1
|
Xia J, Ma N, Shi Q, Liu QC, Zhang W, Cao HJ, Wang YK, Zheng QW, Ni QZ, Xu S, Zhu B, Qiu XS, Ding K, Huang JY, Liang X, Chen Y, Xiang YJ, Zhang XR, Qiu L, Chen W, Xie D, Wang X, Long L, Li JJ. XAF1 promotes colorectal cancer metastasis via VCP-RNF114-JUP axis. J Cell Biol 2024; 223:e202303015. [PMID: 38095639 PMCID: PMC10720657 DOI: 10.1083/jcb.202303015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
Metastasis is the main cause of colorectal cancer (CRC)-related death, and the 5-year relative survival rate for CRC patients with distant metastasis is only 14%. X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a zinc-rich protein belonging to the interferon (IFN)-induced gene family. Here, we report a metastasis-promoting role of XAF1 in CRC by acting as a novel adaptor of valosin-containing protein (VCP). XAF1 facilitates VCP-mediated deubiquitination of the E3 ligase RING finger protein 114 (RNF114), which promotes K48-linked ubiquitination and subsequent degradation of junction plakoglobin (JUP). The XAF1-VCP-RNF114-JUP axis is critical for the migration and metastasis of CRC cells. Moreover, we observe correlations between the protein levels of XAF1, RNF114, and JUP in clinical samples. Collectively, our findings reveal an oncogenic function of XAF1 in mCRC and suggest that the XAF1-VCP-RNF114-JUP axis is a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Qin-Cheng Liu
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Wei Zhang
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Yi Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jun Xiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xi-Ran Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province. Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Long
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
2
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
3
|
Proteomic characterization of GSK3β knockout shows altered cell adhesion and metabolic pathway utilisation in colorectal cancer cells. PLoS One 2021; 16:e0246707. [PMID: 34739494 PMCID: PMC8570494 DOI: 10.1371/journal.pone.0246707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022] Open
Abstract
Glycogen-specific kinase (GSK3β) is an integral regulator of the Wnt signalling pathway as well as many other diverse signalling pathways and processes. Dys-regulation of GSK3β is implicated in many different pathologies, including neurodegenerative disorders as well as many different tumour types. In the context of tumour development, GSK3β has been shown to play both oncogenic and tumour suppressor roles, depending upon tissue, signalling environment or disease progression. Although multiple substrates of the GSK3β kinase have been identified, the wider protein networks within which GSK3β participates are not well known, and the consequences of these interactions not well understood. In this study, LC-MS/MS expression analysis was performed using knockout GSK3β colorectal cancer cells and isogenic controls in colorectal cancer cell lines carrying dominant stabilizing mutations of β-catenin. Consistent with the role of GSK3β, we found that β-catenin levels and canonical Wnt activity are unaffected by knockout of GSK3β and therefore used this knockout cell model to identify other processes in which GSK3β is implicated. Quantitative proteomic analysis revealed perturbation of proteins involved in cell-cell adhesion, and we characterized the phenotype and altered proteomic profiles associated with this. We also characterized the perturbation of metabolic pathways resulting from GSK3β knockout and identified defects in glycogen metabolism. In summary, using a precision colorectal cancer cell-line knockout model with constitutively activated β-catenin we identified several of the diverse pathways and processes associated with GSK3β function.
Collapse
|
4
|
Wesley T, Berzins S, Kannourakis G, Ahmed N. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Cell Commun Signal 2021; 19:55. [PMID: 34001250 PMCID: PMC8127266 DOI: 10.1186/s12964-021-00726-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Stuart Berzins
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia. .,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia. .,Centre for Reproductive Health, The Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
5
|
Walters TS, McIntosh DJ, Ingram SM, Tillery L, Motley ED, Arinze IJ, Misra S. SUMO-Modification of Human Nrf2 at K 110 and K 533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cell Physiol Biochem 2021; 55:141-159. [PMID: 33770425 PMCID: PMC8279473 DOI: 10.33594/000000351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function. We previously demonstrated that Nrf2 traffics to the promyelocytic leukemia-nuclear bodies (PML-NB), where it is a target for modification by small ubiquitin-like modifier (SUMO) proteins (sumoylation), but the site(s) for SUMO conjugation have not been determined. In this study, we aim to identify SUMO-2 conjugation site(s) and explore the impact, sumoylation of the site(s) have on Nrf2 stability, nuclear localization and transcriptional activation of its target gene expression upon oxidative stress. METHODS The putative SUMO-binding sites in Nrf2 for human isoform1 (NP_006155.2) and mouse homolog (NP_035032.1) were identified using a computer-based SUMO-predictive software (SUMOplot™). Site-directed mutagenesis, immunoblot analysis, and ARE-mediated reporter gene assays were used to assess the impact of sumoylation on these site(s) in vitro. Effect of mutation of these sumoylation sites of Nrf2 on expression of Heme Oxygenase1 (HO-1) was determined in HEK293T cell. RESULTS
Eight putative sumoylation sites were identified by SUMOplot™ analysis. Out of the eight predicted sites only one 532LKDE535 of human (h) and its homologous 524LKDE527 of mouse (m) Nrf2, exactly matches the SUMO-binding consensus motif. The other high probability SUMO-acceptor site identified was residue K110, in the motifs 109PKSD112 and 109PKQD112 of human and mouse Nrf2, respectively. Mutational analysis of putative sumoylation sites (human (h)/mouse (m)
K110, hK533 and mK525) showed that these residues are needed for SUMO-2 conjugation, nuclear localization and ARE driven transcription of reporter genes and the endogenous HO-1 expression by Nrf2. These residues also stabilized Nrf2, as evident from shorter half-lives of the mutant protein compared to wild-type Nrf2. CONCLUSION Our findings indicate that SUMO-2
mediated sumoylation of K110 and K533 in human Nrf2 regulates in part its transcriptional activity by enhancing its stabilization and nuclear localization.
