1
|
Eto M, Kitazawa T. Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res 2018; 53:1-19. [PMID: 28260704 PMCID: PMC5364378 DOI: 10.1540/jsmr.53.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A hallmark of smooth muscle cells is their ability to adapt their functions to meet temporal and chronic fluctuations in their demands. These functions include force development and growth. Understanding the mechanisms underlying the functional plasticity of smooth muscles, the major constituent of organ walls, is fundamental to elucidating pathophysiological rationales of failures of organ functions. Also, the knowledge is expected to facilitate devising innovative strategies that more precisely monitor and normalize organ functions by targeting individual smooth muscles. Evidence has established a current paradigm that the myosin light chain phosphatase (MLCP) is a master regulator of smooth muscle responsiveness to stimuli. Cellular MLCP activity is negatively and positively regulated in response to G-protein activation and cAMP/cGMP production, respectively, through the MYPT1 regulatory subunit and an endogenous inhibitor protein named CPI-17. In this article we review the outcomes from two decade of research on the CPI-17 signaling and discuss emerging paradoxes in the view of signaling pathways regulating smooth muscle functions through MLCP.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University and Sidney Kimmel Cancer Center, 1020 Locust Street, Philadelphia, PA19107, USA
| | | |
Collapse
|
2
|
Lin S, Brozovich FV. MYPT1 isoforms expressed in HEK293T cells are differentially phosphorylated after GTPγS treatment. J Smooth Muscle Res 2017; 52:66-77. [PMID: 27725371 PMCID: PMC5321854 DOI: 10.1540/jsmr.52.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agonist stimulation of smooth muscle is known to activate RhoA/Rho kinase signaling, and
Rho kinase phosphorylates the myosin targeting subunit (MYPT1) of myosin light chain (MLC)
phosphatase at Thr696 and Thr853, which inhibits the activity of MLC phosphatase to
produce a Ca2+ independent increase in MLC phosphorylation and force (Ca2+ sensitization).
Alternative mRNA splicing produces four MYPT1 isoforms, which differ by the presence or
absence of a central insert (CI) and leucine zipper (LZ). This study was designed to
determine if Rho kinase differentially phosphorylates MYPT1 isoforms. In HEK293T cells
expressing each of the four MYPT1 isoforms, we could not detect a change in Thr853 MYPT1
phosphorylation following GTPγS treatment. However, there is differential phosphorylation
of MYPT1 isoforms at Thr696; GTPγS treatment increases MYPT1 phosphorylation for the
CI+LZ- and CI-LZ- MYPT1 isoforms, but not the CI+LZ+ or CI-LZ+ MYPT1 isoforms. These data
could suggest that in smooth muscle Rho kinase differentially phosphorylates MYPT1
isoforms.
Collapse
Affiliation(s)
- Simon Lin
- Mayo Medical School, Department of Cardiovascular Disease, Rochester, MN 55905, USA
| | | |
Collapse
|
3
|
Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology. J Physiol Sci 2017; 68:1-17. [PMID: 28681362 PMCID: PMC5754374 DOI: 10.1007/s12576-017-0556-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Protein phosphatases 1 and 2A (PP1 and PP2A) are the most ubiquitous and abundant serine/threonine phosphatases in eukaryotic cells. They play fundamental roles in the regulation of various cellular functions. This review focuses on recent advances in the functional studies of these enzymes in the field of smooth muscle physiology. Many naturally occurring protein phosphatase inhibitors with different relative PP1/PP2A affinities have been discovered and are widely used as powerful research tools. Current topics in the chemical biology of PP1/PP2A inhibitors are introduced and discussed, highlighting the identification of the gene cluster responsible for the biosynthesis of calyculin A in a symbiont microorganism of a marine sponge.
Collapse
|
4
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
5
|
Han YS, Brozovich FV. Altered reactivity of tertiary mesenteric arteries following acute myocardial ischemia. J Vasc Res 2012; 50:100-8. [PMID: 23172397 DOI: 10.1159/000343015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/23/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND It is unknown if cardiac ischemia has any deleterious effect on the contractile properties of nonischemic, peripheral vascular beds. Thus, the objective of the present study was to determine whether acute myocardial ischemia results in peripheral vascular dysfunction. METHODS AND RESULTS This study characterized force maintenance and the sensitivity to acetylcholine (ACh)-mediated smooth muscle (SM) relaxation of tertiary (3rd) mesenteric arteries from Sprague-Dawley rats following 30 min of myocardial ischemia. Both the phosphorylation of nonmuscle (NM) light chain (LC) and SM-LCs as well as the expression of myosin phosphatase targeting subunit 1 (MYPT1) were also determined. Our data demonstrate that acute myocardial ischemia resulted in vascular dysfunction of 3rd mesenteric vessels, characterized by decreases in force maintenance, ACh- and cGMP-mediated SM relaxation, the phosphorylation of NM-LCs and SM-LCs, and MYPT1 expression. Ischemia was also associated with an increase in protein polyubiquitination, suggesting that during ischemia MYPT1 is targeted for degradation or proteolysis. CONCLUSION Acute myocardial ischemia produces peripheral vascular dysfunction; the changes in LC phosphorylation and MYPT1 expression result in a decrease in both tone and the sensitivity to NO-mediated SM relaxation of the peripheral vasculature.
