1
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Kovalishyn V, Severin O, Kachaeva M, Kobzar O, Keith KA, Harden EA, Hartline CB, James SH, Vovk A, Brovarets V. In Silico Design and Experimental Validation of Novel Oxazole Derivatives Against Varicella zoster virus. Mol Biotechnol 2024; 66:707-717. [PMID: 36709460 DOI: 10.1007/s12033-023-00670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/14/2023] [Indexed: 01/30/2023]
Abstract
Varicella zoster virus (VZV) infection causes severe disease such as chickenpox, shingles, and postherpetic neuralgia, often leading to disability. Reactivation of latent VZV is associated with a decrease in specific cellular immunity in the elderly and in patients with immunodeficiency. However, due to the limited efficacy of existing therapy and the emergence of antiviral resistance, it has become necessary to develop new and effective antiviral drugs for the treatment of diseases caused by VZV, particularly in the setting of opportunistic infections. The goal of this work is to identify potent oxazole derivatives as anti-VZV agents by machine learning, followed by their synthesis and experimental validation. Predictive QSAR models were developed using the Online Chemical Modeling Environment (OCHEM). Data on compounds exhibiting antiviral activity were collected from the ChEMBL and uploaded in the OCHEM database. The predictive ability of the models was tested by cross-validation, giving coefficient of determination q2 = 0.87-0.9. The validation of the models using an external test set proves that the models can be used to predict the antiviral activity of newly designed and known compounds with reasonable accuracy within the applicability domain (q2 = 0.83-0.84). The models were applied to screen a virtual chemical library with expected activity of compounds against VZV. The 7 most promising oxazole derivatives were identified, synthesized, and tested. Two of them showed activity against the VZV Ellen strain upon primary in vitro antiviral screening. The synthesized compounds may represent an interesting starting point for further development of the oxazole derivatives against VZV. The developed models are available online at OCHEM http://ochem.eu/article/145978 and can be used to virtually screen for potential compounds with anti-VZV activity.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine.
| | - Oleksandr Severin
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Oleksandr Kobzar
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Kathy A Keith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Emma A Harden
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Caroll B Hartline
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Andriy Vovk
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Volodymyr Brovarets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| |
Collapse
|
3
|
He Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Front Immunol 2021; 12:743466. [PMID: 34925320 PMCID: PMC8674840 DOI: 10.3389/fimmu.2021.743466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.
Collapse
Affiliation(s)
- Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Warner BE, Yee MB, Zhang M, Hornung RS, Kaufer BB, Visalli RJ, Kramer PR, Goins WF, Kinchington PR. Varicella-zoster virus early infection but not complete replication is required for the induction of chronic hypersensitivity in rat models of postherpetic neuralgia. PLoS Pathog 2021; 17:e1009689. [PMID: 34228767 PMCID: PMC8259975 DOI: 10.1371/journal.ppat.1009689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Herpes zoster, the result of varicella-zoster virus (VZV) reactivation, is frequently complicated by difficult-to-treat chronic pain states termed postherpetic neuralgia (PHN). While there are no animal models of VZV-induced pain following viral reactivation, subcutaneous VZV inoculation of the rat causes long-term nocifensive behaviors indicative of mechanical and thermal hypersensitivity. Previous studies using UV-inactivated VZV in the rat model suggest viral gene expression is required for the development of pain behaviors. However, it remains unclear if complete infection processes are needed for VZV to induce hypersensitivity in this host. To further assess how gene expression and replication contribute, we developed and characterized three replication-conditional VZV using a protein degron system to achieve drug-dependent stability of essential viral proteins. Each virus was then assessed for induction of hypersensitivity in rats under replication permissive and nonpermissive conditions. VZV with a degron fused to ORF9p, a late structural protein that is required for virion assembly, induced nocifensive behaviors under both replication permissive and nonpermissive conditions, indicating that complete VZV replication is dispensable for the induction of hypersensitivity. This conclusion was confirmed by showing that a genetic deletion recombinant VZV lacking DNA packaging protein ORF54p still induced prolonged hypersensitivities in the rat. In contrast, VZV with a degron fused to the essential IE4 or IE63 proteins, which are involved in early gene regulation of expression, induced nocifensive behaviors only under replication permissive conditions, indicating importance of early gene expression events for induction of hypersensitivity. These data establish that while early viral gene expression is required for the development of nocifensive behaviors in the rat, complete replication is dispensable. We postulate this model reflects events leading to clinical PHN, in which a population of ganglionic neurons become abortively infected with VZV during reactivation and survive, but host signaling becomes altered in order to transmit ongoing pain.
Collapse
Affiliation(s)
- Benjamin E. Warner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael B. Yee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca S. Hornung
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States of America
| | - Benedikt B. Kaufer
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert J. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States of America
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ouwendijk WJD, Depledge DP, Rajbhandari L, Lenac Rovis T, Jonjic S, Breuer J, Venkatesan A, Verjans GMGM, Sadaoka T. Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency. Nat Commun 2020; 11:6324. [PMID: 33303747 PMCID: PMC7730162 DOI: 10.1038/s41467-020-20031-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Varicella-zoster virus (VZV) establishes lifelong neuronal latency in most humans world-wide, reactivating in one-third to cause herpes zoster and occasionally chronic pain. How VZV establishes, maintains and reactivates from latency is largely unknown. VZV transcription during latency is restricted to the latency-associated transcript (VLT) and RNA 63 (encoding ORF63) in naturally VZV-infected human trigeminal ganglia (TG). While significantly more abundant, VLT levels positively correlated with RNA 63 suggesting co-regulated transcription during latency. Here, we identify VLT-ORF63 fusion transcripts and confirm VLT-ORF63, but not RNA 63, expression in human TG neurons. During in vitro latency, VLT is transcribed, whereas VLT-ORF63 expression is induced by reactivation stimuli. One isoform of VLT-ORF63, encoding a fusion protein combining VLT and ORF63 proteins, induces broad viral gene transcription. Collectively, our findings show that VZV expresses a unique set of VLT-ORF63 transcripts, potentially involved in the transition from latency to lytic VZV infection.
