1
|
Woo JA, Yan Y, Kee TR, Cazzaro S, McGill Percy KC, Wang X, Liu T, Liggett SB, Kang DE. β-arrestin1 promotes tauopathy by transducing GPCR signaling, disrupting microtubules and autophagy. Life Sci Alliance 2021; 5:5/3/e202101183. [PMID: 34862271 PMCID: PMC8675912 DOI: 10.26508/lsa.202101183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
GPCRs regulator, β-arrestin1, is increased in FTLD-tau patients, is required for β2-adrenergic receptor and metabotropic glutamate receptor 2-induced tau phosphorylation, promotes tau aggregation by impairing autophagy, and destabilizes microtubule dynamics, whereas genetic reduction in β-arrestin1 mitigates tauopathy and cognitive impairments. G protein–coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer’s disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aβ and tau pathogenesis. GPCRs share a common mechanism of action via the β-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events. As signaling via the GPCRs, β2-adrenergic receptor (β2AR), and metabotropic glutamate receptor 2 (mGluR2) promotes hyperphosphorylation of tau, we hypothesized that β-arrestin1 represents a point of convergence for such pathogenic activities. Here, we report that β-arrestins are not only essential for β2AR and mGluR2-mediated increase in pathogenic tau but also show that β-arrestin1 levels are increased in brains of Frontotemporal lobar degeneration (FTLD-tau) patients. Increased β-arrestin1 in turn drives the accumulation of pathogenic tau, whereas reduced ARRB1 alleviates tauopathy and rescues impaired synaptic plasticity and cognitive impairments in PS19 mice. Biochemical and cellular studies show that β-arrestin1 drives tauopathy by destabilizing microtubules and impeding p62/SQSTM1 autophagy flux by interfering with p62 body formation, which promotes pathogenic tau accumulation.
Collapse
Affiliation(s)
- Jung-Aa Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Kyle C McGill Percy
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Stephen B Liggett
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
2
|
Asano T, Kaneko MK, Kato Y. RIEDL tag: A novel pentapeptide tagging system for transmembrane protein purification. Biochem Biophys Rep 2020; 23:100780. [PMID: 32715101 PMCID: PMC7369347 DOI: 10.1016/j.bbrep.2020.100780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Affinity tag systems are an essential tool in biochemistry, biophysics, and molecular biology. Although several different tag systems have been developed, the epitope tag system, composed of a polypeptide “tag” and an anti-tag antibody, is especially useful for protein purification. However, almost all tag sequences, such as the FLAG tag, are added to the N- or C-termini of target proteins, as tags inserted in loops tend to disrupt the functional structure of multi-pass transmembrane proteins. In this study, we developed a novel “RIEDL tag system,” which is composed of a peptide with only five amino acids (RIEDL) and an anti-RIEDL monoclonal antibody (mAb), LpMab-7. To investigate whether the RIEDL tag system is applicable for protein purification, we conducted the purification of two kinds of RIEDL-tagged proteins using affinity column chromatography: whale podoplanin (wPDPN) with an N-terminal RIEDL tag (RIEDL-wPDPN) and human CD20 with an internal RIEDL tag insertion (CD20-169RIEDL170). Using an LpMab-7-Sepharose column, RIEDL-wPDPN and CD20-169RIEDL170 were efficiently purified in one-step purification procedures, and were strongly detected by LpMab-7 using Western blot and flow cytometry. These results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins. We established a novel RIEDL tag system, composed of RIEDL peptide and LpMab-7 mAb. The RIEDL tag system is applicable for protein purification, as well as FCM and WB. The RIEDL tag, inserted into a loop structure of CD20, was detected by LpMab-7. RIEDL-tagged proteins were efficiently purified using 2 × RIEDL peptide.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
3
|
Woo JAA, Liu T, Fang CC, Castaño MA, Kee T, Yrigoin K, Yan Y, Cazzaro S, Matlack J, Wang X, Zhao X, Kang DE, Liggett SB. β-Arrestin2 oligomers impair the clearance of pathological tau and increase tau aggregates. Proc Natl Acad Sci U S A 2020; 117:5006-5015. [PMID: 32071246 PMCID: PMC7060747 DOI: 10.1073/pnas.1917194117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. β-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with β-arrestin2-/- mice, show that β-arrestin2 stabilizes pathogenic tau and promotes tau aggregation. Cell and mouse models of FTLD showed this to be maladaptive, fueling a positive feedback cycle of enhanced neuronal tau via non-GPCR mechanisms. Genetic ablation of β-arrestin2 markedly ablates tau pathology and rescues synaptic plasticity defects in tau P301S transgenic mice. Atomic force microscopy and cellular studies revealed that oligomerized, but not monomeric, β-arrestin2 increases tau by inhibiting self-interaction of the autophagy cargo receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduction of oligomerized β-arrestin2 with virus encoding β-arrestin2 mutants acting as dominant-negatives markedly reduces tau-laden neurofibrillary tangles in FTLD mice in vivo. Reducing β-arrestin2 oligomeric status represents a new strategy to alleviate tau pathology in FTLD and related tauopathies.