Collapse
Affiliation(s)
- Treniqka S Walters
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Deneshia J McIntosh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Lakeisha Tillery
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Evangeline D Motley
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Ifeanyi J Arinze
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Smita Misra
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA,
- School of Graduate Studies and Research, Meharry Medical College, Nashville TN, USA
- Center for Women's Health, Meharry Medical College, Nashville TN, USA
| |
Collapse
|
6
|
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Genome Med 2021; 13:42. [PMID: 33706810 PMCID: PMC7953710 DOI: 10.1186/s13073-021-00845-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Contemporary deep learning approaches show cutting-edge performance in a variety of complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning methods are often considered as non-interpretable black-box models. However, the machine learning community made recent elaborations on interpretability methods explaining data point-specific decisions of deep learning techniques. We believe that such explanations can assist the need in personalized precision medicine decisions via explaining patient-specific predictions. Methods Layer-wise Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is widely used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started to extend towards non-Euclidean domains like graphs. Molecular networks are commonly represented as graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs. In other words, gene expression data can be structured by utilizing molecular network information as prior knowledge. Graph-CNNs can be applied to structured gene expression data, for example, to predict metastatic events in breast cancer. Therefore, there is a need for explanations showing which part of a molecular network is relevant for predicting an event, e.g., distant metastasis in cancer, for each individual patient. Results We extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new method to explain the decisions made by Graph-CNNs. We demonstrate a sanity check of the developed GLRP on a hand-written digits dataset and then apply the method on gene expression data. We show that GLRP provides patient-specific molecular subnetworks that largely agree with clinical knowledge and identify common as well as novel, and potentially druggable, drivers of tumor progression. Conclusions The developed method could be potentially highly useful on interpreting classification results in the context of different omics data and prior knowledge molecular networks on the individual patient level, as for example in precision medicine approaches or a molecular tumor board. Supplementary Information The online version contains supplementary material available at (10.1186/s13073-021-00845-7).
Collapse
|
7
|
Ellison M, Mittal M, Chaudhuri M, Chaudhuri G, Misra S. The role of the redox/miR-6855-3p/PRDX5A axis in reversing SLUG-mediated BRCA2 silencing in breast cancer cells. Cell Commun Signal 2020; 18:15. [PMID: 31987042 PMCID: PMC6986021 DOI: 10.1186/s12964-019-0493-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We have previously shown that the zinc finger transcription repressor SNAI2 (SLUG) represses tumor suppressor BRCA2-expression in non-dividing cells by binding to the E2-box upstream of the transcription start site. However, it is unclear how proliferating breast cancer (BC) cells that has higher oxidation state, overcome this repression. In this study, we provide insight into the mechanism of de-silencing of BRCA2 gene expression by PRDX5A, which is the longest member of the peroxiredoxin5 family, in proliferating breast cancer cells. METHODS We used cell synchronization and DNA affinity pulldown to analyze PRDX5A binding to the BRCA2 silencer. We used oxidative stress and microRNA (miRNA) treatments to study nuclear localization of PRDX5A and its impact on BRCA2-expression. We validated our findings using mutational, reporter assay, and immunofluorescence analyses. RESULTS Under oxidative stress, proliferating BC cells express PRDX5 isoform A (PRDX5A). In the nucleus, PRDX5A binds to the BRCA2 silencer near the E2-box, displacing SLUG and enhancing BRCA2-expression. Nuclear PRDX5A is translated from the second AUG codon in frame to the first AUG codon in the PRDX5A transcript that retains all exons. Mutation of the first AUG increases nuclear localization of PRDX5A in MDA-MB-231 cells, but mutation of the second AUG decreases it. Increased mitronic hsa-miRNA-6855-3p levels under oxidative stress renders translation from the second AUG preferable. Mutational analysis using reporter assay uncovered a miR-6855-3p binding site between the first and second AUG codon in the PRDX5A transcript. miR-6855-3p mimic increases accumulation of nuclear PRDX5A and inhibits reporter gene translation. CONCLUSION Oxidative stress increases miR-6855-3p expression and binding to the inter-AUG sequence of the PRDX5A transcript, promoting translation of nuclear PRDX5A. Nuclear PRDX5A relieves SLUG-mediated BRCA2 silencing, resulting in increased BRCA2-expression.