Collapse
Affiliation(s)
- Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, 51000, Croatia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Varicella-Zoster Virus ORF63 Protects Human Neuronal and Keratinocyte Cell Lines from Apoptosis and Changes Its Localization upon Apoptosis Induction. J Virol 2018; 92:JVI.00338-18. [PMID: 29593042 DOI: 10.1128/jvi.00338-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
There are many facets of varicella-zoster virus (VZV) pathogenesis that are not fully understood, such as the mechanisms involved in the establishment of lifelong latency, reactivation, and development of serious conditions like postherpetic neuralgia (PHN). Virus-encoded modulation of apoptosis has been suggested to play an important role in these processes. VZV open reading frame 63 (ORF63) has been shown to modulate apoptosis in a cell-type-specific manner, but the impact of ORF63 on cell death pathways has not been examined in isolation in the context of human cells. We sought to elucidate the effect of VZV ORF63 on apoptosis induction in human neuron and keratinocyte cell lines. VZV ORF63 was shown to protect differentiated SH-SY5Y neuronal cells against staurosporine-induced apoptosis. In addition, VZV infection did not induce high levels of apoptosis in the HaCaT human keratinocyte line, highlighting a delay in apoptosis induction. VZV ORF63 was shown to protect HaCaT cells against both staurosporine- and Fas ligand-induced apoptosis. Confocal microscopy was utilized to examine VZV ORF63 localization during apoptosis induction. In VZV infection and ORF63 expression alone, VZV ORF63 became more cytoplasmic, with aggregate formation during apoptosis induction. Taken together, this suggests that VZV ORF63 protects both differentiated SH-SY5Y cells and HaCaT cells from apoptosis induction and may mediate this effect through its localization change during apoptosis. VZV ORF63 is a prominent VZV gene product in both productive and latent infection and thus may play a critical role in VZV pathogenesis by aiding neuron and keratinocyte survival.IMPORTANCE VZV, a human-specific alphaherpesvirus, causes chicken pox during primary infection and establishes lifelong latency in the dorsal root ganglia (DRG). Reactivation of VZV causes shingles, which is often followed by a prolonged pain syndrome called postherpetic neuralgia. It has been suggested that the ability of the virus to modulate cell death pathways is linked to its ability to establish latency and reactivate. The significance of our research lies in investigating the ability of ORF63, a VZV gene product, to inhibit apoptosis in novel cell types crucial for VZV pathogenesis. This will allow an increased understanding of critical enigmatic components of VZV pathogenesis.
Collapse
|
7
|
Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms. PLoS Pathog 2015; 11:e1004901. [PMID: 25973608 PMCID: PMC4431795 DOI: 10.1371/journal.ppat.1004901] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses. In this manuscript we demonstrate that the immediate early protein ORF63 encoded by varicella zoster virus (VZV) and simian varicella virus (SVV) interferes with interferon type I-mediated activation of JAK-STAT signaling and thereby inhibits the expression of interferon stimulated genes. ORF63 blocks this pathway by degrading IRF9, which plays a central role in JAK-STAT signaling. In addition, both viruses code for immune evasion mechanisms affecting the JAK-STAT pathway upstream of IRF9, which results in the inhibition of STAT2 phosphorylation. By fusing a degradation domain derived from dihydrofolate reductase (DHFR) to ORF63 we further demonstrate that this protein is essential for SVV growth and gene expression, indicating that ORF63 also affects IFN-signaling indirectly by regulating the expression of other immune evasion genes.
Collapse
|
8
|
Trapp-Fragnet L, Bencherit D, Chabanne-Vautherot D, Le Vern Y, Remy S, Boutet-Robinet E, Mirey G, Vautherot JF, Denesvre C. Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells. PLoS One 2014; 9:e100004. [PMID: 24945933 PMCID: PMC4063868 DOI: 10.1371/journal.pone.0100004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.
Collapse
Affiliation(s)
- Laëtitia Trapp-Fragnet
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
- * E-mail:
| | - Djihad Bencherit
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | | | - Yves Le Vern
- INRA, UMR1282 Infectiologie et Santé Publique, Laboratoire de Cytométrie, Nouzilly, France
| | - Sylvie Remy
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Elisa Boutet-Robinet
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Gladys Mirey
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Jean-François Vautherot
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| |
Collapse
|
9
|
Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 2014; 12:197-210. [PMID: 24509782 PMCID: PMC4066823 DOI: 10.1038/nrmicro3215] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Varicella zoster virus (VZV) is the causative agent of varicella (chickenpox) and zoster (shingles). Investigating VZV pathogenesis is challenging as VZV is a human-specific virus and infection does not occur, or is highly restricted, in other species. However, the use of human tissue xenografts in mice with severe combined immunodeficiency (SCID) enables the analysis of VZV infection in differentiated human cells in their typical tissue microenvironment. Xenografts of human skin, dorsal root ganglia or foetal thymus that contains T cells can be infected with mutant viruses or in the presence of inhibitors of viral or cellular functions to assess the molecular mechanisms of VZV-host interactions. In this Review, we discuss how these models have improved our understanding of VZV pathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nandini Sen
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stefan L Oliver
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ann M Arvin
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
10
|
Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes. Virology 2014; 452-453:52-8. [PMID: 24606682 DOI: 10.1016/j.virol.2013.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 06/06/2013] [Accepted: 12/27/2013] [Indexed: 11/23/2022]
Abstract
Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells.
Collapse
|
11
|
Recombinant monoclonal antibody recognizes a unique epitope on varicella-zoster virus immediate-early 63 protein. J Virol 2012; 86:6345-9. [PMID: 22438547 DOI: 10.1128/jvi.06814-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We previously constructed a recombinant monoclonal antibody (rec-MAb 63P4) that detects immediate-early protein IE63 encoded by varicella-zoster virus (VZV) in the cytoplasm of productively infected cells. Here, we used ORF63 truncation mutants to map the rec-MAb 63P4 binding epitope to amino acids 141 to 150 of VZV IE63, a region not shared with other widely used anti-IE63 antibodies, and found that the recombinant antibody does not bind to the simian IE63 counterpart.
Collapse
|
12
|
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. During productive infection the complete VZV proteome consisting of some 68 unique gene products is expressed through interaction of a small number of viral transcriptional activators with the general transcription apparatus of the host cell. Recent work has shown that the major viral transactivator, commonly designated the IE62 protein, interacts with the human Mediator of transcription. This interaction requires direct contact between the MED25 subunit of Mediator and the acidic N-terminal transactivation domain of IE62. A second cellular factor, host cell factor-1, has been shown to be the common element in two mechanisms of activation of the promoter driving expression of the gene encoding IE62. Finally, the ubiquitous cellular transcription factors Sp1, Sp3, and YY1 have been shown to interact with sequences near the VZV origin of DNA replication and in the case of Sp1/Sp3 to influence replication efficiency.
