for the distortion of crossbridges, and the cellular viscoelastic response. Each component is parametrized using our experimental data collected in human cardiomyocytes at body temperature. Furthermore we are able to confirm that properties of length-dependent activation at 37°C are similar to other species, with a shift in calcium sensitivity and increase in maximum tension. We revise our model of tension generation in the skinned isolated myocyte to replicate reported tension traces generated in intact muscle during isometric tension, to provide a model of human tension generation for multi-scale simulations. This process requires changes to calcium sensitivity, cooperativity, and crossbridge transition rates. We apply this model within multi-scale simulations of biventricular cardiac function and further refine the parametrization within the whole organ context, based on obtaining a healthy ejection fraction. This process reveals that crossbridge cycling rates differ between skinned myocytes and intact myocytes.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London, UK.
| | - So-Jin Park-Holohan
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | - Nicolas P Smith
- Department of Engineering Science, University of Auckland, New Zealand
| | | | - Jonathan C Kentish
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | | |
Collapse
|
16
|
Veltri T, de Oliveira GAP, Bienkiewicz EA, Palhano FL, Marques MDA, Moraes AH, Silva JL, Sorenson MM, Pinto JR. Amide hydrogens reveal a temperature-dependent structural transition that enhances site-II Ca 2+-binding affinity in a C-domain mutant of cardiac troponin C. Sci Rep 2017; 7:691. [PMID: 28386062 PMCID: PMC5429600 DOI: 10.1038/s41598-017-00777-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
The hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 °C there are large, progressive increases in N-domain Ca2+-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp transition above 30–40 °C, indicating a temperature-dependent conformational change that is most prominent around the mutated EF-hand IV, as well as throughout the C-domain. Smaller, isolated changes occur in the N-domain. Cardiac skinned fibres reconstituted with D145E are more sensitive to Ca2+ than fibres reconstituted with wild-type, and this defect is amplified near body-temperature. We speculate that the D145E mutation destabilises the native conformation of EF-hand IV, leading to a transient unfolding and dissociation of helix H that becomes more prominent at higher temperatures. This creates exposed hydrophobic surfaces that may be capable of binding unnaturally to a variety of targets, possibly including the N-domain of cTnC when it is in its open Ca2+-saturated state. This would constitute a potential route for propagating signals from one end of TnC to the other.
Collapse
Affiliation(s)
- Tiago Veltri
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.,Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ewa A Bienkiewicz
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Fernando L Palhano
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adolfo H Moraes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martha M Sorenson
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
17
|
Campbell KS. Compliance Accelerates Relaxation in Muscle by Allowing Myosin Heads to Move Relative to Actin. Biophys J 2017; 110:661-668. [PMID: 26840730 DOI: 10.1016/j.bpj.2015.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022] Open
Abstract
The mechanisms that limit the speed at which striated muscles relax are poorly understood. This work presents, to our knowledge, novel simulations that show that the time course of relaxation is accelerated by interfilamentary movement resulting from series compliance; force drops faster when myosin heads move relative to actin during relaxation. This insight was obtained by using cross-bridge distribution techniques to simulate the mechanical behavior of half-sarcomeres that were connected in series with springs of varying stiffness. (The springs mimic the combined effects of half-sarcomere heterogeneity and muscle's series elastic component.) Half-sarcomeres that shortened by >∼10 nm when they were activated subsequently relaxed with a biphasic profile; force initially declined slowly and approximately linearly before collapsing with a fast exponential time course. Stretches imposed during the linear phase quickened relaxation, while shortening movements prolonged the time course. These predictions are consistent with data from experiments performed by many other groups using single muscle fibers and isolated myofibrils. When half-sarcomeres were linked to stiff springs (so that they did not shorten appreciably during the simulations), force relaxed with a slow exponential time course and did not show biphasic behavior. Together, these results suggest that fast relaxation of striated muscle is an emergent property that reflects multiscale interactions within the muscle architecture. The nonlinear behavior during relaxation reflects perturbations to the dynamic coupling of regulated binding sites and cycling myosin heads that are induced by interfilamentary movement.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Division of Cardiovascular Medicine, Department of Physiology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