Collapse
Affiliation(s)
- Marshall Ellison
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Mukul Mittal
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Gautam Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Smita Misra
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA. .,Center for Women's Health Research (CWHR), Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
8
|
Zheng Q, Gao J, Yin P, Wang W, Wang B, Li Y, Zhao C. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci 2020; 111:383-394. [PMID: 31830330 PMCID: PMC7004517 DOI: 10.1111/cas.14276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) lack molecular targets and have an unfavorable outcome. CD155 is overexpressed in human cancers, but whether it plays a role in TNBC is unexplored. Here we found that CD155 was enriched in both TNBC cell lines and tumor tissues. High CD155 expression was related to poor prognosis of breast cancer patients. CD155 was associated with a mesenchymal phenotype. CD155 knockdown induced a mesenchymal-epithelial transition in TNBC cells, and suppressed TNBC cell migration, invasion and metastasis in vitro and in vivo. Mechanistically, CD155 cross-talked with oncogenic IL-6/Stat3 and TGF-β/Smad3 pathways. Moreover, CD155 knockdown inhibited TNBC cell growth and survival. Taken together, these data indicate that CD155 contributes to the aggressive behavior of TNBC; targeting CD155 may be beneficial to these patients.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Ping Yin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Sang Y, Sun L, Wu Y, Yuan W, Liu Y, Li SW. Histone deacetylase 7 inhibits plakoglobin expression to promote lung cancer cell growth and metastasis. Int J Oncol 2019; 54:1112-1122. [PMID: 30628670 DOI: 10.3892/ijo.2019.4682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
Plakoglobin is a tumor suppressor gene in lung cancer; however, the mechanism by which it is downregulated in lung cancer is largely unknown. The aim of the present study was to investigate whether histone deacetylases (HDACs) regulate plakoglobin expression in lung cancer. The effects of overexpression or knockdown of HDAC7 on plakoglobin were determined using stably transfected lung cancer cell lines. Chromatin immunoprecipitation assays were performed to elucidate the mechanisms underlying the HDAC7‑induced suppression of plakoglobin. A Cell Counting Kit‑8 and Transwell assays were performed, and a nude mouse in vivo model was established to investigate the role of the HDAC7/plakoglobin pathway in cell migration, invasion and metastasis. Ectopic expression of HDAC7 was identified to suppress mRNA and protein levels of plakoglobin in lung cancer cells, whereas silencing HDAC7 with short hairpin RNA increased the expression of plakoglobin. HDAC7 was proposed to suppressed plakoglobin by directly binding to its promoter. Overexpression or knockdown of HDAC7 promoted or inhibited cell proliferation, migration and invasion, respectively. Furthermore, knockdown of HDAC7 significantly suppressed tumor growth and metastasis in vivo. In addition, overexpression of plakoglobin significantly reduced the enhanced cell proliferation, migration and invasion induced by ectopic HDAC7. In conclusion, suppression of plakoglobin by HDAC7 promoted the proliferation, migration, invasion and metastasis in lung cancer. This novel axis of HDAC7/plakoglobin may be valuable in the development of novel therapeutic strategies for treating patients with lung cancer.
Collapse
Affiliation(s)
- Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Si-Wei Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
10
|
Bonesi M, Brindisi M, Armentano B, Curcio R, Sicari V, Loizzo MR, Cappello MS, Bedini G, Peruzzi L, Tundis R. Exploring the anti-proliferative, pro-apoptotic, and antioxidant properties of Santolina corsica Jord. & Fourr. (Asteraceae). Biomed Pharmacother 2018; 107:967-978. [DOI: 10.1016/j.biopha.2018.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023] Open
|
11
|
Leo C, Cotic C, Pomp V, Fink D, Varga Z. Overexpression of Lox in triple-negative breast cancer. Ann Diagn Pathol 2018; 34:98-102. [PMID: 29661738 DOI: 10.1016/j.anndiagpath.2018.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) accounts for approximately 15% of breast cancers. It is associated with a poor prognosis and typically earlier onset of metastasis in comparison with other breast cancer subtypes. Since TNBC lacks the expression of estrogen and progesterone receptors and Her2 status is also negative, there is currently no target that can be used for systemic therapy. Epithelial-mesenchymal transition (EMT) plays an important role in tumor progression and metastasis. In this study, we examined a subset of EMT markers consisting of Snail, Twist-1 and Lox in TNBC and non-TNBC breast cancer subtypes and analyzed their expression pattern in regard to subtype, clinico-pathological parameters and prognosis. EXPERIMENTAL DESIGN We analyzed 659 breast cancer samples from two tissue microarrays. Breast cancer samples were categorized into two groups according to hormone receptor expression and Her2 status (n = 146 were triple negative, n = 513 were non triple-negative). Immunohistochemical expression of Snail, Twist-1 and Lox was semi-quantitatively analyzed using a three-tiered (weak-moderate-strong) scoring system. Results were statistically analyzed and correlated to clinico-pathological parameters and overall survival. RESULTS Strong overexpression of Lox was significantly higher in triple negative breast cancers when compared to non triple-negative breast cancers (p < 0.001). No difference was seen between the groups regarding Snail and Twist expression (p > 0.05). In addition, Lox expression was significantly stronger in poorly differentiated (G3) breast cancers (p < 0.001 for Lox). CONCLUSIONS The EMT marker Lox has a differential expression pattern in breast cancer, being significantly overexpressed in triple negative breast cancers. We could not link this expression to prognosis, however, this marker might be explored in future studies as possible target for systemic therapy of TNBC.