Collapse
Affiliation(s)
- Jung-A A Woo
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Tian Liu
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Cenxiao C Fang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Maria A Castaño
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Teresa Kee
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Ksenia Yrigoin
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Yan Yan
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Sara Cazzaro
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Jenet Matlack
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xinming Wang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xingyu Zhao
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - David E Kang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Research Division, James A. Haley Veteran's Administration Hospital, Tampa, FL 33612
| | - Stephen B Liggett
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Medical Engineering, University of South Florida, Tampa, FL 33613
| |
Collapse
|
4
|
Brown ZP, Takagi J. Advances in domain and subunit localization technology for electron microscopy. Biophys Rev 2019; 11:149-155. [PMID: 30834502 DOI: 10.1007/s12551-019-00513-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
The award of the 2017 Nobel Prize in chemistry, 'for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution', was recognition that this method, and electron microscopy more generally, represent powerful techniques in the scientific armamentarium for atomic level structural assessment. Technical advances in equipment, software, and sample preparation, have allowed for high-resolution structural determination of a range of complex biological machinery such that the position of individual atoms within these mega-structures can be determined. However, not all targets are amenable to attaining such high-resolution structures and some may only be resolved at so-called intermediate resolutions. In these cases, other tools are needed to correctly characterize the domain or subunit orientation and architecture. In this review, we will outline various methods that can provide additional information to help understand the macro-level organization of proteins/biomolecular complexes when high-resolution structural description is not available. In particular, we will discuss the recent development and use of a novel protein purification approach, known as the the PA tag/NZ-1 antibody system, which provides numberous beneficial properties, when used in electron microscopy experimentation.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Brown ZP, Takagi J. The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative Structural Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1105:59-76. [PMID: 30617824 DOI: 10.1007/978-981-13-2200-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We have recently developed a novel protein tagging system based on the high affinity interaction between an antibody NZ-1 and its antigen PA peptide, a dodecapeptide that forms a β-turn in the binding pocket of NZ-1. This unique conformation allows for the PA peptide to be inserted into turn-forming loops within a folded protein domain and the system has been variously used in general applications including protein purification, Western blotting and flow cytometry, or in more specialized applications such as reporting protein conformational change, and identifying subunits of macromolecular complexes with electron microscopy. Thus the small and "portable" nature of the PA tag system offers a versatile and powerful tool that can be implemented in various aspects of integrative structural biology.
Collapse
Affiliation(s)
- Zuben P Brown
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
7
|
Brown ZP, Arimori T, Iwasaki K, Takagi J. Development of a new protein labeling system to map subunits and domains of macromolecular complexes for electron microscopy. J Struct Biol 2017; 201:247-251. [PMID: 29170031 DOI: 10.1016/j.jsb.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
Abstract
Several gene fusion technologies have been successfully applied to label particular subunits or domains within macromolecular complexes to enable positional mapping of electron microscopy (EM) density maps, but exogenous fusion of a protein domain into the target polypeptide can cause unwanted structural and functional outcomes. Fab fragments from antibodies can be used as labeling reagents during EM visualization without gene manipulation of the target protein, but this method requires a panel of high-affinity antibodies that recognize a wide variety of epitopes. Linear peptide tags and their anti-tag antibodies can be used but they have a limited mapping ability as their placement is usually limited to the terminal regions of a protein. The PA dodecapeptide epitope tag (GVAMPGAEDDVV), forms a tight β-turn in the antigen binding pocket of its antibody (NZ-1). This capability allows for insertion of the PA tag into various surface-exposed loops within a multi-domain cell adhesion receptor, αIIbβ3 integrin. We confirmed that the purified PA-tagged integrin ectodomain fragments can form a stable complex with NZ-1 Fab. Negative stain EM of the various integrin-NZ-1 complexes revealed that a majority of the particles exhibited a clear density corresponding to the NZ-1 Fab; and the positions of the bound Fab were in good agreement with the predicted location of the inserted PA tag. The high-affinity and insertion-compatibility of the PA tag system allowed us to develop a new EM labeling methodology applicable to proteins for which good antibodies are not available.