Collapse
|
13
|
Folster JM, Jensen NJ, Ruyechan WT, Inoue N, Schmid DS. Regulation of the expression of the varicella-zoster virus open reading frame 66 gene. Virus Res 2010; 155:334-42. [PMID: 21074584 DOI: 10.1016/j.virusres.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a serine/threonine kinase that phosphorylates the major viral transactivator protein, immediate-early (IE) 62, preventing its nuclear importation. Cytoplasmic sequestration of IE62 may alter viral gene transcription and could serve as a mechanism for maintaining VZV latency. We examined the regulation of expression of the ORF66 gene by mapping the promoter region, which was localized to within 150 bases of the start codon. The ORF66 promoter was activated by two viral regulatory proteins, IE62 and IE63. We evaluated the binding of viral regulatory proteins and cellular transcription factors based on recognized cellular transcription factor binding sites identified within the ORF66 promoter. These included Sp1 and TBP binding sites, several of which were essential for optimal promoter activity. Site-directed mutations in Sp1 and TBP binding sites led to varying degrees of impairment of ORF66 gene expression in the context of VZV infection. We also examined the effect of Sp1 and TBP mutations on IE62, Sp1, and TBP binding. These studies reveal that host cell-derived and viral factors contribute to and cooperate in the expression of this important viral kinase gene.
Collapse
Affiliation(s)
- Jennifer M Folster
- Division of Viral Diseases, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for Immunizations and Respiratory Diseases, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
14
|
Mueller NH, Walters MS, Marcus RA, Graf LL, Prenni J, Gilden D, Silverstein SJ, Cohrs RJ. Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J Gen Virol 2010; 91:1133-7. [PMID: 20089801 DOI: 10.1099/vir.0.019067-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient replication of varicella-zoster virus (VZV) in cell culture requires expression of protein encoded by VZV open reading frame 63 (ORF63p). Two-dimensional gel analysis demonstrates that ORF63p is extensively modified. Mass spectroscopy analysis of ORF63p isolated from transiently transfected HEK 293 and stably transfected MeWo cells identified 10 phosphorylated residues. In VZV-infected MeWo cells, only six phosphorylated residues were detected. This report identifies phosphorylation of two previously uncharacterized residues (Ser5 and Ser31) in ORF63p extracted from cells infected with VZV or transfected with an ORF63p expression plasmid. Computational analysis of ORF63p for known kinase substrates did not identify Ser5 or Ser31 as candidate phosphorylation sites, suggesting that either atypical recognition sequences or novel cellular kinases are involved in ORF63p post-translational modification.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado Denver School of Medicine, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol 2009; 84:2212-22. [PMID: 20015986 DOI: 10.1128/jvi.01388-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is phosphorylated. Phosphorylation can affect protein localization, protein interactions, and protein function. The major sites of ICP27 that are phosphorylated are serine residues 16 and 18, within a CK2 site adjacent to a leucine-rich region required for ICP27 export, and serine 114, within a PKA site in the nuclear localization signal. Viral mutants bearing serine-to-alanine or glutamic acid substitutions at these sites are defective in viral replication and gene expression. To determine which interactions of ICP27 are impaired, we analyzed the subcellular localization of ICP27 and its colocalization with cellular RNA export factors Aly/REF and TAP/NXF1. In cells infected with phosphorylation site mutants, ICP27 was confined to the nucleus even at very late times after infection. ICP27 did not colocalize with Aly/REF or TAP/NXF1, and overexpression of TAP/NXF1 did not promote the export of ICP27 to the cytoplasm. However, in vitro binding experiments showed that mutant ICP27 was able to bind to the same RNA substrates as the wild type. Nuclear magnetic resonance (NMR) analysis of the N terminus of ICP27 from amino acids 1 to 160, compared to mutants with triple substitutions to alanine or glutamic acid, showed that the mutations affected the overall conformation of the N terminus, such that mutant ICP27 was more flexible and unfolded. These results indicate that these changes in the structure of ICP27 altered in vivo protein interactions that occur in the N terminus but did not prevent RNA binding.
Collapse
|
16
|
Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186. J Virol 2009; 83:12094-100. [PMID: 19759161 DOI: 10.1128/jvi.01526-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 is abundantly transcribed in latently infected human ganglia and encodes a 278-amino-acid protein, IE63, with immediate-early kinetics. IE63 is expressed in the cytoplasm of neurons during VZV latency and in both the cytoplasm and the nucleus during productive infection; however, the mechanism(s) involved in IE63 nuclear import and retention has remained unclear. We constructed and identified a recombinant monoclonal antibody to detect a posttranslationally modified form of IE63. Analysis of a series of IE63 truncation and substitution mutants showed that amino acids 186 to 195 are required for antibody binding. Synthetic peptides corresponding to this region identified IE63 S186 as a target for casein kinase II phosphorylation. In addition, acidic charges supplied by E194 and E195 were required for antibody binding. Immunofluorescence analysis of VZV-infected MeWo cells using the recombinant monoclonal antibody detected IE63 exclusively in the nuclei of infected cells, indicating that casein kinase II phosphorylation of S186 occurs in the nucleus and possibly identifying an initial molecular event operative in VZV reactivation.
Collapse
|
17
|
Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2008; 83:200-9. [PMID: 18971269 DOI: 10.1128/jvi.00645-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.
Collapse
|
18
|
Cyclin-dependent kinase 1/cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions. J Virol 2008; 82:12116-25. [PMID: 18799590 DOI: 10.1128/jvi.00153-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Varicella-zoster virus (VZV), an alphaherpesvirus restricted to humans, infects differentiated cells in vivo, including T lymphocytes, keratinocytes, and neurons, and spreads rapidly in confluent cultured dermal fibroblasts (HFFs). In VZV-infected HFFs, atypical expression of cyclins D3 and B1 occurs along with the induction of cyclin-dependent kinase (CDK) activity. A specific CDK1 inhibitor blocked VZV spread, indicating an important function for this cellular kinase in VZV replication. CDK activity assays of infected cells revealed a large viral phosphoprotein that was identified as being the major immediate-early transactivator, IE62. Since IE62 colocalized with CDK1/cyclin B1 by confocal microscopy, we investigated whether this cellular kinase complex interacts with IE62. Using recombinant fragments of IE62 spanning the entire amino acid sequence, we found that purified CDK1/cyclin B1 phosphorylated IE62 at residues T10, S245, and T680 in vitro. Immunoprecipitation of cyclin B1 from VZV-infected HFFs indicated that IE62 was included in the complex within infected cells. The full-length IE62 protein, obtained by immunoprecipitation from infected cells, was also phosphorylated by purified CDK1/cyclin B1. Based on IE62/CDK1/cyclin B1 colocalization near viral assembly regions, we hypothesized that these cellular proteins could be incorporated into VZV virions with IE62. Purified virions were analyzed by immunoblotting for the presence of CDK1 and cyclin B1, and active CDK1 and cyclin B1 were present in the VZV tegument with IE62 and were sensitive to detergent treatment. Thus, IE62 is a substrate for CDK1/cyclin B1, and virions could deliver the active cellular kinase to nondividing cells that normally do not express it.