Collapse
Affiliation(s)
- Young Soo Han
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
6
|
Bhetwal BP, An CL, Fisher SA, Perrino BA. Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles. Neurogastroenterol Motil 2011; 23:e425-36. [PMID: 21883701 PMCID: PMC3173524 DOI: 10.1111/j.1365-2982.2011.01769.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) govern myosin light chain (LC20) phosphorylation and smooth muscle contraction. Rho kinase (ROK) inhibits MLCP, resulting in greater LC20 phosphorylation and force generation at a given [Ca(2+) ](i) . Here, we investigate the role of ROK in regulating LC20 phosphorylation and spontaneous contractions of gastric fundus, gastric antrum, and proximal colon smooth muscles. METHODS Protein and phosphorylation levels were determined by western blotting. The effects of Y27632, nicardipine, and GF109203X on phosphorylation levels and contraction were measured. KEY RESULTS γ-Actin expression is similar in all three smooth muscles. LC20 and pS19 are highest, but ROK1 and ROK2 are lowest, in antrum and proximal colon smooth muscles. LZ +/- myosin phosphatase targeting subunit 1 (MYPT1), CPI-17, and pT696, pT853, and pT38 are highest in fundus and proximal colon smooth muscles. Myosin phosphatase-rho interacting protein (M-RIP) expression is lowest in fundus, and highest in antrum and proximal colon smooth muscles. Y27632 reduced pT853 in each smooth muscle, but reduced pT696 only in fundus smooth muscles. Nicardipine had no effect on pT38 in each smooth muscle, while GF109203X reduced pT38 in proximal colon and fundus smooth muscles. Y27632 or nicardipine reduced pS19 in proximal colon and fundus smooth muscles. Y27632 or nicardipine inhibited antrum and proximal colon smooth muscle spontaneous contractions, but only Y27632 reduced fundus smooth muscle tone. Zero external Ca(2+) relaxed each smooth muscle and abolished LC20 phosphorylation. CONCLUSIONS & INFERENCES Organ-specific mechanisms involving the MLCP interacting proteins LZ +/- MYPT1, M-RIP, and CPI-17 are critical to regulating basal LC20 phosphorylation in gastrointestinal smooth muscles.
Collapse
Affiliation(s)
- Bhupal P. Bhetwal
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Chang Long An
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Steven A. Fisher
- Departments of Medicine (Cardiology), and Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian A. Perrino
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
7
|
Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 2010; 284:35273-7. [PMID: 19846560 DOI: 10.1074/jbc.r109.059972] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr(38), the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhibits a specific form of PP1, myosin light chain phosphatase, which transduces multiple kinase signals into the phosphorylation of myosin II and other proteins. Here, the mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI, are discussed.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
8
|
Khromov A, Choudhury N, Stevenson AS, Somlyo AV, Eto M. Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction. J Biol Chem 2009; 284:21569-79. [PMID: 19531490 DOI: 10.1074/jbc.m109.019729] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC(50) = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of beta-escin-permeabilized ileum SM at constant pCa 6.3 (EC(50) = 2 microm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697-880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca(2+) sensitization of smooth muscle force.
Collapse
Affiliation(s)
- Alexander Khromov
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
9
|
El-Toukhy A, Given AM, Ogut O, Brozovich FV. PHI-1 interacts with the catalytic subunit of myosin light chain phosphatase to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force in avian smooth muscle. FEBS Lett 2006; 580:5779-84. [PMID: 17022978 PMCID: PMC1698950 DOI: 10.1016/j.febslet.2006.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/28/2006] [Accepted: 09/15/2006] [Indexed: 11/17/2022]
Abstract
In avian smooth muscles, GTPgammaS produces a Rho kinase mediated increase in PHI-1 phosphorylation and force, but whether this correlation is causal is unknown. We examined the effect of phosphorylated PHI-1 (P-PHI-1) on force and myosin light chain (MLC(20)) phosphorylation at a constant [Ca(2+)]. P-PHI-1, but not PHI-1, increased MLC(20) phosphorylation and force, and phosphorylation of PHI-1 increased the interaction of PHI-1 with PP1c. Microcystin induced a dose-dependent reduction in the binding of PHI-1 to PP1c. These results suggest PHI-1 inhibits myosin light chain phosphatase by interacting with the active site of PP1c to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force.