Collapse
Affiliation(s)
- Zuben P Brown
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases. J Immunol Res 2016; 2016:5267485. [PMID: 27635405 PMCID: PMC5011209 DOI: 10.1155/2016/5267485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.
Collapse
|
9
|
Fujii Y, Matsunaga Y, Arimori T, Kitago Y, Ogasawara S, Kaneko MK, Kato Y, Takagi J. Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. J Cell Sci 2016; 129:1512-22. [DOI: 10.1242/jcs.176685] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
Placement of a tag sequence is usually limited to either terminal of the target protein, reducing the potential of epitope tags for various labeling applications. The PA tag is a dodecapeptide (GVAMPGAEDDVV) that is recognized by a high-affinity antibody NZ-1. We determined the crystal structure of the PA tag/NZ-1 complex and found that NZ-1 recognized a central segment of the PA tag peptide in a tight β-turn configuration, suggesting its compatibility with the insertion into a loop. This possibility was tested and confirmed using multiple integrin subunits and semaphorin. More specifically, the PA tag can be inserted at multiple locations within the αIIb subunit of the fibrinogen receptor αIIbβ3 integrin without affecting the structural and functional integrity, while maintaining its high affinity toward NZ-1. The large choice of the sites for "epitope grafting" enabled the placement of the PA tag at a location whose accessibility is modulated during the biological action of the receptor. Thus, we succeeded in converting a general anti-tag antibody into a special reporter/activator anti-β1 integrin antibody that can be classified as a ligand-induced binding site antibody.
Collapse
Affiliation(s)
- Yuki Fujii
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Matsunaga
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu Kitago
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R. Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 2015; 5:15808. [PMID: 26510463 PMCID: PMC4625158 DOI: 10.1038/srep15808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022] Open
Abstract
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
Collapse
Affiliation(s)
- Joachim Granzin
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andreas Stadler
- Jülich Centre for Neutron Science (JCNS-1) &Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Anneliese Cousin
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ramona Schlesinger
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Renu Batra-Safferling
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
11
|
Sinha A, Jones Brunette AM, Fay JF, Schafer CT, Farrens DL. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Biochemistry 2014; 53:3294-307. [PMID: 24724832 PMCID: PMC4039336 DOI: 10.1021/bi401534y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Various studies have implicated the
concave surface of arrestin
in the binding of the cytosolic surface of rhodopsin. However, specific
sites of contact between the two proteins have not previously been
defined in detail. Here, we report that arrestin shares part of the
same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to
rhodopsin may share some similar underlying mechanisms. We also identify
two areas of contact between the proteins near this region. Both sites
lie in the arrestin N-domain, one in the so-called “finger”
loop (residues 67–79) and the other in the 160 loop (residues
155–165). We mapped these sites using a novel tryptophan-induced
quenching method, in which we introduced Trp residues into arrestin
and measured their ability to quench the fluorescence of bimane probes
attached to cysteine residues on TM6 of rhodopsin (T242C and T243C).
The involvement of finger loop binding to rhodopsin was expected,
but the evidence of the arrestin 160 loop contacting rhodopsin was
not. Remarkably, our data indicate one site on rhodopsin can interact
with multiple structurally separate sites on arrestin that are almost
30 Å apart. Although this observation at first seems paradoxical,
in fact, it provides strong support for recent hypotheses that structural
plasticity and conformational changes are involved in the arrestin–rhodopsin
binding interface and that the two proteins may be able to interact
through multiple docking modes, with arrestin binding to both monomeric
and dimeric rhodopsin.