18
|
Siddiqui JK, Tikunova SB, Walton SD, Liu B, Meyer M, de Tombe PP, Neilson N, Kekenes-Huskey PM, Salhi HE, Janssen PML, Biesiadecki BJ, Davis JP. Myofilament Calcium Sensitivity: Consequences of the Effective Concentration of Troponin I. Front Physiol 2016; 7:632. [PMID: 28066265 PMCID: PMC5175494 DOI: 10.3389/fphys.2016.00632] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 12/04/2022] Open
Abstract
Control of calcium binding to and dissociation from cardiac troponin C (TnC) is essential to healthy cardiac muscle contraction/relaxation. There are numerous aberrant post-translational modifications and mutations within a plethora of contractile, and even non-contractile, proteins that appear to imbalance this delicate relationship. The direction and extent of the resulting change in calcium sensitivity is thought to drive the heart toward one type of disease or another. There are a number of molecular mechanisms that may be responsible for the altered calcium binding properties of TnC, potentially the most significant being the ability of the regulatory domain of TnC to bind the switch peptide region of TnI. Considering TnI is essentially tethered to TnC and cannot diffuse away in the absence of calcium, we suggest that the apparent calcium binding properties of TnC are highly dependent upon an “effective concentration” of TnI available to bind TnC. Based on our previous work, TnI peptide binding studies and the calcium binding properties of chimeric TnC-TnI fusion constructs, and building upon the concept of effective concentration, we have developed a mathematical model that can simulate the steady-state and kinetic calcium binding properties of a wide assortment of disease-related and post-translational protein modifications in the isolated troponin complex and reconstituted thin filament. We predict that several TnI and TnT modifications do not alter any of the intrinsic calcium or TnI binding constants of TnC, but rather alter the ability of TnC to “find” TnI in the presence of calcium. These studies demonstrate the apparent consequences of the effective TnI concentration in modulating the calcium binding properties of TnC.
Collapse
Affiliation(s)
- Jalal K Siddiqui
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Svetlana B Tikunova
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Shane D Walton
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Bin Liu
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Meredith Meyer
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Pieter P de Tombe
- Cell and Molecular Physiology, Loyola University Chicago Maywood, IL, USA
| | - Nathan Neilson
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | | | - Hussam E Salhi
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| |
Collapse
|
19
|
Smith IC, Bellissimo C, Herzog W, Tupling AR. Can inorganic phosphate explain sag during unfused tetanic contractions of skeletal muscle? Physiol Rep 2016; 4:4/22/e13043. [PMID: 27884960 PMCID: PMC5358005 DOI: 10.14814/phy2.13043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
We test the hypothesis that cytosolic inorganic phosphate (Pi) can account for the contraction‐induced reductions in twitch duration which impair summation and cause force to decline (sag) during unfused tetanic contractions of fast‐twitch muscle. A five‐state model of crossbridge cycling was used to simulate twitch and unfused tetanic contractions. As Pi concentration ([Pi]) was increased from 0 to 30 mmol·L−1, twitch duration decreased, with progressive reductions in sensitivity to Pi as [Pi] was increased. When unfused tetani were simulated with rising [Pi], sag was most pronounced when initial [Pi] was low, and when the magnitude of [Pi] increase was large. Fast‐twitch extensor digitorum longus (EDL) muscles (sag‐prone, typically low basal [Pi]) and slow‐twitch soleus muscles (sag‐resistant, typically high basal [Pi]) were isolated from 14 female C57BL/6 mice. Muscles were sequentially incubated in solutions containing either glucose or pyruvate to create typical and low Pi environments, respectively. Twitch duration was greater (P < 0.05) in pyruvate than glucose in both muscles. Stimuli applied at intervals approximately three times the time to peak twitch tension resulted in sag of 35.0 ± 3.7% in glucose and 50.5 ± 1.4% in pyruvate in the EDL (pyruvate > glucose; P < 0.05), and 3.9 ± 0.3% in glucose and 37.8 ± 2.7% in pyruvate in the soleus (pyruvate > glucose; P < 0.05). The influence of Pi on crossbridge cycling provides a tenable mechanism for sag. Moreover, the low basal [Pi] in fast‐twitch relative to slow‐twitch muscle has promise as an explanation for the fiber‐type dependency of sag.