Collapse
Affiliation(s)
- Amr El-Toukhy
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Allison M Given
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
| | - Ozgur Ogut
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
| | - Frank V Brozovich
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
- Address for correspondence: Frank Brozovich, Division of Cardiovascular Diseases, Mayo Clinic, Guggenheim 9C, 200 1 Street SW, Rochester, MN 55905 USA, , 1-507-266-0324, FAX 1-507-284-8566
| |
Collapse
|
10
|
Dakshinamurti S. Regulation of myosin light chain phosphatase and pulmonary arterial relaxation. Can J Physiol Pharmacol 2005; 83:893-8. [PMID: 16333361 DOI: 10.1139/y05-087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal circulatory transition is dependent upon tightly regulated pulmonary circuit relaxation. Persistent pulmonary hypertension (PPHN), a rapidly progressive disease of pulmonary arterial vasospasm and remodelling, may be characterized by pulmonary arterial myocyte relaxation failure. A key regulator of vascular tone is myocyte calcium sensitivity, determined by the relative stoichiometry of myosin light chain phosphorylation and dephosphorylation. We have recently reported downregulation of myosin light chain phosphatase activity in a hypoxic model of neonatal pulmonary hypertension. This review examines the recognized pathways of regulation governing myosin light chain phosphatase activity, including targeting subunit isoform switching, targeting unit phosphorylation and catalytic site inhibition. In light of the reviewed literature, further speculation is proposed on the potential contributions of these mechanisms to the pathophysiology of the perinatal pulmonary arterial relaxation defect in PPHN.Key words: smooth muscle, pulmonary hypertension, myosin light chain phosphatase, CPI-17, MYPT, review.
Collapse
|
11
|
El-Touhky A, Given AM, Cochard A, Brozovich FV. PHI-1 induced enhancement of myosin phosphorylation in chicken smooth muscle. FEBS Lett 2005; 579:4271-7. [PMID: 16081075 DOI: 10.1016/j.febslet.2005.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/20/2022]
Abstract
Herein, we provide evidence that in chicken smooth muscle, G-protein stimulation by a Rho-kinase pathway leads to an increase in myosin light chain phosphorylation. Additionally, G-protein stimulation did not increase MYPT1 phosphorylation at Thr695 or Thr850, and CPI-17, was not expressed in chicken smooth muscle. However, PHI-1 was present in chicken smooth muscle tissues. Both agonist and GTP(gamma)S stimulation result in an increase in PHI-1 phosphorylation, which is inhibited by inhibitors to both Rho-kinase (Y-27632) and (PKC) GF109203x. These data suggest that PHI-1 may act as a CPI-17 analog in chicken smooth muscle and inhibit myosin phosphatase activity during G-protein stimulation to produce Ca2+ sensitization.
Collapse
Affiliation(s)
- Amr El-Touhky
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.
Collapse
Affiliation(s)
- Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan.