Collapse
Affiliation(s)
- Abhinav Sinha
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239-3098, United States
| | | | | | | | | |
Collapse
|
12
|
Abstract
Virtually all currently used therapeutic agents are small molecules, largely because the development and delivery of small molecule drugs is relatively straightforward. Small molecules have serious limitations: drugs of this type can be fairly good enzyme inhibitors, receptor ligands, or allosteric modulators. However, most cellular functions are mediated by protein interactions with other proteins, and targeting protein-protein interactions by small molecules presents challenges that are unlikely to be overcome with these compounds as the only tools. Recent advances in gene delivery techniques and characterization of cell type-specific promoters open the prospect of using reengineered signaling-biased proteins as next-generation therapeutics. The first steps in targeted engineering of proteins with desired functional characteristics look very promising. As quintessential scaffolds that act strictly via interactions with other proteins in the cell, arrestins represent a perfect model for the development of these novel therapeutic agents with enormous potential: custom-designed signaling proteins will allow us to tell the cell what to do and when to do it in a way it cannot disobey.
Collapse
|
13
|
Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal 2014; 26:766-76. [PMID: 24412749 PMCID: PMC3936466 DOI: 10.1016/j.cellsig.2014.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
Although arrestins bind dozens of non-receptor partners, the interaction sites for most signaling proteins remain unknown. Here we report the identification of arrestin-3 elements involved in binding MAP kinase JNK3α2. Using purified JNK3α2 and MBP fusions containing separated arrestin-3 domains and peptides exposed on the non-receptor-binding surface of arrestin-3 we showed that both domains bind JNK3α2 and identified one element on the N-domain and two on the C-domain that directly interact with JNK3α2. Using in vitro competition we confirmed that JNK3α2 engages identified N-domain element and one of the C-domain peptides in the full-length arrestin-3. The 25-amino acid N-domain element has the highest affinity for JNK3α2, suggesting that it is the key site for JNK3α2 docking. The identification of elements involved in protein-protein interactions paves the way to targeted redesign of signaling proteins to modulate cell signaling in desired ways. The tools and methods developed here to elucidate the molecular mechanism of arrestin-3 interactions with JNK3α2 are suitable for mapping of arrestin-3 sites involved in interactions with other partners.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alejandro Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Gurevich VV, Song X, Vishnivetskiy SA, Gurevich EV. Enhanced phosphorylation-independent arrestins and gene therapy. Handb Exp Pharmacol 2014; 219:133-152. [PMID: 24292828 PMCID: PMC4516159 DOI: 10.1007/978-3-642-41199-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
15
|
Gimenez LE, Vishnivetskiy SA, Gurevich VV. Targeting individual GPCRs with redesigned nonvisual arrestins. Handb Exp Pharmacol 2014; 219:153-70. [PMID: 24292829 DOI: 10.1007/978-3-642-41199-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
16
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
17
|
Chen Q, Zhuo Y, Kim M, Hanson SM, Francis DJ, Vishnivetskiy SA, Altenbach C, Klug CS, Hubbell WL, Gurevich VV. Self-association of arrestin family members. Handb Exp Pharmacol 2014; 219:205-23. [PMID: 24292832 DOI: 10.1007/978-3-642-41199-1_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammals express four arrestin subtypes, three of which have been shown to self-associate. Cone photoreceptor-specific arrestin-4 is the only one that is a constitutive monomer. Visual arrestin-1 forms tetramers both in crystal and in solution, but the shape of its physiologically relevant solution tetramer is very different from that in the crystal. The biological role of the self-association of arrestin-1, expressed at very high levels in rod and cone photoreceptors, appears to be protective, reducing the concentration of cytotoxic monomers. The two nonvisual arrestin subtypes are highly homologous, and self-association of both is facilitated by IP6, yet they form dramatically different oligomers. Arrestin-2 apparently self-associates into "infinite" chains, very similar to those observed in IP6-soaked crystals, where IP6 connects the concave sides of the N- and C-domains of adjacent protomers. In contrast, arrestin-3 only forms dimers, in which IP6 likely connects the C-domains of two arrestin-3 molecules. Thus, each of the three self-associating arrestins does it in its own way, forming three different types of oligomers. The physiological role of the oligomerization of arrestin-1 and both nonvisual arrestins might be quite different, and in each case it remains to be definitively elucidated.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV. Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 2013; 288:11741-50. [PMID: 23476014 DOI: 10.1074/jbc.m113.450031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of variable lengths and made several substitutions of Lys-142 in it and Asp-72 in the adjacent loop. Several mutants with perturbations in the 139-loop demonstrate increased binding to P-Rh*, dark P-Rh, Rh*, and phospho-opsin. Enhanced binding of arrestin-1 mutants to non-preferred forms of rhodopsin correlates with decreased thermal stability. The 139-loop perturbations increase P-Rh* binding of arrestin-1 at low temperatures and further change its binding profile on the background of 3A mutant, where the C-tail is detached from the body of the molecule by triple alanine substitution. Thus, the 139-loop stabilizes basal conformation of arrestin-1 and acts as a brake, preventing its binding to non-preferred forms of rhodopsin. Conservation of this loop in other subtypes suggests that it has the same function in all members of the arrestin family.