Collapse
Affiliation(s)
- Ian C Smith
- Human Performance Lab, University of Calgary, Calgary, Alberta, Canada
| | | | - Walter Herzog
- Human Performance Lab, University of Calgary, Calgary, Alberta, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Dewan S, McCabe KJ, Regnier M, McCulloch AD, Lindert S. Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 2016; 120:8264-75. [PMID: 27133568 PMCID: PMC5001916 DOI: 10.1021/acs.jpcb.6b01950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations affect myofilament contraction. On the basis of the location of cardiac troponin C (cTnC) mutations, we tested the hypothesis that intramolecular effects can explain the altered myofilament calcium sensitivity of force development for D75Y and E59D cTnC, whereas altered cardiac troponin C-troponin I (cTnC-cTnI) interaction contributes to the reported contractile effects of the G159D mutation. We employed a multiscale approach combining molecular dynamics (MD) and Brownian dynamics (BD) simulations to estimate cTnC calcium association and hydrophobic patch opening. We then integrated these parameters into a Markov model of myofilament activation to compute the steady-state force-pCa relationship. The analysis showed that myofilament calcium sensitivity with D75Y and E59D can be explained by changes in calcium binding affinity of cTnC and the rate of hydrophobic patch opening, if a partial cTnC interhelical opening angle (110°) is sufficient for cTnI switch peptide association to cTnC. In contrast, interactions between cTnC and cTnI within the cardiac troponin complex must also be accounted for to explain contractile alterations due to G159D. In conclusion, this is the first multiscale in silico study to elucidate how direct molecular effects of genetic mutations in cTnC translate to altered myofilament contractile function.
Collapse
Affiliation(s)
- Sukriti Dewan
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Kimberly J. McCabe
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Michael Regnier
- Dept. of Bioengineering, University of Washington, Seattle, WA 98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, 92093
| | - Steffen Lindert
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
21
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
22
|
Shettigar V, Zhang B, Little SC, Salhi HE, Hansen BJ, Li N, Zhang J, Roof SR, Ho HT, Brunello L, Lerch JK, Weisleder N, Fedorov VV, Accornero F, Rafael-Fortney JA, Gyorke S, Janssen PML, Biesiadecki BJ, Ziolo MT, Davis JP. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease. Nat Commun 2016; 7:10794. [PMID: 26908229 PMCID: PMC4770086 DOI: 10.1038/ncomms10794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.
Collapse
Affiliation(s)
- Vikram Shettigar
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Bo Zhang
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Sean C Little
- Bristol-Myers Squibb, Department of Discovery Biology, Wallingford, Connecticut 06492, USA
| | - Hussam E Salhi
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Brian J Hansen
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Ning Li
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jianchao Zhang
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | | | - Hsiang-Ting Ho
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Lucia Brunello
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Noah Weisleder
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Vadim V Fedorov
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Federica Accornero
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jill A Rafael-Fortney
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Sandor Gyorke
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Paul M L Janssen
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Brandon J Biesiadecki
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Mark T Ziolo
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| |
Collapse
|
23
|
Designing proteins to combat disease: Cardiac troponin C as an example. Arch Biochem Biophys 2016; 601:4-10. [PMID: 26901433 DOI: 10.1016/j.abb.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
Throughout history, muscle research has led to numerous scientific breakthroughs that have brought insight to a more general understanding of all biological processes. Potentially one of the most influential discoveries was the role of the second messenger calcium and its myriad of handling and sensing systems that mechanistically control muscle contraction. In this review we will briefly discuss the significance of calcium as a universal second messenger along with some of the most common calcium binding motifs in proteins, focusing on the EF-hand. We will also describe some of our approaches to rationally design calcium binding proteins to palliate, or potentially even cure cardiovascular disease. Considering not all failing hearts have the same etiology, genetic background and co-morbidities, personalized therapies will need to be developed. We predict designer proteins will open doors for unprecedented personalized, and potentially, even generalized medicines as gene therapy or protein delivery techniques come to fruition.