Collapse
|
19
|
Mueller NH, Graf LL, Shearer AJ, Owens GP, Gilden DH, Cohrs RJ. Construction of recombinant mouse IgG1 antibody directed against varicella zoster virus immediate early protein 63. Hybridoma (Larchmt) 2008; 27:1-10. [PMID: 18294070 DOI: 10.1089/hyb.2007.0530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Five varicella zoster virus (VZV) genes are known to be transcribed in latently infected human ganglia. Transcripts from VZV gene 63, which encodes an immediate early (IE) protein, are the most prevalent and abundant. To obtain a reagent that might facilitate studies of the role of the IE63 protein in latency and reactivation, we selected an IE63-specific Fab fragment from a phage library and used it to prepare a recombinant mouse IgG1 antibody that detects IE63 and functions in Western blot, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assays.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008; 82:8673-86. [PMID: 18562514 DOI: 10.1128/jvi.00685-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 protein (ORF63p) is one of six VZV ORFs shown to be transcribed and translated in latently infected human dorsal root ganglia. ORF63p accumulates exclusively in the cytoplasm of latently infected sensory neurons, whereas it is both nuclear and cytoplasmic during lytic infection and following reactivation from latency. Here, we demonstrate that infection of primary guinea pig enteric neurons (EN) with an adenovirus expressing ORF63p results in the exclusive cytoplasmic localization of the protein reminiscent of its distribution during latent VZV infection in humans. We show that the addition of the simian virus 40 large-T-antigen nuclear localization signal (NLS) results in the nuclear import of ORF63p in EN and that the ORF63p endogenous NLSs are functional in EN when fused to a heterologous protein. These data suggest that the cytoplasmic localization of ORF63p in EN results from the masking of the NLSs, thus blocking nuclear import. However, the coexpression of ORF61p, a strictly lytic VZV protein, and ORF63p in EN results in the nuclear import of ORF63p in a proteasome-dependent manner, and both ORF63p NLSs are required for this event. We propose that the cytoplasmic localization of ORF63p in neurons results from NLS masking and that the expression of ORF61p removes this block, allowing nuclear import to proceed.
Collapse
|
21
|
Habran L, El Mjiyad N, Di Valentin E, Sadzot-Delvaux C, Bontems S, Piette J. The varicella-zoster virus immediate-early 63 protein affects chromatin-controlled gene transcription in a cell-type dependent manner. BMC Mol Biol 2007; 8:99. [PMID: 17971236 PMCID: PMC2176069 DOI: 10.1186/1471-2199-8-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/30/2007] [Indexed: 01/15/2023] Open
Abstract
Background Varicella Zoster Virus Immediate Early 63 protein (IE63) has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.
Collapse
Affiliation(s)
- Lionel Habran
- Virology & Immunology Unit, GIGA-Research, GIGA B34, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
22
|
El Mjiyad N, Bontems S, Gloire G, Horion J, Vandevenne P, Dejardin E, Piette J, Sadzot-Delvaux C. Varicella-zoster virus modulates NF-kappaB recruitment on selected cellular promoters. J Virol 2007; 81:13092-104. [PMID: 17855547 PMCID: PMC2169121 DOI: 10.1128/jvi.01378-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) expression is down-regulated in the center of cutaneous varicella lesions despite the expression of proinflammatory cytokines such as gamma interferon and tumor necrosis factor alpha (TNF-alpha). To study the molecular basis of this down-regulation, the ICAM-1 induction of TNF-alpha was analyzed in varicella-zoster virus (VZV)-infected melanoma cells (MeWo), leading to the following observations: (i) VZV inhibits the stimulation of icam-1 mRNA synthesis; (ii) despite VZV-induced nuclear translocation of p65, p52, and c-Rel, p50 does not translocate in response to TNF-alpha; (iii) the nuclear p65 present in VZV-infected cells is no longer associated with p50 and is unable to bind the proximal NF-kappaB site of the icam-1 promoter, despite an increased acetylation and accessibility of the promoter in response to TNF-alpha; and (iv) VZV induces the nuclear accumulation of the NF-kappaB inhibitor p100. VZV also inhibits icam-1 stimulation of TNF-alpha by strongly reducing NF-kappaB nuclear translocation in MRC5 fibroblasts. Taken together, these data show that VZV interferes with several aspects of the immune response by inhibiting NF-kappaB binding and the expression of target genes. Targeting NF-kappaB activation, which plays a central role in innate and adaptive immune responses, leads to obvious advantages for the virus, particularly in melanocytes, which are a site of viral replication in the skin.
Collapse
Affiliation(s)
- Nadia El Mjiyad
- GIGA-Research, Virology and Immunology Unit, GIGA B34, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ambagala APN, Cohen JI. Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 2007; 81:7844-51. [PMID: 17507475 PMCID: PMC1951283 DOI: 10.1128/jvi.00325-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is the most abundant transcript expressed during latency in human sensory ganglia. VZV with ORF63 deleted is impaired for replication in melanoma cells and fibroblasts and for latency in rodents. We found that replication of the ORF63 deletion mutant is fully complemented in U2OS cells, which have been shown to complement the growth of herpes simplex virus type 1 (HSV-1) ICP0 mutants. Since HSV-1 ICP0 mutants are hypersensitive to alpha interferon (IFN-alpha), we examined the effect of IFN-alpha on VZV replication. Replication of the ORF63 mutant in melanoma cells was severely inhibited in the presence of IFN-alpha, in contrast to other VZV mutants that were similarly impaired for replication or to parental virus. The VZV ORF63 mutant was not hypersensitive to IFN-gamma. IFN-alpha inhibited viral-gene expression in cells infected with the ORF63 mutant at a posttranscriptional level. Since IFN-alpha stimulates gene products that can phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) and inhibit translation, we determined whether cells infected with the ORF63 mutant had increased phosphorylation of eIF-2alpha compared with cells infected with parental virus. While phosphorylated eIF-2alpha was undetectable in uninfected cells or cells infected with parental virus, it was present in cells infected with the ORF63 mutant. Conversely, expression of IE63 (encoded by ORF63) in the absence of other viral proteins inhibited phosphorylation of eIF-2alpha. Since IFN-alpha has been shown to limit VZV replication in human skin xenografts, the ability of VZV IE63 to block the effects of the cytokine may play a critical role in VZV pathogenesis.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
24
|
Hoover SE, Cohrs RJ, Rangel ZG, Gilden DH, Munson P, Cohen JI. Downregulation of varicella-zoster virus (VZV) immediate-early ORF62 transcription by VZV ORF63 correlates with virus replication in vitro and with latency. J Virol 2006; 80:3459-68. [PMID: 16537613 PMCID: PMC1440367 DOI: 10.1128/jvi.80.7.3459-3468.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) protein is expressed during latency in human sensory ganglia. Deletion of ORF63 impairs virus replication in cell culture and establishment of latency in cotton rats. We found that cells infected with a VZV ORF63 deletion mutant yielded low titers of cell-free virus and produced very few enveloped virions detectable by electron microscopy compared with those infected with parental virus. Microarray analysis of cells infected with a recombinant adenovirus expressing ORF63 showed that transcription of few human genes was affected by ORF63; a heat shock 70-kDa protein gene was downregulated, and several histone genes were upregulated. In experiments using VZV transcription arrays, deletion of ORF63 from VZV resulted in a fourfold increase in expression of ORF62, the major viral transcriptional activator. A threefold increase in ORF62 protein was observed in cells infected with the ORF63 deletion mutant compared with those infected with parental virus. Cells infected with ORF63 mutants impaired for replication and latency (J. I. Cohen, T. Krogmann, S. Bontems, C. Sadzot-Delvaux, and L. Pesnicak, J. Virol. 79:5069-5077, 2005) showed an increase in ORF62 transcription compared with those infected with parental virus. In contrast, cells infected with an ORF63 mutant that is not impaired for replication or latency showed ORF62 RNA levels equivalent to those in cells infected with parental virus. The ability of ORF63 to downregulate ORF62 transcription may play an important role in virus replication and latency.