Collapse
|
19
|
Gurevich VV, Gurevich EV. Structural determinants of arrestin functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:57-92. [PMID: 23764050 PMCID: PMC4514030 DOI: 10.1016/b978-0-12-394440-5.00003-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
20
|
Granzin J, Cousin A, Weirauch M, Schlesinger R, Büldt G, Batra-Safferling R. Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 2012; 416:611-8. [PMID: 22306737 DOI: 10.1016/j.jmb.2012.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/22/2011] [Accepted: 01/17/2012] [Indexed: 11/26/2022]
Abstract
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants.
Collapse
Affiliation(s)
- Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 2011; 6:e28723. [PMID: 22174878 PMCID: PMC3236217 DOI: 10.1371/journal.pone.0028723] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/14/2011] [Indexed: 01/27/2023] Open
Abstract
Arrestins are multifunctional signaling adaptors originally discovered as proteins that “arrest” G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β2-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the “constitutively inactive” arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.
Collapse
Affiliation(s)
- Sergio Coffa
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Susan M. Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kari Callaway
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-30. [PMID: 21824527 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
23
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-99. [PMID: 21471193 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
|
24
|
Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR. Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. Biochemistry 2010; 49:10473-85. [PMID: 21050017 DOI: 10.1021/bi101596g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrestins specifically bind activated and phosphorylated G protein-coupled receptors and orchestrate both receptor trafficking and channel signaling through G protein-independent pathways via direct interactions with numerous nonreceptor partners. Here we report the first successful use of solution NMR in mapping the binding sites in arrestin-1 (visual arrestin) for two polyanionic compounds that mimic phosphorylated light-activated rhodopsin: inositol hexaphosphate (IP6) and heparin. This yielded an identification of residues involved in the binding with these ligands that was more complete than what has previously been feasible. IP6 and heparin appear to bind to the same site on arrestin-1, centered on a positively charged region in the N-domain. We present the first direct evidence that both IP6 and heparin induced a complete release of the arrestin C-tail. These observations provide novel insight into the nature of the transition of arrestin from the basal to active state and demonstrate the potential of NMR-based methods in the study of protein-protein interactions involving members of the arrestin family.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Department of Biochemistry, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
25
|
Abstract
Multiple genetic disorders can be associated with excessive signalling by mutant G-protein-coupled receptors (GPCRs) that are either constitutively active or have lost sites where phosphorylation by GPCR kinases is necessary for desensitisation by cognate arrestins. Phosphorylation-independent arrestin1 can compensate for defects in phosphorylation of the GPCR rhodopsin in retinal rod cells, facilitating recovery, improving light responsiveness, and promoting photoreceptor survival. These proof-of-principle experiments show that, based on mechanistic understanding of the inner workings of a protein, one can modify its functional characteristics to generate custom-designed mutants that improve the balance of signalling in congenital and acquired disorders. Manipulations of arrestin elements responsible for scaffolding mitogen-activated protein kinase cascades and binding other signalling proteins involved in life-or-death decisions in the cell are likely to yield mutants that affect cell survival and proliferation in the desired direction. Although this approach is still in its infancy, targeted redesign of individual functions of many proteins offers a promise of a completely new therapeutic toolbox with huge potential.