Collapse
|
24
|
Figueiredo-Freitas C, Dulce RA, Foster MW, Liang J, Yamashita AMS, Lima-Rosa FL, Thompson JW, Moseley MA, Hare JM, Nogueira L, Sorenson MM, Pinto JR. S-Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca2+)Sensitivity in Intact Cardiomyocytes. Antioxid Redox Signal 2015; 23:1017-34. [PMID: 26421519 PMCID: PMC4649751 DOI: 10.1089/ars.2015.6275] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. RESULTS Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca(2+) sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 μM GSNO also decreased Ca(2+) sensitivity of contraction and 10 μM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (≥ 100 μM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca(2+) sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 μM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. INNOVATION AND CONCLUSIONS Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations.
Collapse
Affiliation(s)
- Cícero Figueiredo-Freitas
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil .,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Raul A Dulce
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Matthew W Foster
- 5 Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center , Durham, North Carolina.,6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Jingsheng Liang
- 3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Aline M S Yamashita
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Frederico L Lima-Rosa
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - J Will Thompson
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - M Arthur Moseley
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Joshua M Hare
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Leonardo Nogueira
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Martha M Sorenson
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - José Renato Pinto
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| |
Collapse
|
25
|
Land S, Niederer SA. A Spatially Detailed Model of Isometric Contraction Based on Competitive Binding of Troponin I Explains Cooperative Interactions between Tropomyosin and Crossbridges. PLoS Comput Biol 2015; 11:e1004376. [PMID: 26262582 PMCID: PMC4532474 DOI: 10.1371/journal.pcbi.1004376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
Biophysical models of cardiac tension development provide a succinct representation of our understanding of force generation in the heart. The link between protein kinetics and interactions that gives rise to high cooperativity is not yet fully explained from experiments or previous biophysical models. We propose a biophysical ODE-based representation of cross-bridge (XB), tropomyosin and troponin within a contractile regulatory unit (RU) to investigate the mechanisms behind cooperative activation, as well as the role of cooperativity in dynamic tension generation across different species. The model includes cooperative interactions between regulatory units (RU-RU), between crossbridges (XB-XB), as well more complex interactions between crossbridges and regulatory units (XB-RU interactions). For the steady-state force-calcium relationship, our framework predicts that: (1) XB-RU effects are key in shifting the half-activation value of the force-calcium relationship towards lower [Ca2+], but have only small effects on cooperativity. (2) XB-XB effects approximately double the duty ratio of myosin, but do not significantly affect cooperativity. (3) RU-RU effects derived from the long-range action of tropomyosin are a major factor in cooperative activation, with each additional unblocked RU increasing the rate of additional RU’s unblocking. (4) Myosin affinity for short (1–4 RU) unblocked stretches of actin of is very low, and the resulting suppression of force at low [Ca2+] is a major contributor in the biphasic force-calcium relationship. We also reproduce isometric tension development across mouse, rat and human at physiological temperature and pacing rate, and conclude that species differences require only changes in myosin affinity and troponin I/troponin C affinity. Furthermore, we show that the calcium dependence of the rate of tension redevelopment ktr is explained by transient blocking of RU’s by a temporary decrease in XB-RU effects. Force generation in cardiac muscle cells is driven by changes in calcium concentration. Relatively small changes in the calcium concentration over the course of a heart beat lead to the large changes in force required to fully contract and relax the heart. This is known as ‘cooperative activation’, and involves a complex interaction of several proteins involved in contraction. Current computer models which reproduce force generation often do not represent these processes explicitly, and stochastic approaches that do tend to require large amounts of computational power to solve, which limit the range of investigations in which they can be used. We have created an new computational model that captures the underlying physiological processes in more detail, and is more efficient than stochastic approaches, while still being able to run a large range of simulations. The model is able to explain the biological processes leading to the cooperative activation of muscle. In addition, the model reproduces how this cooperative activation translates to normal muscle function to generate force from changes in calcium across three different species.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King’s College London, United Kingdom
- * E-mail:
| | - Steven A. Niederer
- Department of Biomedical Engineering, King’s College London, United Kingdom
| |
Collapse
|
26
|
Vikhorev PG, Song W, Wilkinson R, Copeland O, Messer AE, Ferenczi MA, Marston SB. The dilated cardiomyopathy-causing mutation ACTC E361G in cardiac muscle myofibrils specifically abolishes modulation of Ca(2+) regulation by phosphorylation of troponin I. Biophys J 2015; 107:2369-80. [PMID: 25418306 PMCID: PMC4241448 DOI: 10.1016/j.bpj.2014.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/25/2014] [Accepted: 10/16/2014] [Indexed: 01/30/2023] Open
Abstract
Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2+ sensitivity and increases the rate of Ca2+ release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca2+-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca2+ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myofibrils. In nontransgenic mouse myofibrils, the Ca2+ sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP = 1.8 ± 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca2+ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2+ sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP = 0.88 ± 0.17, p = 0.39). Nevertheless, modulation of the Ca2+ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca2+ sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033.