Collapse
Affiliation(s)
- Cornelia Leo
- Department of Gynecology, Kantonsspital Baden, Baden, Switzerland.
| | - Christine Cotic
- Department of Gynecology, University Hospital Zurich, 8010 Zurich, Switzerland.
| | - Victoria Pomp
- Department of Pathology and Molecularpathology, University Hospital Zurich, 8010 Zurich, Switzerland
| | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, 8010 Zurich, Switzerland.
| | - Zsuzsanna Varga
- Department of Pathology and Molecularpathology, University Hospital Zurich, 8010 Zurich, Switzerland.
| |
Collapse
|
12
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z, Yin D. FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun 2018; 497:473-479. [PMID: 29408378 DOI: 10.1016/j.bbrc.2018.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
|
14
|
Hopkins BL, Nadler M, Skoko JJ, Bertomeu T, Pelosi A, Shafaei PM, Levine K, Schempf A, Pennarun B, Yang B, Datta D, Bucur O, Ndebele K, Oesterreich S, Yang D, Giulia Rizzo M, Khosravi-Far R, Neumann CA. A Peroxidase Peroxiredoxin 1-Specific Redox Regulation of the Novel FOXO3 microRNA Target let-7. Antioxid Redox Signal 2018; 28:62-77. [PMID: 28398822 PMCID: PMC5695745 DOI: 10.1089/ars.2016.6871] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.
Collapse
Affiliation(s)
- Barbara L Hopkins
- 1 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Monica Nadler
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - John J Skoko
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Thierry Bertomeu
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Andrea Pelosi
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Parisa Mousavi Shafaei
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Kevin Levine
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Anja Schempf
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Bodvael Pennarun
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Bo Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dipak Datta
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Octavian Bucur
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts.,6 Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Kenneth Ndebele
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Steffi Oesterreich
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Da Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Maria Giulia Rizzo
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Roya Khosravi-Far
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Carola A Neumann
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Huang LC, Lin CL, Qiu JZ, Lin CY, Hsu KW, Tam KW, Lee JY, Yang JM, Lee CH. Nicotinic Acetylcholine Receptor Subtype Alpha-9 Mediates Triple-Negative Breast Cancers Based on a Spontaneous Pulmonary Metastasis Mouse Model. Front Cell Neurosci 2017; 11:336. [PMID: 29163048 PMCID: PMC5675882 DOI: 10.3389/fncel.2017.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) subtype is associated with poor prognosis and a high risk of recurrence-related death in women. Despite the aggressiveness of TNBCs, targeted TNBC therapy is not yet available in the clinic. To overcome this challenge, we generated highly metastatic TNBC cells (LM) derived from metastasized lung cells via a serial spontaneous pulmonary metastasis animal model to identify targetable molecules for attenuating the progression of TNBC metastasis. Gene analysis of primary tumor (P), first-round (1LM) and second-round (2LM) metastasized lung cells revealed that mesenchymal-related genes were significantly expressed in LM cells, especially in 2LM cells. Interestingly, α9-nAChR gene expression was also dramatically induced in LM cells, confirming our previous finding that α9-nAChR plays important roles in receptor-mediated carcinogenic signals in human breast cancer development. Using α9-nAChR as a biomarker, we transfected 2LM cells with CRISPR/Cas9 lentivirus targeting the α9-nAChR genomic region (2LM-α9-nAChR-null), showing that mesenchymal markers and the migration and invasion abilities of 2LM cells were significantly attenuated in 2LM-α9-nAChR-null cells both in vitro and in vivo. In addition, the high efficiency of editing the α9-nAChR gene using a CRISPR/Cas9 lentivirus was demonstrated by gene sequencing, genomic indel frequency and protein expression analyses. Collectively, these results confirmed those of our previous study that advanced-stage breast tumors are associated with substantially higher levels of α9-nAChR gene expression, indicating that α9-nAChR expression is essential for mediating TNBC metastasis during cancer development and may potentially act as a biomarker for targeted therapy in clinical investigations.
Collapse
Affiliation(s)
- Li-Chi Huang
- Department of Endocrinology, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Endocrinology, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Zheng Qiu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Ka-Wai Tam
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Mendoza-Villanueva D, Balamurugan K, Ali HR, Kim SR, Sharan S, Johnson RC, Merchant AS, Caldas C, Landberg G, Sterneck E. The C/EBPδ protein is stabilized by estrogen receptor α activity, inhibits SNAI2 expression and associates with good prognosis in breast cancer. Oncogene 2016; 35:6166-6176. [PMID: 27181204 PMCID: PMC5112156 DOI: 10.1038/onc.2016.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
Hypoxia and inflammatory cytokines like interleukin-6 (IL-6, IL6) are strongly linked to cancer progression, and signal in part through the transcription factor Ccaat/enhancer-binding protein δ (C/EBPδ, CEBPD), which has been shown to promote mesenchymal features and malignant progression of glioblastoma. Here we report a different role for C/EBPδ in breast cancer. We found that the C/EBPδ protein is expressed in normal breast epithelial cells and in low-grade cancers. C/EBPδ protein (but not mRNA) expression correlates with estrogen receptor (ER+) and progesterone receptor (PGR) expression and longer progression-free survival of breast cancer patients. Specifically in ER+ breast cancers, CEBPD-but not the related CEBPB-mRNA in combination with IL6 correlated with lower risk of progression. Functional studies in cell lines showed that ERα promotes C/EBPδ expression at the level of protein stability by inhibition of the FBXW7 pathway. Furthermore, we found that C/EBPδ attenuates cell growth, motility and invasiveness by inhibiting expression of the SNAI2 (Slug) transcriptional repressor, which leads to expression of the cyclin-dependent kinase inhibitor CDKN1A (p21CIP1/WAF1). These findings identify a molecular mechanism by which ERα signaling reduces the aggressiveness of cancer cells, and demonstrate that C/EBPδ can have different functions in different types of cancer. Furthermore, our results support a potentially beneficial role for the IL-6 pathway specifically in ER+ breast cancer and call for further evaluation of the role of intra-tumoral IL-6 expression and of which cancers might benefit from current attempts to target the IL-6 pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Daniel Mendoza-Villanueva