Collapse
|
26
|
Vishnivetskiy SA, Francis D, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV. The role of arrestin alpha-helix I in receptor binding. J Mol Biol 2010; 395:42-54. [PMID: 19883657 PMCID: PMC2787876 DOI: 10.1016/j.jmb.2009.10.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 11/18/2022]
Abstract
Arrestins rapidly bind phosphorylated activated forms of their cognate G protein-coupled receptors, thereby preventing G protein coupling and often switching signaling to other pathways. Amphipathic alpha-helix I (residues 100-111) has been implicated in receptor binding, but the mechanism of its action has not been determined yet. Here we show that several mutations in the helix itself and in adjacent hydrophobic residues in the body of the N-domain reduce arrestin1 binding to light-activated phosphorylated rhodopsin (P-Rh*). On the background of phosphorylation-independent mutants that bind with high affinity to both P-Rh* and light-activated unphosphorylated rhodopsin, these mutations reduce the stability of the arrestin complex with P-Rh*, but not with light-activated unphosphorylated rhodopsin. Using site-directed spin labeling, we found that the local structure around alpha-helix I changes upon binding to rhodopsin. However, the intramolecular distances between alpha-helix I and adjacent beta-strand I (or the rest of the N-domain), measured using double electron-electron resonance, do not change, ruling out relocation of the helix due to receptor binding. Collectively, these data demonstrate that alpha-helix I plays an indirect role in receptor binding, likely keeping beta-strand I, which carries several phosphate-binding residues, in a position favorable for its interaction with receptor-attached phosphates.
Collapse
Affiliation(s)
| | - Derek Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ned Van Eps
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095
| | - Miyeon Kim
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095
| | - Susan M. Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095
| | | |
Collapse
|
27
|
Feuerstein SE, Pulvermüller A, Hartmann R, Granzin J, Stoldt M, Henklein P, Ernst OP, Heck M, Willbold D, Koenig BW. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin. Biochemistry 2009; 48:10733-42. [PMID: 19835414 DOI: 10.1021/bi900544p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.
Collapse
Affiliation(s)
- Sophie E Feuerstein
- Department Strukturbiochemie (ISB-3), Institut für Strukturbiologie undBiophysik, Forschungszentrum Jülich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Arrestins are versatile regulators of cellular signaling expressed in every cell in the body. Arrestins bind active phosphorylated forms of their cognate G-protein-coupled receptors, shutting down G-protein activation and linking receptors to alternative signaling pathways. Arrestins directly interact with more than 20 surprisingly diverse proteins, such as several Src family kinases, ubiquitin ligases, protein phosphatases, microtubules, etc., and serve as scaffolds facilitating signaling in two MAP kinase cascades, leading to the activation of ERK1/2 and JNK3. A number of arrestin-binding partners are key players in signaling pathways that regulate cell proliferation, survival, and apoptotic death, which make arrestin interactions with these proteins inviting targets for therapeutic intervention. For example, enhancement of pro-survival or pro-apoptotic arrestin-dependent signaling is a promising strategy in treating disorders such as neurodegenerative diseases or cancer, respectively. Recent studies show that in the cell arrestin exists in at least three distinct conformations, free, receptor-bound, and microtubule-bound, with very different signaling capabilities. Precise identification of arrestin elements mediating its interactions with each partner and elucidation of conformational dependence of these interactions will pave the way to the development of molecular tools for targeted enhancement or attenuation of arrestin interactions with individual partners. This structural information is necessary to devise conventional drug-based approaches and to engineer specialized "designer" arrestins that can compensate for defects in receptor regulation associated with congenital disorders and/or redirect arrestin-mediated signaling to desired pathways. Arrestins are at the crossroads of crucial pathways that determine cell fate and behavior. Therefore, targeted manipulation of arrestin-dependent signaling has an enormous therapeutic potential.
Collapse
Affiliation(s)
- V V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
29
|
Skegro D, Pulvermüller A, Krafft B, Granzin J, Hofmann KP, Büldt G, Schlesinger R. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin. Photochem Photobiol 2007; 83:385-92. [PMID: 17132044 DOI: 10.1562/2006-08-25-ra-1014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Visual arrestin terminates the signal amplification cascade in photoreceptor cells by blocking the interaction of light activated phosphorylated rhodopsin with the G-protein transducin. Although crystal structures of arrestin and rhodopsin are available, it is still unknown how the complex of the two proteins is formed. To investigate the interaction sites of arrestin with rhodopsin various surface regions of recombinant arrestin were sterically blocked by different numbers of fluorophores (Alexa 633). The binding was recorded by time-resolved light scattering. To accomplish site-specific shielding of protein regions, in a first step all three wild-type cysteines were replaced by alanines. Nevertheless, regarding the magnitude and specificity of rhodopsin binding, the protein is still fully active. In a second step, new cysteines were introduced at selected sites to allow covalent binding of fluorophores. Upon attachment of Alexa 633 to the recombinant cysteines we observed that these bulky labels residing in the concave area of either the N- or the C-terminal domain do not perturb the activity of arrestin. By simultaneously modifying both domains with one Alexa 633 the binding capacity was reduced. The presence of two Alexa 633 molecules in each domain prevented binding of rhodopsin to arrestin. This observation indicates that both concave sites participate in binding.