Collapse
Affiliation(s)
- Susan E Hoover
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
25
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
26
|
Mahalingam R, Gilden DH, Wellish M, Pugazhenthi S. Transactivation of the simian varicella virus (SVV) open reading frame (ORF) 21 promoter by SVV ORF 62 is upregulated in neuronal cells but downregulated in non-neuronal cells by SVV ORF 63 protein. Virology 2005; 345:244-50. [PMID: 16242745 DOI: 10.1016/j.virol.2005.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Simian varicella virus (SVV) infection in primates closely resembles varicella-zoster virus (VZV) infection in humans. SVV ORF 63 has 51.6% homology at the amino acid level to VZV ORF 63. We cloned SVV ORFs 63 and 62, transcribed and translated in vitro, and immunoprecipitated the expected proteins with rabbit polyclonal antibodies. Immunoprecipitation analysis revealed that SVV ORF 63 is expressed as a 43-kDa phosphorylated protein in virus-infected cells. In both neuronal and non-neuronal cells, SVV ORF 62 protein alone upregulated the SVV 21 promoter, while SVV ORF 63 protein alone did not have any effect. SVV ORF 62-mediated transactivation of the SVV ORF 21 promoter was upregulated in neuronal cells, but downregulated in non-neuronal cells, by SVV ORF 63 protein. This is the first study in which a varicella protein (ORF 63) expressed during latency has been shown to have a differential effect on a promoter that is also active during latency, in neuronal as compared to non-neuronal cells.
Collapse
Affiliation(s)
- Ravi Mahalingam
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
27
|
Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol Chem 2005; 386:255-67. [PMID: 15843171 DOI: 10.1515/bc.2005.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using transient transfection assays, regulation properties of varicella-zoster virus (VZV)-encoded IE63 protein were analyzed on several VZV immediate early (ORF4), early (ORF28) and late (ORF67) promoters. IE63 was shown to repress the basal activity of most of the promoters tested in epithelial (Vero) and neuronal (ND7) cells to various extents. Trans-repressing activities were also observed on heterologous viral and cellular promoters. Since a construct carrying only a TATA box sequence and a series of wild-type or mutated interleukin (IL)-8 promoters was also repressed by IE63, the role of upstream regulatory elements was ruled out. Importantly, the basal activity of a TATA-less promoter was not affected by IE63. Using a series of IE63 deletion constructs, amino acids 151-213 were shown to be essential to the trans-repressing activity in Vero cells, while in ND7 cells the essential region extended to a much larger carboxy-terminal part of the protein. We also demonstrate that IE63 is capable of disrupting the transcriptional pre-initiation complex and of interacting with several general transcription factors. The central and carboxy-terminal domains of IE63 are important for these effects. Altogether, these results demonstrate that IE63 protein is a transcriptional repressor whose activity is directed towards general transcription factors.
Collapse
Affiliation(s)
- Emmanuel Di Valentin
- Laboratory of Virology and Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zuranski T, Nawar H, Czechowski D, Lynch JM, Arvin A, Hay J, Ruyechan WT. Cell-type-dependent activation of the cellular EF-1alpha promoter by the varicella-zoster virus IE63 protein. Virology 2005; 338:35-42. [PMID: 15936796 DOI: 10.1016/j.virol.2005.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/02/2005] [Accepted: 05/05/2005] [Indexed: 11/20/2022]
Abstract
The varicella-zoster virus (VZV) IE63 protein is abundantly expressed during productive viral infection and is one of six gene products that appear to be expressed during latency. We have found that the IE63 protein can activate expression from the cellular EF-1alpha promoter in the absence of other viral proteins. The VZV IE62 protein, in contrast, was not found to transactivate this promoter. These data indicate that IE63 can function independently of the IE62 protein to positively influence the cellular transcription apparatus. We show that IE63 activation of the EF-1alpha promoter is cell type dependent and have examined the effects of point mutations important for IE63 phosphorylation and virus viability on this activation.