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - H. Raza Ali
- Cancer Research UK, Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge, U.K
| | - Su-Ryun Kim
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Randall C. Johnson
- CCR Collaborative Bioinformatics Resource, Advanced Biomedical Computing Center, Leidos Biomed, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Anand S. Merchant
- CCR Collaborative Bioinformatics Resource, Advanced Biomedical Computing Center, Leidos Biomed, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge, U.K
| | - Göran Landberg
- Breakthrough Breast Cancer Unit, Institute of Cancer Sciences, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, UK
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules 2016; 21:molecules21081013. [PMID: 27527135 PMCID: PMC6274026 DOI: 10.3390/molecules21081013] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Despite prevention and treatment options, breast cancer (BC) has become one of the most important issues in the present day. Therefore, the need for more specific and efficient compounds remains paramount. We evaluated four previously isolated aryltetralin lignans: 5'-demethoxy-β-peltatin-A-methylether (1), acetylpodophyllotoxin (2), 5'-demethoxydeoxypodophyllotoxin (3), and 7',8'-dehydroacetylpodophyllotoxin (4) for cytotoxicity, clonogenicity, and selectivity against three BC cell lines: MCF-7, MDA-MB-231, and BT-549, as well as the non-tumorigenic mammary epithelial cell line MCF-10A. Cytotoxicity was evaluated after 72 h of treatment, and clonogenicity was determined at 72 h post-treatment; experiments were performed using the sulforhodamine B staining assay. Selective-index (SI) was calculated by comparing pure compound IC50 values in MCF-10A cell line against the IC50 of the same compound in cancer cell lines. Structural similarities among lignans and controls (podophyllotoxin and etoposide) were analyzed using the Tanimoto coefficient (Tc). Lignans were cytotoxic against all tested cell lines (0.011-7.22 µM) and clonogenicity testing showed a dose-dependent cytocidality for all lignans (≥0.08 µg/mL); compounds 2 and 3 were more potent (14.1 and 7.6 respectively) than etoposide in BT-549 cell line, while compound 2 displayed selectivity (SI = 28.17) in BT-549 cell line. Tc values of lignans suggested a greater similarity with podophyllotoxin structure.
Collapse
Affiliation(s)
- Omar Aristeo Peña-Morán
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Angélica Meneses-Acosta
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Verónica Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
18
|
Scherbakov AM, Gershtein ES, Korotkova EA, Ovchinnikova LK, Ovsii OG, Ermilova VD, Gens GP, Kushlinskii NE. Regulatory Proteins of Epithelial-Mesenchymal Transition and Some Components of VEGF Signaling Pathway in Breast Cancer. Bull Exp Biol Med 2016; 160:802-6. [PMID: 27165081 DOI: 10.1007/s10517-016-3314-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 01/01/2023]
Abstract
Immunohistochemical method was used to assay for Snail family regulatory proteins of epithelial-mesenchymal transition, their NF-κB coactivator, and the components of VEGF signaling pathway (VEGF and its receptors VEGFR1 and VEGFR2) in 157 specimens of breast tumors. Most tumors did not express SNAI1, while 65% tumors demonstrated mid- or high-level SNAI2 expression. There were significant correlations between the expression of SNAI1, SNAI2, and their NF-κB co-activator. Correlation was also detected between expression of Snail and VEGFR1 protein families in the tumors. In addition, the study revealed tumoral co-expression of SNAI2 and VEGFR2. The data attest to coordinated activation of regulatory proteins of epithelial-mesenchymal transition and the major components of VEGF signaling pathway in breast tumors.
Collapse
Affiliation(s)
- A M Scherbakov
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E S Gershtein
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Korotkova
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L K Ovchinnikova
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O G Ovsii
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V D Ermilova
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G P Gens
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N E Kushlinskii
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene 2016; 35:1216-24. [PMID: 26050619 DOI: 10.1038/onc.2015.192] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/15/2022]
Abstract
Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.
Collapse
Affiliation(s)
- K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - M R Speicher
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Yao C, Su L, Shan J, Zhu C, Liu L, Liu C, Xu Y, Yang Z, Bian X, Shao J, Li J, Lai M, Shen J, Qian C. IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem Cells 2016; 34:820-31. [PMID: 26840943 DOI: 10.1002/stem.2320] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
Discovery of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) are two milestones in people exploring the nature of malignant tumor in recent decades. Although some studies have presented the potential connections between them, the link details, underneath their superficial correlation, are largely unknown. In this study, we identified a small subpopulation of NANOG-positive colorectal cancer (CRC) cells, and demonstrated that they exhibited characteristics of CSCs and EMT traits simultaneously. Furthermore, we found that NANOG was a core factor in regulating both of EMT and stemness in CRC cells, NANOG modulate EMT and metastasis by binding to Slug promoter and transcriptionally regulate Slug expression. For the first time, we demonstrated that NANOG was regulated by extracellular IGF signaling pathway via STAT3 phosphorylation in CRC. This coincides with that IGF receptor IGF-1R is often increasing expressed in malignant metastasis colon cancer. Taken together, our data define the crucial functions of IGF/STAT3/NANOG/Slug signaling axis in the progression of CRC by operating EMT and CSCs properties, which make them served as potential therapeutic targets for treatment of CRC.