Collapse
Affiliation(s)
- Darko Skegro
- Forschungszentrum Jülich, INB 2/Molekulare Biophysik, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Sommer ME, Farrens DL, McDowell JH, Weber LA, Smith WC. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J Biol Chem 2007; 282:25560-8. [PMID: 17606620 DOI: 10.1074/jbc.m702155200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we investigate conformational changes in Loop V-VI of visual arrestin during binding to light-activated, phosphorylated rhodopsin (Rho*-P) using a combination of site-specific cysteine mutagenesis and intramolecular fluorescence quenching. Introduction of cysteines at positions in the N-domain at residues predicted to be in close proximity to Ile-72 in Loop V-VI of arrestin (i.e. Glu-148 and Lys-298) appear to form an intramolecular disulfide bond with I72C, significantly diminishing the binding of arrestin to Rho*-P. Using a fluorescence approach, we show that the steady-state emission from a monobromobimane fluorophore in Loop V-VI is quenched by tryptophan residues placed at 148 or 298. This quenching is relieved upon binding of arrestin to Rho*-P. These results suggest that arrestin Loop V-VI moves during binding to Rho*-P and that conformational flexibility of this loop is essential for arrestin to adopt a high affinity binding state.
Collapse
Affiliation(s)
- Martha E Sommer
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
31
|
Smith WC, Peterson JJ, Orisme W, Dinculescu A. Arrestin translocation in rod photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:455-64. [PMID: 17249609 PMCID: PMC2977922 DOI: 10.1007/0-387-32442-9_63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610-0284, USA.
| | | | | | | |
Collapse
|
32
|
Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci U S A 2006; 103:4900-5. [PMID: 16547131 PMCID: PMC1458767 DOI: 10.1073/pnas.0600733103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arrestins regulate signaling and trafficking of G protein-coupled receptors by virtue of their preferential binding to the phosphorylated active form of the receptor. To identify sites in arrestin involved in receptor interaction, a nitroxide-containing side chain was introduced at each of 28 different positions in visual arrestin, and the dynamics of the side chain was used to monitor arrestin interaction with phosphorylated forms of its cognate receptor, rhodopsin. At physiological concentrations, visual arrestin associates with both inactive dark phosphorylated rhodopsin (P-Rh) and light-activated phosphorylated rhodopsin (P-Rh*). Residues distributed over the concave surfaces of the two arrestin domains are involved in weak interactions with both states of phosphorhodopsin, and the flexible C-terminal sequence (C-tail) of arrestin becomes dynamically disordered in both complexes. A large-scale movement of the C-tail is demonstrated by direct distance measurements using a doubly labeled arrestin with one nitroxide in the C-tail and the other in the N-domain. Despite some overlap, the molecular "footprint" of arrestin bound to P-Rh and P-Rh* is different, showing the structure of the complexes to be unique. Strong immobilizing interactions with residues in a highly flexible loop between beta-strands V and VI are only observed in complex with the activated state. This result identifies this loop as a key recognition site in the arrestin-P-Rh* complex and supports the view that flexible sequences are key elements in protein-protein interactions.