| | | | | | | |
Collapse
|
13
|
Karim SM, Rhee AY, Given AM, Faulx MD, Hoit BD, Brozovich FV. Vascular reactivity in heart failure: role of myosin light chain phosphatase. Circ Res 2004; 95:612-8. [PMID: 15321927 DOI: 10.1161/01.res.0000142736.39359.58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Congestive heart failure (CHF) is a clinical syndrome, which is the result of systolic or diastolic ventricular dysfunction. During CHF, vascular tone is regulated by the interplay of neurohormonal mechanisms and endothelial-dependent factors and is characterized by both central and peripheral vasoconstriction as well as a resistance to nitric oxide (NO)-mediated vasodilatation. At the molecular level, vascular tone depends on the level of regulatory myosin light chain phosphorylation, which is determined by the relative activities of myosin light chain kinase and myosin light chain phosphatase (MLCP). The MLCP is a trimeric enzyme with a catalytic, a 20-kDa and a myosin targeting (MYPT1) subunit. Alternative splicing of a 3' exon produces leucine zipper positive and negative (LZ+/-) MYPT1 isoforms. Expression of a LZ+ MYPT1 has been suggested to be required for NO-mediated smooth muscle relaxation. Thus, we hypothesized that the resistance to NO-mediated vasodilatation in CHF could be attributable to a change in the relative expression of LZ+/- MYPT1 isoforms. To test this hypothesis, left coronary artery ligation was used to induce CHF in rats, and both the dose response relationship of relaxation to 8-Br-cGMP in skinned smooth muscle and the relative expression of LZ+/- MYPT1 isoforms were determined. In control animals, the expression of the LZ+ MYPT1 isoform predominated in both the aorta and iliac artery. In CHF rats, LVEF was reduced to 30+/-5% and there was a significant decrease in both the sensitivity to 8-Br-cGMP and expression of the LZ+ MYPT1 isoform. These results indicate that CHF is associated with a decrease in the relative expression of the LZ+ MYPT1 isoform and the sensitivity to 8-Br-cGMP-mediated smooth muscle relaxation. The data suggest that the resistance to NO-mediated relaxation observed during CHF lies at least in part at the level of the smooth muscle and is a consequence of the decrease in the expression of the LZ+ MYPT1 isoform.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Blotting, Western
- Calcium/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Coronary Vessels
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Dose-Response Relationship, Drug
- Heart Failure/diagnostic imaging
- Heart Failure/enzymology
- Heart Failure/etiology
- Heart Failure/physiopathology
- Ligation
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocardial Infarction/complications
- Nitric Oxide/physiology
- Phosphoprotein Phosphatases/deficiency
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/physiology
- Phosphorylation
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Protein Phosphatase 1
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Ultrasonography
- Vasodilation/drug effects
- Vasodilation/genetics
- Vasodilation/physiology
Collapse
Affiliation(s)
- Syed M Karim
- Department of Physiology, Case Western Reserve Univerisity, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
14
|
Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83:1325-58. [PMID: 14506307 DOI: 10.1152/physrev.00023.2003] [Citation(s) in RCA: 1535] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.
Collapse
Affiliation(s)
- Andrew P Somlyo
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, PO Box 800736, Charlottesville, VA 22908-0736.
| | | |
Collapse
|
15
|
Huang QQ, Fisher SA, Brozovich FV. Unzipping the role of myosin light chain phosphatase in smooth muscle cell relaxation. J Biol Chem 2003; 279:597-603. [PMID: 14530290 DOI: 10.1074/jbc.m308496200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recently, it has been hypothesized that myosin light chain (MLC) phosphatase is activated by cGMP-dependent protein kinase (PKG) via a leucine zipper-leucine zipper (LZ-LZ) interaction through the C-terminal LZ in the myosin-binding subunit (MBS) of MLC phosphatase and the N-terminal LZ of PKG (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). Alternative splicing of a 3'-exon produces a LZ+ or LZ- MBS, and the sensitivity to cGMP-mediated smooth muscle relaxation correlates with the relative expression of LZ+/LZ- MBS isoforms (Khatri, J. J., Joyce, K. M., Brozovich, F. V., and Fisher, S. A. (2001) J. Biol. Chem. 276, 37250 -37257). In the present study, we determined the effect of LZ+/LZ- MBS isoforms on cGMP-induced MLC20 dephosphorylation. Four avian smooth muscle MBS-recombinant adenoviruses were prepared and transfected into cultured embryonic chicken gizzard smooth muscle cells. The expressed exogenous MBS isoforms were shown to replace the endogenous isoform in the MLC phosphatase holoenzyme. The interaction of type I PKG (PKGI) with the MBS did not depend on the presence of cGMP or the MBS LZ. However, direct activation of PKGI by 8-bromo-cGMP produced a dose-dependent decrease in MLC20 phosphorylation (p<0.05) only in smooth muscle cells expressing a LZ+ MBS. These results suggest that the activation of MLC phosphatase by PKGI requires a LZ+ MBS, but the binding of PKGI to the MBS is not mediated by a LZ-LZ interaction. Thus, the relative expression of LZ+/LZ- MBS isoforms could explain differences in tissue sensitivity to NO-mediated vasodilatation.