Collapse
Affiliation(s)
- Chao Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuanlin Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianming Li
- Department of Pathology, Soochow University School of Medicine, Suzhou, China
| | - Maode Lai
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Ferrari-Amorotti G, Chiodoni C, Shen F, Cattelani S, Soliera AR, Manzotti G, Grisendi G, Dominici M, Rivasi F, Colombo MP, Fatatis A, Calabretta B. Suppression of invasion and metastasis of triple-negative breast cancer lines by pharmacological or genetic inhibition of slug activity. Neoplasia 2015; 16:1047-58. [PMID: 25499218 PMCID: PMC4557365 DOI: 10.1016/j.neo.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023] Open
Abstract
Most triple-negative breast cancers (TNBCs) exhibit gene expression patterns associated with epithelial-to-mesenchymal transition (EMT), a feature that correlates with a propensity for metastatic spread. Overexpression of the EMT regulator Slug is detected in basal and mesenchymal-type TNBCs and is associated with reduced E-cadherin expression and aggressive disease. The effects of Slug depend, in part, on the interaction of its N-terminal SNAG repressor domain with the chromatin-modifying protein lysine demethylase 1 (LSD1); thus, we investigated whether tranylcypromine [also known as trans-2-phenylcyclopropylamine hydrochloride (PCPA) or Parnate], an inhibitor of LSD1 that blocks its interaction with Slug, suppresses the migration, invasion, and metastatic spread of TNBC cell lines. We show here that PCPA treatment induces the expression of E-cadherin and other epithelial markers and markedly suppresses migration and invasion of TNBC cell lines MDA-MB-231 and BT-549. These effects were phenocopied by Slug or LSD1 silencing. In two models of orthotopic breast cancer, PCPA treatment reduced local tumor growth and the number of lung metastases. In mice injected directly in the blood circulation with MDA-MB-231 cells, PCPA treatment or Slug silencing markedly inhibited bone metastases but had no effect on lung infiltration. Thus, blocking Slug activity may suppress the metastatic spread of TNBC and, perhaps, specifically inhibit homing/colonization to the bone.
Collapse
Affiliation(s)
- Giovanna Ferrari-Amorotti
- Dipartimento di Medicina Diagnostica, Clinica a di Sanità Pubblica, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Fei Shen
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, USA
| | - Sara Cattelani
- Dipartimento di Medicina Diagnostica, Clinica a di Sanità Pubblica, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Rachele Soliera
- Dipartimento di Medicina Diagnostica, Clinica a di Sanità Pubblica, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Manzotti
- Dipartimento di Medicina Diagnostica, Clinica a di Sanità Pubblica, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Modena, Italy
| | - Massimo Dominici
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Modena, Italy
| | - Francesco Rivasi
- Dipartimento di Anatomia Patologica e Medicina Legale, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, USA; Department of Pathology, Drexel University, Philadelphia, PA, USA; Program in Biology of Prostate Cancer, Kimmel Cancer Center, Philadelphia, PA, USA
| | - Bruno Calabretta
- Dipartimento di Medicina Diagnostica, Clinica a di Sanità Pubblica, University of Modena and Reggio Emilia, Modena, Italy; Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
23
|
Lu L, Zeng H, Gu X, Ma W. Circulating tumor cell clusters-associated gene plakoglobin and breast cancer survival. Breast Cancer Res Treat 2015; 151:491-500. [PMID: 25957595 DOI: 10.1007/s10549-015-3416-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
24
|
Snider NT, Altshuler PJ, Omary MB. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015. [PMID: 25234227 DOI: 10.07/s00210-014-1046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA,
| | | | | |
Collapse
|
25
|
Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp Mol Med 2015; 47:e137. [PMID: 25633745 PMCID: PMC4314588 DOI: 10.1038/emm.2014.99] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Basal-type breast cancers are among the most aggressive and deadly breast cancer subtypes, displaying a high metastatic ability associated with mesenchymal features. However, the molecular mechanisms underlying the maintenance of mesenchymal phenotypes of basal-type breast cancer cells remain obscure. Here, we report that KRAS is a critical regulator for the maintenance of mesenchymal features in basal-type breast cancer cells. KRAS is preferentially activated in basal-type breast cancer cells as compared with luminal type. By loss and gain of KRAS, we found that KRAS is necessary and sufficient for the maintenance of mesenchymal phenotypes and metastatic ability through SLUG expression. Taken together, this study demonstrates that KRAS is a critical regulator for the metastatic behavior associated with mesenchymal features of breast cancer cells, implicating a novel therapeutic target for basal-type breast cancer.