Collapse
Affiliation(s)
- Susan M. Hanson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Derek J. Francis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | | | - Elena A. Kolobova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- To whom correspondence may be addressed. E-mail:
, , or
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
33
|
Hanson SM, Gurevich VV. The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 2006; 281:3458-62. [PMID: 16339758 PMCID: PMC2440687 DOI: 10.1074/jbc.m512148200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor signaling is terminated by arrestin proteins that preferentially bind to the activated phosphorylated form of the receptor. Arrestins also bind active unphosphorylated and inactive phosphorylated receptors. Binding to the non-preferred forms of the receptor is important for visual arrestin translocation in rod photoreceptors and the regulation of receptor signaling and trafficking by non-visual arrestins. Given the importance of arrestin interactions with the various functional forms of the receptor, we performed an extensive analysis of the receptor-binding surface of arrestin using site-directed mutagenesis. The data indicated that a large number of surface charges are important for arrestin interaction with all forms of the receptor. Arrestin elements involved in receptor binding are differentially engaged by the various functional forms of the receptor, each requiring a unique subset of arrestin residues in a specific spatial configuration. We identified several additional phosphate-binding elements in the N-domain and demonstrated for the first time that the active receptor preferentially engages the arrestin C-domain. We also found that the interdomain contact surface is important for arrestin interaction with the non-preferred forms of the receptor and that residues in this region play a role in arrestin transition into its high affinity receptor binding state.
Collapse
Affiliation(s)
- Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
34
|
Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 2006; 110:465-502. [PMID: 16460808 PMCID: PMC2562282 DOI: 10.1016/j.pharmthera.2005.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin-receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These "custom-designed" arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
35
|
Hartmann TB, Bazhin AV, Schadendorf D, Eichmüller SB. SEREX identification of new tumor antigens linked to melanoma-associated retinopathy. Int J Cancer 2005; 114:88-93. [PMID: 15523688 DOI: 10.1002/ijc.20762] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastatic melanoma still has a very poor prognosis since it withstands conventional therapies like surgery or chemotherapy. A paraneoplastic autoimmune manifestation of this disease is melanoma-associated retinopathy (MAR). MAR has been associated with prolonged survival and may be an early marker of tumor progression. By screening a retina and a melanoma cDNA phage library by SEREX using sera of patients suffering from melanoma and, in some cases, clinical symptoms of MAR, we identified 20 new antigens (HD-MM-28-47), of which 14 clones had high homology to well-known genes. Six of these genes had previously been associated with retina: rhodopsin, visual arrestin, MEK1, SRPX, BBS1 and galectin-3. Individual clones were recognized by up to 43% of patients' sera, while sera of healthy volunteers were negative except in 2 cases. The expression profile of the antigens identified on the basis of homologous EST database entries in healthy tissues was ubiquitous to differential. Using RT-PCR, we found frequent expression of preselected antigens in melanoma cell lines. For rhodopsin, this could be quantified by quantitative PCR. Retinal proteins were recognized by serum antibodies of melanoma patients but not healthy controls. The role of these antigens in MAR awaits further investigation. (Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.)
Collapse
Affiliation(s)
- Tanja B Hartmann
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Sommer ME, Smith WC, Farrens DL. Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events. J Biol Chem 2004; 280:6861-71. [PMID: 15591052 DOI: 10.1074/jbc.m411341200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we address the mechanism of visual arrestin release from light-activated rhodopsin using fluorescently labeled arrestin mutants. We find that two mutants, I72C and S251C, when labeled with the small, solvent-sensitive fluorophore monobromobimane, exhibit spectral changes only upon binding light-activated, phosphorylated rhodopsin. Our analysis indicates that these changes are probably due to a burying of the probes at these sites in the rhodopsin-arrestin or phospholipid-arrestin interface. Using a fluorescence approach based on this observation, we demonstrate that arrestin and retinal release are linked and are described by similar activation energies. However, at physiological temperatures, we find that arrestin slows the rate of retinal release approximately 2-fold and abolishes the pH dependence of retinal release. Using fluorescence, EPR, and biochemical approaches, we also find intriguing evidence that arrestin binds to a post-Meta II photodecay product, possibly Meta III. We speculate that arrestin regulates levels of free retinal in the rod cell to help limit the formation of damaging oxidative retinal adducts. Such adducts may contribute to diseases like atrophic age-related macular degeneration (AMD). Thus, arrestin may serve to both attenuate rhodopsin signaling and protect the cell from excessive retinal levels under bright light conditions.
Collapse
Affiliation(s)
- Martha E Sommer
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
37
|
Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV. Mapping the arrestin-receptor interface. Structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 2003; 279:1262-8. [PMID: 14530255 DOI: 10.1074/jbc.m308834200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.
Collapse
Affiliation(s)
- Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|