Collapse
Affiliation(s)
- Petr G Vikhorev
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ross Wilkinson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - O'Neal Copeland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
27
|
Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PML. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev 2014; 6:273-289. [PMID: 28510030 PMCID: PMC4255972 DOI: 10.1007/s12551-014-0143-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and beta-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
28
|
Wilson K, Guggilam A, West TA, Zhang X, Trask AJ, Cismowski MJ, de Tombe P, Sadayappan S, Lucchesi PA. Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1605-17. [PMID: 25260618 DOI: 10.1152/ajpheart.00423.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aortocaval fistula (ACF)-induced volume overload (VO) heart failure (HF) results in progressive left ventricular (LV) dysfunction. Hemodynamic load reversal during pre-HF (4 wk post-ACF; REV) results in rapid structural but delayed functional recovery. This study investigated myocyte and myofilament function in ACF and REV and tested the hypothesis that a myofilament Ca(2+) sensitizer would improve VO-induced myofilament dysfunction in ACF and REV. Following the initial sham or ACF surgery in male Sprague-Dawley rats (200-240 g) at week 0, REV surgery and experiments were performed at weeks 4 and 8, respectively. In ACF, decreased LV function is accompanied by impaired sarcomeric shortening and force generation and decreased Ca(2+) sensitivity, whereas, in REV, impaired LV function is accompanied by decreased Ca(2+) sensitivity. Intravenous levosimendan (Levo) elicited the best inotropic and lusitropic responses and was selected for chronic oral studies. Subsets of ACF and REV rats were given vehicle (water) or Levo (1 mg/kg) in drinking water from weeks 4-8. Levo improved systolic (% fractional shortening, end-systolic elastance, and preload-recruitable stroke work) and diastolic (τ, dP/dtmin) function in ACF and REV. Levo improved Ca(2+) sensitivity without altering the amplitude and kinetics of the intracellular Ca(2+) transient. In ACF-Levo, increased cMyBP-C Ser-273 and Ser-302 and cardiac troponin I Ser-23/24 phosphorylation correlated with improved diastolic relaxation, whereas, in REV-Levo, increased cMyBP-C Ser-273 phosphorylation and increased α-to-β-myosin heavy chain correlated with improved diastolic relaxation. We concluded that Levo improves LV function, and myofilament composition and regulatory protein phosphorylation likely play a key role in improving function.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Anuradha Guggilam
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - T Aaron West
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Xiaojin Zhang
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Pieter de Tombe
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Pamela A Lucchesi
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
29
|
Salhi HE, Walton SD, Hassel NC, Brundage EA, de Tombe PP, Janssen PML, Davis JP, Biesiadecki BJ. Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation. J Mol Cell Cardiol 2014; 76:257-64. [PMID: 25252176 DOI: 10.1016/j.yjmcc.2014.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate that Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate that filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function.