Collapse
|
26
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
27
|
Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:189-97. [PMID: 25234227 DOI: 10.1007/s00210-014-1046-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
|
28
|
Kang YH, Shen CC, Yao YQ, Yu L, Cui XY, He Y, Yang JL, Gou LT. Implications of PPPDE1 expression in the distribution of plakoglobin and β-catenin in pancreatic ductal adenocarcinoma. Oncol Lett 2014; 8:1229-1233. [PMID: 25120694 PMCID: PMC4114641 DOI: 10.3892/ol.2014.2279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Human PPPDE peptidase domain-containing protein 1 (PPPDE1) is a recently identified protein; however, its exact functions remain unclear. In our previous study, the PPPDE1 protein was found to be decreased in certain cancer tissues. In the present study, a total of 96 pancreatic ductal carcinoma tissue samples and 31 normal tissues samples were assessed to investigate the distribution of plakoglobin and β-catenin under the conditions of various PPPDE1 expression levels by means of immunohistochemistry. Generally, the staining of PPPDE1 was strong in normal tissues, but weak in cancer tissues. Plakoglobin was mainly distributed along the membrane and cytoplasm border in normal cells, but was less evident in the membranes of cancer cells. In particular, a greater percentage of cells exhibited low membrane plakoglobin expression in cancer tissue with low PPPDE1 expression (PPPDE1-low cancer) compared with that in cancer tissue with high PPPDE1 expression (PPPDE1-high cancer). The distribution of β-catenin in normal tissues was similar to that of plakoglobin. However, β-catenin was peculiarly prone to invade nucleus in PPPDE1-low cancer compared with PPPDE1-high cancer. Our data suggested potential links between PPPDE1 expression and the distribution of plakoglobin and β-catenin in pancreatic ductal adenocarcinoma, providing insights into the role of PPPDE1 in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Huan Kang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cong-Cong Shen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Qin Yao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Yi Cui
- Department of Medical Oncology, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan 611130, P.R. China
| | - Yi He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Liang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lan-Tu Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Kim S, Yao J, Suyama K, Qian X, Qian BZ, Bandyopadhyay S, Loudig O, De Leon-Rodriguez C, Zhou ZN, Segall J, Macian F, Norton L, Hazan RB. Slug promotes survival during metastasis through suppression of Puma-mediated apoptosis. Cancer Res 2014; 74:3695-706. [PMID: 24830722 DOI: 10.1158/0008-5472.can-13-2591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor cells must overcome apoptosis to survive throughout metastatic dissemination and distal organ colonization. Here, we show in the Polyoma Middle T mammary tumor model that N-cadherin (Cdh2) expression causes Slug (Snai2) upregulation, which in turn promotes carcinoma cell survival. Slug was dramatically upregulated in metastases relative to primary tumors. Consistent with a role in metastasis, Slug knockdown in carcinoma cells suppressed lung colonization by decreasing cell survival at metastatic sites, but had no effect on tumor cell invasion or extravasation. In support of this idea, Slug inhibition by shRNA sensitized tumor cells to apoptosis by DNA damage, resulting in caspase-3 and PARP cleavage. The prosurvival effect of Slug was found to be caused by direct repression of the proapoptotic gene, Puma (Bbc3), by Slug. Consistent with a pivotal role for a Slug-Puma axis in metastasis, inhibition of Puma by RNA interference in Slug-knockdown cells rescued lung colonization, whereas Puma overexpression in control tumor cells suppressed lung metastasis. The survival function of the Slug-Puma axis was confirmed in human breast cancer cells, where Slug knockdown increased Puma expression and inhibited lung colonization. This study demonstrates a pivotal role for Slug in carcinoma cell survival, implying that disruption of the Slug-Puma axis may impinge on the survival of metastatic cells.
Collapse
Affiliation(s)
- Seaho Kim
- Authors' Affiliations: Departments of Pathology
| | - Jiahong Yao
- Authors' Affiliations: Departments of Pathology
| | | | - Xia Qian
- Authors' Affiliations: Departments of Pathology
| | | | | | | | | | - Zhen Ni Zhou
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx; and
| | - Jeffrey Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx; and
| | | | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | |
Collapse
|
30
|
Štajduhar E, Sedić M, Leniček T, Radulović P, Kerenji A, Krušlin B, Pavelić K, Kraljević Pavelić S. Expression of growth hormone receptor, plakoglobin and NEDD9 protein in association with tumour progression and metastasis in human breast cancer. Tumour Biol 2014; 35:6425-34. [PMID: 24676793 DOI: 10.1007/s13277-014-1827-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/05/2014] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths among female population worldwide. Metastases are the common cause of morbidity and mortality in breast cancer and can remain latent for several years after surgical removal of the primary tumour. Thus, the identification and functional characterisation of molecular factors that promote oncogenic signalling in mammary tumour development and progression could provide new entry points for designing targeted therapeutic strategies for metastatic breast cancer. In the present study, we investigated the expression of proteins involved in cell signalling (growth hormone receptor (GHR) and NEDD9) and cell-cell adhesion (plakoglobin) in epithelial and stromal compartments of primary ductal invasive breast carcinomas and their axillary lymph node metastases versus non-metastatic tumours. Obtained data revealed remarkable increase in the expression levels of GHR and NEDD9 proteins in both epithelial and stromal components of axillary lymph node metastases in comparison with those of non-metastatic tumours, suggesting that the expression of these two proteins may provide biomarkers for tumour aggressiveness.