Collapse
Affiliation(s)
- Tricia Zuranski
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Jones JO, Arvin AM. Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res 2005; 68:56-65. [PMID: 16118026 DOI: 10.1016/j.antiviral.2005.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. In these experiments, cDNA corresponding to 69 VZV open reading frames was added to 42K human cDNA microarrays and used to examine viral as well as cellular gene transcription concurrently in fibroblasts infected with two genetically distinct small plaque VZV mutants, rOka/ORF63rev[T171] and rOkaDeltagI. rOka/ORF63rev[T171] has a point mutation in ORF63, which encodes the immediate early regulatory protein, IE63, and rOkaDeltagI has a deletion of ORF67, encoding glycoprotein I (gI). rOka/ORF63rev[T171] was deficient in the transcription of several viral genes compared to the recombinant rOka control virus. Deletion of ORF67 had minimal effects on viral gene transcription. Effects of rOka/ORF63rev[T171] and rOkaDeltagI on host cell gene transcription were similar to the rOka control, but a few host cell genes were regulated differently in rOkaDeltagI-infected cells. Infection of fibroblasts with intact or small plaque VZV mutants was associated with down-regulation of NF-kappaB and interferon responsive genes, down-regulation of TGF-beta responsive genes accompanied by reduced amounts of fibrotic/wound healing response genes (e.g. collagens, follistatin) and activation of cellular proliferation genes, and alteration of neuronal growth markers, as well as cellular genes encoding proteins important in protein and vesicle trafficking. These observations suggest that replication of VZV small plaque mutant viruses and intact VZV have similar consequences for host cell gene transcription in infected cells, and that the small plaque phenotype in these mutants reflects deficiencies in viral gene expression.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, 300 Pasteur Drive, Rm G312, Stanford, CA, USA.
| | | |
Collapse
|
30
|
Desloges N, Rahaus M, Wolff MH. The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression. Microbes Infect 2005; 7:1519-29. [PMID: 16039898 DOI: 10.1016/j.micinf.2005.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/13/2005] [Accepted: 05/15/2005] [Indexed: 11/22/2022]
Abstract
We reported that varicella-zoster virus (VZV) causes a delayed host shutoff during its replicative cycle. VZV open reading frame 17 (ORF17) is the homologue of the herpes simplex virus (HSV) UL41 gene encoding the virion host shutoff (vhs) protein which is responsible for the shutoff effect observed in HSV-infected cells. In the present study, we demonstrated that ORF17 is expressed as a late protein during the VZV replicative cycle in different infected permissive cell lines which showed a delayed shutoff of cellular RNA. A cell line with stable expression of VZV ORF17 was infected with VZV. In these cells, VZV replication and delayed host shutoff remained unchanged when compared to normal infected cells. ORF17 was not capable of repressing the expression of the beta-gal reporter gene under the control of the human cytomegalovirus immediate-early gene promoter or to inhibit the expression of a CAT reporter gene under the control of the human GAPDH promoter, indicating that ORF17 has no major function in the VZV-mediated delayed host shutoff. To determine whether other viral factors are involved in the host shutoff, a series of cotransfection assays was performed. We found that the immediate-early 63 protein (IE63) was able to downregulate the expression of reporter genes under the control of the two heterologous promoters, indicating that this viral factor can be involved in the VZV-mediated delayed host shutoff. Other factors can be also implicated to modulate the repressing action of IE63 to achieve a precise balance between the viral and cellular gene expression.
Collapse
Affiliation(s)
- Nathalie Desloges
- Institute of Microbiology and Virology, Private University of Witten/Herdecke, Stockumer Street 10, D-58448, Germany
| | | | | |
Collapse
|
31
|
Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 2005; 280:29135-43. [PMID: 15955820 DOI: 10.1074/jbc.m503312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested.
Collapse
Affiliation(s)
- Lionel Habran
- Laboratory of Virology and Immunology, Center for Biomedical Genoproteomics, Institute of Pathology B23, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|
32
|
Cohen JI, Krogmann T, Bontems S, Sadzot-Delvaux C, Pesnicak L. Regions of the varicella-zoster virus open reading frame 63 latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol 2005; 79:5069-77. [PMID: 15795292 PMCID: PMC1069579 DOI: 10.1128/jvi.79.8.5069-5077.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is one of the most abundant transcripts expressed during VZV latency in humans, and ORF63 protein has been detected in human ganglia by several laboratories. Deletion of over 90% of the ORF63 gene showed that the protein is required for efficient establishment of latency in rodents. We have constructed viruses with a series of mutations in ORF63. While prior experiments showed that transfection of cells with a plasmid expressing ORF63 but lacking the putative nuclear localization signal of the protein resulted in increased expression of the protein in the cytoplasm, we found that ORF63 protein remained in the nucleus in cells infected with a VZV ORF63 nuclear localization signal deletion mutant. This mutant was not impaired for growth in cell culture or for latency in rodents. Replacement of five serine or threonine phosphorylation sites in ORF63 with alanines resulted in a virus that was impaired for replication in vitro and for latency. A series of ORF63 carboxy-terminal mutants showed that the last 70 amino acids do not affect replication in vitro or latency in rodents; however, the last 108 amino acids are important for replication and latency. Thus, regions of ORF63 that are important for replication in vitro are also required for efficient establishment of latency.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N228, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
33
|
Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A 2005; 102:6490-5. [PMID: 15851670 PMCID: PMC1088374 DOI: 10.1073/pnas.0501045102] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory ganglia. VZV reactivation results in herpes zoster. We developed a model using human dorsal root ganglion (DRG) xenografts in severe combined immunodeficient (SCID) mice to investigate VZV infection of differentiated neurons and satellite cells in vivo. DRG engrafted under the kidney capsule and contained neurons and satellite cells within a typical DRG architecture. VZV clinical isolates infected the neurons within DRG. At 14 days postinfection, VZ virions were detected by electron microscopy in neuronal cell nuclei and cytoplasm but not in satellite cells. The VZV genome copy number was 7.1 x 10(7) to 8.0 x 10(8) copies per 10(5) cells, and infectious virus was recovered. This initial phase of viral replication was followed within 4-8 weeks by a transition to VZV latency, characterized by the absence of infectious virus release, the cessation of virion assembly, and a reduction in VZV genome copies to 3.7 x 10(5) to 4.7 x 10(6) per 10(5) cells. VZV persistence in DRG was achieved without any requirement for VZV-specific adaptive immunity and was associated with continued transcription of the ORF63 regulatory gene. The live attenuated varicella vaccine virus exhibited the same pattern of short-term replication, persistence of viral DNA, and prominent ORF63 transcription as the clinical isolates. VZV-infected T cells transferred virus from the circulation into DRG, suggesting that VZV lymphotropism facilitates its neurotropism. DRG xenografts may be useful for investigating neuropathogenic mechanisms of other human viruses.