Collapse
Affiliation(s)
- Hussam E Salhi
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D Walton
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan C Hassel
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A Brundage
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pieter P de Tombe
- The Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Paul M L Janssen
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Davis
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon J Biesiadecki
- The Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Nixon BR, Walton SD, Zhang B, Brundage EA, Little SC, Ziolo MT, Davis JP, Biesiadecki BJ. Combined troponin I Ser-150 and Ser-23/24 phosphorylation sustains thin filament Ca(2+) sensitivity and accelerates deactivation in an acidic environment. J Mol Cell Cardiol 2014; 72:177-85. [PMID: 24657721 PMCID: PMC4075059 DOI: 10.1016/j.yjmcc.2014.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
The binding of Ca(2+) to troponin C (TnC) in the troponin complex is a critical step regulating the thin filament, the actin-myosin interaction and cardiac contraction. Phosphorylation of the troponin complex is a key regulatory mechanism to match cardiac contraction to demand. Here we demonstrate that phosphorylation of the troponin I (TnI) subunit is simultaneously increased at Ser-150 and Ser-23/24 during in vivo myocardial ischemia. Myocardial ischemia decreases intracellular pH resulting in depressed binding of Ca(2+) to TnC and impaired contraction. To determine the pathological relevance of these simultaneous TnI phosphorylations we measured individual TnI Ser-150 (S150D), Ser-23/24 (S23/24D) and combined (S23/24/150D) pseudo-phosphorylation effects on thin filament regulation at acidic pH similar to that in myocardial ischemia. Results demonstrate that while acidic pH decreased thin filament Ca(2+) binding to TnC regardless of TnI composition, TnI S150D attenuated this decrease rendering it similar to non-phosphorylated TnI at normal pH. The dissociation of Ca(2+) from TnC was unaltered by pH such that TnI S150D remained slow, S23/24D remained accelerated and the combined S23/24/150D remained accelerated. This effect of the combined TnI Ser-150 and Ser-23/24 pseudo-phosphorylations to maintain Ca(2+) binding while accelerating Ca(2+) dissociation represents the first post-translational modification of troponin by phosphorylation to both accelerate thin filament deactivation and maintain Ca(2+) sensitive activation. These data suggest that TnI Ser-150 phosphorylation induced attenuation of the pH-dependent decrease in Ca(2+) sensitivity and its combination with Ser-23/24 phosphorylation to maintain accelerated thin filament deactivation may impart an adaptive role to preserve contraction during acidic ischemia pH without slowing relaxation.
Collapse
Affiliation(s)
- Benjamin R Nixon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D Walton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Zhang
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sean C Little
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014; 141:235-49. [PMID: 24140081 PMCID: PMC3947198 DOI: 10.1016/j.pharmthera.2013.10.007] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA.
| |
Collapse
|
32
|
Land S, Niederer SA, Louch WE, Sejersted OM, Smith NP. Integrating multi-scale data to create a virtual physiological mouse heart. Interface Focus 2014; 3:20120076. [PMID: 24427525 DOI: 10.1098/rsfs.2012.0076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.
Collapse
Affiliation(s)
- Sander Land
- Department of Computer Science, University of Oxford, Oxford, UK ; Biomedical Engineering Department, King's College London, London, UK
| | - Steven A Niederer
- Biomedical Engineering Department, King's College London, London, UK
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway ; KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway ; KG Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Nicolas P Smith
- Department of Computer Science, University of Oxford, Oxford, UK ; Biomedical Engineering Department, King's College London, London, UK
| |
Collapse
|
33
|
Ghosh E, Kovács SJ. The quest for load-independent left ventricular chamber properties: Exploring the normalized pressure phase plane. Physiol Rep 2013; 1:e00043. [PMID: 24303128 PMCID: PMC3834999 DOI: 10.1002/phy2.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/05/2022] Open
Abstract
The pressure phase plane (PPP), defined by dP(t)/dt versus P(t) coordinates has revealed novel physiologic relationships not readily obtainable from conventional, time domain analysis of left ventricular pressure (LVP). We extend the methodology by introducing the normalized pressure phase plane (nPPP), defined by 0 ≤ P ≤ 1 and -1 ≤ dP/dt ≤ +1. Normalization eliminates load-dependent effects facilitating comparison of conserved features of nPPP loops. Hence, insight into load-invariant systolic and diastolic chamber properties and their coupling to load can be obtained. To demonstrate utility, high-fidelity P(t) data from 14 subjects (4234 beats) was analyzed. PNR, the nPPP (dimensionless) pressure, where -dP/dtpeak occurs, was 0.61 and had limited variance (7%). The relative load independence of PNR was corroborated by comparison of PPP and nPPP features of normal sinus rhythm (NSR) and (ejecting and nonejecting) premature ventricular contraction (PVC) beats. PVCs had lower P(t)max and lower peak negative and positive dP(t)/dt values versus NSR beats. In the nPPP, +dP/dtpeak occurred at higher (dimensionless) P in PVC beats than in regular beats (0.44 in NSR vs. 0.48 in PVC). However, PNR for PVC versus NSR remained unaltered (PNR = 0.64; P > 0.05). Possible mechanistic explanation includes a (near) load-independent (constant) ratio of maximum cross-bridge uncoupling rate to instantaneous wall stress. Hence, nPPP analysis reveals LV properties obscured by load and by conventional temporal P(t) and dP(t)/dt analysis. nPPP identifies chamber properties deserving molecular and cellular physiologic explanation.