Collapse
Affiliation(s)
- Qi Quan Huang
- Department of Physiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
16
|
|
17
|
Dirksen WP, Mohamed SA, Fisher SA. Splicing of a myosin phosphatase targeting subunit 1 alternative exon is regulated by intronic cis-elements and a novel bipartite exonic enhancer/silencer element. J Biol Chem 2003; 278:9722-32. [PMID: 12509424 DOI: 10.1074/jbc.m207969200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoforms of the smooth muscle myosin phosphatase targeting subunit 1 (MYPT1) are generated by cassette-type alternative splicing of exons. Tissue-specific expression of these isoforms is thought to determine smooth muscle-relaxant properties and unique responses to signaling pathways. We used mini-gene deletion/mutation constructs to identify cis regulators of splicing of the chicken MYPT1 central alternative exon. Comparisons of alternative exon splicing were made between smooth muscle cells of the fast-phasic contractile phenotype (gizzard), in which the central alternative exon is skipped, and slow tonic contractile phenotype (aorta), in which the alternative exon is included. We demonstrate that splicing of the alternative exon requires a cis-enhancer complex in the vicinity of the alternative exon 5'-splice site. This complex consists of two UCUU motifs in an intronic U-rich sequence (putative PTB (polypyrimidine tract binding) or T cell inhibitor of apoptosis-1 binding sites), an intronic 67-nucleotide enhancer that has similarities with the cardiac Troponin T MSE3 enhancer, and a potentially novel exonic splicing enhancer. The exonic enhancer contains the palindromic sequence UCCUACAUCCU present in many other transcripts where alternative splicing of exons occurs, suggesting that it may be more broadly active. The exonic enhancer is adjacent to a potentially novel exonic silencer element that contains a 13-nucleotide imperfect palindromic sequence. This silencer, in conjunction with a distal intronic silencer, is proposed to mediate the silencing of splicing of the MYPT1 central alternative exon in the fast phasic smooth muscle phenotype.
Collapse
Affiliation(s)
- Wessel P Dirksen
- Department of Medicine (Cardiology), Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4958, USA
| | | | | |
Collapse
|
18
|
Somlyo AV, Phelps C, Dipierro C, Eto M, Read P, Barrett M, Gibson JJ, Burnitz MC, Myers C, Somlyo AP. Rho kinase and matrix metalloproteinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenotransplants. FASEB J 2003; 17:223-34. [PMID: 12554701 DOI: 10.1096/fj.02-0655com] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to determine the effects of inhibitors of Rho kinase (ROK) and matrix metalloproteinases (MMPs) on angiogenesis and tumor growth and to evaluate ROK activity in human prostate cancer PC3 cells and endothelial cells (HUVECs). Vacuolation by endothelial cells and lumen formation, the earliest detectable stages of angiogenesis, were inhibited by the ROK inhibitor Wf-536. Combining Wf-536 with the MMP inhibitor Marimastat greatly enhanced in vitro inhibition of endothelial vacuolation, lumen and cord formation, and VEGF- and HGF-stimulated endothelial sprout formation from aorta. Inhibition of sprout formation by the two inhibitors was synergistic. Both agents inhibited migration of HUVECs. The regulatory subunit (MYPT1) of the myosin phosphatase was phosphorylated in PC3 cells and HUVECs, and phosphorylation of MYPT1 and the myosin regulatory light chain was reduced by Wf-536, providing direct evidence of ROK activity. Early treatment of immuno-incompetent mice bearing xenotransplants of PC3 cells with a combination of Wf-536 plus Marimastat with or without Paclitaxel, significantly inhibited tumor growth, prevented tumor growth escape after discontinuation of Paclitaxel, and increased survival.
Collapse
Affiliation(s)
- Avril V Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908-0736, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Borman MA, MacDonald JA, Murányi A, Hartshorne DJ, Haystead TAJ. Smooth muscle myosin phosphatase-associated kinase induces Ca2+ sensitization via myosin phosphatase inhibition. J Biol Chem 2002; 277:23441-6. [PMID: 11976330 DOI: 10.1074/jbc.m201597200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle calcium sensitization reflects an inhibition of myosin light chain phosphatase (SMPP-1m) activity; however, the underlying mechanisms are not well understood. SMPP-1m activity can be modulated through phosphorylation of the myosin targeting subunit (MYPT1) by the endogenous myosin phosphatase-associated kinase, MYPT1 kinase (MacDonald, J. A., Borman, M. A., Muranyi, A., Somlyo, A. V., Hartshorne, D. J., and Haystead, T. A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2419-2424). Recombinant chicken gizzard MYPT1 (M130) was phosphorylated in vitro by a recombinant MYPT1 kinase, and the sites of phosphorylation were identified as Thr(654), Ser(808), and Thr(675). Introduction of recombinant MYPT1 kinase elicited a calcium-independent contraction in beta-escin-permeabilized rabbit ileal smooth muscle. Using an antibody that specifically recognizes MYPT1 phosphorylated at Thr(654) (M130 numbering), we determined that this calcium-independent contraction was correlated with an increase in MYPT1 phosphorylation. These results indicate that SMPP-1m phosphorylation by MYPT1 kinase is a mechanism of smooth muscle calcium sensitization.
Collapse
Affiliation(s)
- Meredith A Borman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
20
|
|