Collapse
MESH Headings
- Animals
- Chickenpox/pathology
- DNA Primers
- Ganglia, Spinal/pathology
- Ganglia, Spinal/transplantation
- Ganglia, Spinal/virology
- Genome, Viral
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, SCID
- Microscopy, Electron, Transmission
- Neurons/ultrastructure
- Neurons/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Perineuronal/ultrastructure
- Satellite Cells, Perineuronal/virology
- T-Lymphocytes/virology
- Transplantation, Heterologous
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virion/physiology
- Virion/ultrastructure
- Virus Replication/physiology
Collapse
Affiliation(s)
- Leigh Zerboni
- Department of Pediatrics,Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
34
|
Lakaye B, Verlaet M, Dubail J, Czerniecki J, Bontems S, Makarchikov AF, Wins P, Piette J, Grisar T, Bettendorff L. Expression of 25 kDa thiamine triphosphatase in rodent tissues using quantitative PCR and characterization of its mRNA. Int J Biochem Cell Biol 2005; 36:2032-41. [PMID: 15203116 DOI: 10.1016/j.biocel.2004.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/19/2004] [Indexed: 01/19/2023]
Abstract
Thiamine triphosphate (ThTP) is found in most organisms, but its biological role remains unclear. In mammalian tissues, cellular ThTP concentrations remain low, probably because of hydrolysis by a specific 25 kDa thiamine triphosphatase (ThTPase). The aim of the present study was to use quantitative PCR, for comparing the 25 kDa ThTPase mRNA expression in various mouse tissues with its enzyme activities. ThTPase mRNA was expressed at only a few copies per cell. The highest amount of mRNA was found in testis, followed by lung and muscle, while the highest enzyme activities were found in liver and kidney. The poor correlation between mRNA levels and enzyme activities might result either from tissue-specific post-transcriptional regulation of mRNA processing and/or translation or from the regulation of enzyme activities by post-translational mechanisms. Purified recombinant human ThTPase was phosphorylated by casein kinase II, but this phosphorylation did not modify the enzyme activity. However, the characterization of the 3'-untranslated mRNA region revealed a unique, highly conserved, 200-nucleotide sequence that might be involved in translational control. In situ hybridization studies in testis suggest a predominant localization of ThTPase mRNA in poorly differentiated spermatogenic cells. This is the first study demonstrating a cell-specific 25 kDa ThTPase mRNA expression, suggesting that this enzyme might be related to the degree of differentiation or the metabolic state of the cell.
Collapse
Affiliation(s)
- Bernard Lakaye
- Center for Cellular and Molecular Neurobiology, University of Liège, 17 Place Delcour, 4020 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Davido DJ, von Zagorski WF, Lane WS, Schaffer PA. Phosphorylation site mutations affect herpes simplex virus type 1 ICP0 function. J Virol 2005; 79:1232-43. [PMID: 15613350 PMCID: PMC538545 DOI: 10.1128/jvi.79.2.1232-1243.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein infected-cell protein 0 (ICP0) is a strong and global transactivator of both viral and cellular genes. In a previous study, we reported that ICP0 is highly phosphorylated and contains at least seven distinct phosphorylation signals as determined by phosphotryptic peptide mapping (D. J. Davido et al., J. Virol. 76:1077-1088, 2002). Since phosphorylation affects the activities of many viral regulatory proteins, we sought to determine whether the phosphorylation of ICP0 affects its functions. To address this question, it was first necessary to identify the regions of ICP0 that are phosphorylated. For this purpose, ICP0 was partially purified, and phosphorylation sites were mapped by microcapillary high-pressure liquid chromatography tandem mass spectrometry. Three phosphorylated regions containing 11 putative phosphorylation sites, all within or adjacent to domains important for the transactivating activity of ICP0, were identified. The 11 sites were mutated to alanine as clusters in each of the three regions by site-directed mutagenesis, generating plasmids expressing mutant forms of ICP0: Phos 1 (four mutated sites), Phos 2 (three mutated sites), and Phos 3 (four mutated sites). One-dimensional phosphotryptic peptide analysis confirmed that the phosphorylation state of each Phos mutant form of ICP0 is altered relative to that of wild-type ICP0. In functional assays, the ICP0 phosphorylation site mutations affected the subcellular and subnuclear localization of ICP0, its ability to alter the staining pattern of the nuclear domain 10 (ND10)-associated protein PML, and/or its transactivating activity in Vero cells. Only mutations in Phos 1, however, impaired the ability of ICP0 to complement the replication of an ICP0 null mutant in Vero cells. This study thus suggests that phosphorylation is an important regulator of ICP0 function.
Collapse
Affiliation(s)
- David J Davido
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 123, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
36
|
Cohen JI, Cox E, Pesnicak L, Srinivas S, Krogmann T. The varicella-zoster virus open reading frame 63 latency-associated protein is critical for establishment of latency. J Virol 2004; 78:11833-40. [PMID: 15479825 PMCID: PMC523280 DOI: 10.1128/jvi.78.21.11833-11840.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) expresses at least six viral transcripts during latency. One of these transcripts, derived from open reading frame 63 (ORF63), is one of the most abundant viral RNAs expressed during latency. The VZV ORF63 protein has been detected in human and experimentally infected rodent ganglia by several laboratories. We have deleted >90% of both copies of the ORF63 gene from the VZV genome. Animals inoculated with the ORF63 mutant virus had lower mean copy numbers of latent VZV genomes in the dorsal root ganglia 5 to 6 weeks after infection than animals inoculated with parental or rescued virus, and the frequency of latently infected animals was significantly lower in animals infected with the ORF63 mutant virus than in animals inoculated with parental or rescued virus. In contrast, the frequency of animals latently infected with viral mutants in other genes that are equally or more impaired for replication in vitro, compared with the ORF63 mutant, is similar to that of animals latently infected with parental VZV. Examination of dorsal root ganglia 3 days after infection showed high levels of VZV DNA in animals infected with either ORF63 mutant or parental virus; however, by days 6 and 10 after infection, the level of viral DNA in animals infected with the ORF63 mutant was significantly lower than that in animals infected with parental virus. Thus, ORF63 is not required for VZV to enter ganglia but is the first VZV gene shown to be critical for establishment of latency. Since the present vaccine can reactivate and cause shingles, a VZV vaccine based on the ORF63 mutant virus might be safer.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N228, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
37
|
Yang M, Hay J, Ruyechan WT. The DNA element controlling expression of the varicella-zoster virus open reading frame 28 and 29 genes consists of two divergent unidirectional promoters which have a common USF site. J Virol 2004; 78:10939-52. [PMID: 15452214 PMCID: PMC521831 DOI: 10.1128/jvi.78.20.10939-10952.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of the divergent expression of the varicella-zoster virus (VZV) ORF 28 and ORF 29 genes from a common intergenic DNA element, the ORF 28/29 promoter, is of interest based on the observation that both genes are expressed during VZV lytic infection but only the ORF 29 gene is expressed in latently infected neurons. In the work presented here, expression driven by the ORF 28/29 intergenic region was examined. We found that the promoter activity towards the ORF 29 direction is more responsive to activation by the major viral transactivator IE62 than that towards the ORF 28 direction in the context of our experimental system. Analysis of the functional DNA elements involved in IE62 activation of the bidirectional ORF 28/29 regulatory element revealed that in both transfected and VZV-superinfected cells it is a fusion of two unidirectional promoters overlapping an essential USF binding site but with distinct TATA elements. A single TATA element directs expression in the ORF 28 direction, whereas the two TATA elements directing ORF 29 gene expression are alternatively and differentially utilized for transcription initiation. We also identified an Sp1 site localized proximal to the ORF 28 gene which functions as an activator element for expression in both directions. These results indicate that the ORF 28 and ORF 29 genes can be expressed either coordinately or independently and that the observed expression of only the ORF 29 gene during VZV latency may involve neuron-specific cellular factors and/or structural aspects of the latent viral genome.