Collapse
Affiliation(s)
- Erina Ghosh
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine St. Louis, Missouri ; Department of Biomedical Engineering, School of Engineering and Applied Science, Washington University in St. Louis St. Louis, Missouri
| | | |
Collapse
|
34
|
Milani-Nejad N, Xu Y, Davis JP, Campbell KS, Janssen PML. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature. ACTA ACUST UNITED AC 2013; 141:133-9. [PMID: 23277479 PMCID: PMC3536524 DOI: 10.1085/jgp.201210894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
35
|
Memo M, Leung MC, Ward DG, dos Remedios C, Morimoto S, Zhang L, Ravenscroft G, McNamara E, Nowak KJ, Marston SB, Messer AE. Familial dilated cardiomyopathy mutations uncouple troponin I phosphorylation from changes in myofibrillar Ca²⁺ sensitivity. Cardiovasc Res 2013; 99:65-73. [PMID: 23539503 DOI: 10.1093/cvr/cvt071] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The pure form of familial dilated cardiomyopathy (DCM) is mainly caused by mutations in genes encoding sarcomeric proteins. Previous measurements using recombinant proteins suggested that DCM mutations in thin filament proteins decreased myofibrillar Ca(2+) sensitivity, but exceptions were reported. We re-investigated the molecular mechanism of familial DCM using native proteins. METHODS AND RESULTS We used the quantitative in vitro motility assay and native troponin and tropomyosin to study DCM mutations in troponin I, troponin T, and α-tropomyosin. Four mutations reduced myofilament Ca(2+) sensitivity, but one mutation (TPM1 E54K) did not alter Ca(2+) sensitivity and another (TPM1 D230N) increased Ca(2+) sensitivity. In thin filaments from normal human and mouse heart, protein kinase A (PKA) phosphorylation of troponin I caused a two- to three-fold decrease in myofibrillar Ca(2+) sensitivity. However, Ca(2+) sensitivity did not change with the level of troponin I phosphorylation in any of the DCM-mutant containing thin filaments (E40K, E54K, and D230N in α-tropomyosin; R141W and ΔK210 in cardiac troponin T; K36Q in cardiac troponin I; G159D in cardiac troponin C, and E361G in cardiac α-actin). This 'uncoupling' was observed with native mutant protein from human and mouse heart and with recombinant mutant protein expressed in baculovirus/Sf9 systems. Uncoupling was independent of the fraction of mutated protein present above 0.55. CONCLUSION We conclude that DCM-causing mutations in thin filament proteins abolish the relationship between myofilament Ca(2+) sensitivity and troponin I phosphorylation by PKA. We propose that this blunts the response to β-adrenergic stimulation and could be the cause of DCM in the long term.
Collapse
Affiliation(s)
- Massimiliano Memo
- Myocardial Function, NHLI, Imperial College London, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 2012; 535:30-8. [PMID: 23232082 DOI: 10.1016/j.abb.2012.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
Abstract
Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics.
Collapse
|