Collapse
Affiliation(s)
- Min Yang
- Department of Microbiology and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214-3000, USA
| | | | | |
Collapse
|
38
|
Baiker A, Bagowski C, Ito H, Sommer M, Zerboni L, Fabel K, Hay J, Ruyechan W, Arvin AM. The immediate-early 63 protein of Varicella-Zoster virus: analysis of functional domains required for replication in vitro and for T-cell and skin tropism in the SCIDhu model in vivo. J Virol 2004; 78:1181-94. [PMID: 14722273 PMCID: PMC321405 DOI: 10.1128/jvi.78.3.1181-1194.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 63-kDa (IE63) protein of varicella-zoster virus (VZV) is a phosphoprotein encoded by open reading frame (ORF) ORF63/ORF70. To identify functional domains, 22 ORF63 mutations were evaluated for effects on IE63 binding to the major VZV transactivator, IE62, and on IE63 phosphorylation and nuclear localization in transient transfections, and after insertion into the viral genome with VZV cosmids. The IE62 binding site was mapped to IE63 amino acids 55 to 67, with R59/L60 being critical residues. Alanine substitutions within the IE63 center region showed that S165, S173, and S185 were phosphorylated by cellular kinases. Four mutations that changed two putative nuclear localization signal (NLS) sequences altered IE63 distribution to a cytoplasmic/nuclear pattern. Only three of 22 mutations in ORF63 were compatible with recovery of infectious VZV from our cosmids, but infectivity was restored by inserting intact ORF63 into each mutated cosmid. The viable IE63 mutants had a single alanine substitution, altering T171, S181, or S185. These mutants, rOKA/ORF63rev[T171], rOKA/ORF63rev[S181], and rOKA/ORF63rev[S185], produced less infectious virus and had a decreased plaque phenotype in vitro. ORF47 kinase protein and glycoprotein E (gE) synthesis was reduced, indicating that IE63 contributed to optimal expression of early and late gene products. The three IE63 mutants replicated in skin xenografts in the SCIDhu mouse model, but virulence was markedly attenuated. In contrast, infectivity in T-cell xenografts was not altered. Comparative analysis suggested that IE63 resembled the herpes simplex virus type 1 U(S)1.5 protein, which is expressed colinearly with ICP22 (U(S)1). In summary, most mutations of ORF63 made with our VZV cosmid system were lethal for infectivity. The few IE63 changes that were tolerated resulted in VZV mutants with an impaired capacity to replicate in vitro. However, the IE63 mutants were attenuated in skin but not T cells in vivo, indicating that the contribution of the IE63 tegument/regulatory protein to VZV pathogenesis depends upon the differentiated human cell type which is targeted for infection within the intact tissue microenvironment.
Collapse
Affiliation(s)
- Armin Baiker
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Daniel X, Sugano S, Tobin EM. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:3292-7. [PMID: 14978263 PMCID: PMC365783 DOI: 10.1073/pnas.0400163101] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock controls numerous physiological and molecular processes in organisms ranging from fungi to human. In plants, these processes include leaf movement, stomata opening, and expression of a large number of genes. At the core of the circadian clock, the central oscillator consists of a negative autoregulatory feedback loop that is coordinated with the daily environmental changes, and that generates the circadian rhythms of the overt processes. Phosphorylation of some of the central oscillator proteins is necessary for the generation of normal circadian rhythms of Drosophila, humans, and Neurospora, where CK1 and CK2 are emerging as the main protein kinases involved in the phosphorylation of PER and FRQ. We have previously shown that in Arabidopsis, the protein kinase CK2 can phosphorylate the clock-associated protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) in vitro. The overexpression of one of its regulatory subunits, CKB3, affects the regulation of circadian rhythms. Whether the effects of CK2 on the clock were due to its phosphorylation of a clock component had yet to be proven. By examining the effects of constitutively expressing a mutant form of the Arabidopsis clock protein CCA1 that cannot be phosphorylated by CK2, we demonstrate here that CCA1 phosphorylation by CK2 is important for the normal functioning of the central oscillator.
Collapse
Affiliation(s)
- Xavier Daniel
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | |
Collapse
|
40
|
Kobayashi T, Zhang G, Lee BJ, Baba S, Yamashita M, Kamitani W, Yanai H, Tomonaga K, Ikuta K. Modulation of Borna disease virus phosphoprotein nuclear localization by the viral protein X encoded in the overlapping open reading frame. J Virol 2003; 77:8099-107. [PMID: 12829848 PMCID: PMC161951 DOI: 10.1128/jvi.77.14.8099-8107.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that belongs to the Mononegavirales order. Unlike other animal viruses in this order, BDV replicates and transcribes in the nucleus of infected cells. Therefore, regulation of the intracellular movement of virus components must be critical for accomplishing the BDV life cycle in mammalian cells. Previous studies have demonstrated that BDV proteins are prone to accumulate in the nucleus of cells transiently transfected with each expression plasmid of the viral proteins. In BDV infection, however, cytoplasmic distribution of the viral proteins is frequently found in cultured cells and animal brains. In this study, to understand the modulation of subcellular localization of BDV proteins, we investigated the intracellular localization of the viral phosphoprotein (P). Transient-transfection analysis with a cDNA clone corresponding to a bicistronic transcript that expresses both viral X and P revealed that P efficiently localizes in the cytoplasm only when BDV X is expressed in the cells. Furthermore, our analysis revealed that the direct binding between X and P is necessary for the cytoplasmic localization of the P. Interestingly, we showed that X is not detectably expressed in the BDV-infected cells in which P is predominantly found in the nucleus, with little or no signal in the cytoplasm. These observations suggested that BDV P can modulate their subcellular localization through binding to X and that BDV may regulate the expression ratio of each viral product in infected cells to control the intracellular movement of the viral protein complexes. The results presented here provide a new insight into the regulation of the intracellular movement of viral proteins of a unique, nonsegmented, negative-strand RNA virus.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|