Collapse
Affiliation(s)
- Emil Štajduhar
- Sestre Milosrdnice Clinical Hospital Center, Vinogradska 29, 10000, Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Aktary Z, Pasdar M. Plakoglobin represses SATB1 expression and decreases in vitro proliferation, migration and invasion. PLoS One 2013; 8:e78388. [PMID: 24260116 PMCID: PMC3832639 DOI: 10.1371/journal.pone.0078388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/18/2013] [Indexed: 01/16/2023] Open
Abstract
Plakoglobin (γ-catenin) is a homolog of β-catenin with dual adhesive and signaling functions. Plakoglobin participates in cell-cell adhesion as a component of the adherens junction and desmosomes whereas its signaling function is mediated by its interactions with various intracellular protein partners. To determine the role of plakoglobin during tumorigenesis and metastasis, we expressed plakoglobin in the human tongue squamous cell carcinoma (SCC9) cells and compared the mRNA profiles of parental SCC9 cells and their plakoglobin-expressing transfectants (SCC9-PG). We observed that the mRNA levels of SATB1, the oncogenic chromatin remodeling factor, were decreased approximately 3-fold in SCC9-PG cells compared to parental SCC9 cells. Here, we showed that plakoglobin decreased levels of SATB1 mRNA and protein in SCC9-PG cells and that plakoglobin and p53 associated with the SATB1 promoter. Plakoglobin expression also resulted in decreased SATB1 promoter activity. These results were confirmed following plakoglobin expression in the very low plakoglobin expressing and invasive mammary carcinoma cell line MDA-MB-231 cells (MDA-231-PG). In addition, knockdown of endogenous plakoglobin in the non-invasive mammary carcinoma MCF-7 cells (MCF-7-shPG) resulted in increased SATB1 mRNA and protein. Plakoglobin expression also resulted in increased mRNA and protein levels of the metastasis suppressor Nm23-H1, a SATB1 target gene. Furthermore, the levels of various SATB1 target genes involved in tumorigenesis and metastasis were altered in MCF-7-shPG cells relative to parental MCF-7 cells. Finally, plakoglobin expression resulted in decreased in vitro proliferation, migration and invasion in different carcinoma cell lines. Together with the results of our previous studies, the data suggests that plakoglobin suppresses tumorigenesis and metastasis through the regulation of genes involved in these processes.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
32
|
Aktary Z, Kulak S, Mackey J, Jahroudi N, Pasdar M. Plakoglobin interacts with the transcription factor p53 and regulates the expression of 14-3-3σ. J Cell Sci 2013; 126:3031-42. [PMID: 23687381 DOI: 10.1242/jcs.120642] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (γ-catenin), a constituent of the adherens junction and desmosomes, has signaling capabilities typically associated with tumor/metastasis suppression through mechanisms that remain undefined. To determine the role of plakoglobin during tumorigenesis and metastasis, we expressed plakoglobin in human tongue squamous cell carcinoma (SCC9) cells and compared the mRNA profiles of parental SCC9 cells and their plakoglobin-expressing transfectants (SCC9-PG). We detected several p53-target genes whose levels were altered upon plakoglobin expression. In this study, we identified the p53 regulated tumor suppressor 14-3-3σ as a direct plakoglobin-p53 target gene. Coimmunoprecipitation experiments revealed that plakoglobin and p53 interact, and chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that plakoglobin and p53 associate with the 14-3-3σ promoter. Furthermore, luciferase reporter assays showed that p53 transcriptional activity is increased in the presence of plakoglobin. Finally, knockdown of plakoglobin in MCF-7 cells followed by luciferase assays confirmed that p53 transcriptional activity is enhanced in the presence of plakoglobin. Our data suggest that plakoglobin regulates gene expression in conjunction with p53 and that plakoglobin may regulate p53 transcriptional activity, which may account, in part, for the tumor/metastasis suppressor activity of plakoglobin.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
33
|
Tamura D, Arao T, Nagai T, Kaneda H, Aomatsu K, Fujita Y, Matsumoto K, De Velasco MA, Kato H, Hayashi H, Yoshida S, Kimura H, Maniwa Y, Nishio W, Sakai Y, Ohbayashi C, Kotani Y, Nishimura Y, Nishio K. Slug increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells. Cancer Med 2013; 2:144-54. [PMID: 23634282 PMCID: PMC3639653 DOI: 10.1002/cam4.68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/12/2013] [Accepted: 01/22/2013] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Slug/SNAI2 (snail homolog 2) plays a key role in the induction of the epithelial mesenchymal transition in cancer cells; however, whether the overexpression of Slug mediates the malignant phenotype and alters drug sensitivity in lung cancer cells remains largely unclear. We investigated Slug focusing on its biological function and involvement in drug sensitivity in lung cancer cells. Stable Slug transfectants showed typical morphological changes compared with control cells. Slug overexpression did not change the cellular proliferations; however, migration activity and anchorage-independent growth activity with an antiapoptotic effect were increased. Interestingly, stable Slug overexpression increased drug sensitivity to tubulin-binding agents including vinorelbine, vincristine, and paclitaxel (5.8- to 8.9-fold increase) in several lung cancer cell lines but did not increase sensitivity to agents other than tubulin-binding agents. Real-time RT-PCR (polymerase chain reaction) and western blotting revealed that Slug overexpression downregulated the expression of βIII and βIVa-tubulin, which is considered to be a major factor determining sensitivity to tubulin-binding agents. A luciferase reporter assay confirmed that Slug suppressed the promoter activity of βIVa-tubulin at a transcriptional level. Slug overexpression enhanced tumor growth, whereas Slug overexpression increased drug sensitivity to vinorelbine with the downregulation of βIII and βIV-tubulin in vivo. Immunohistochemistry of Slug with clinical lung cancer samples showed that Slug overexpression tended to be involved in response to tubulin-binding agents. In conclusion, our data indicate that Slug mediates an aggressive phenotype including enhanced migration activity, anoikis suppression, and tumor growth, but increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells.
Collapse
Affiliation(s)
- Daisuke Tamura
- Department of Genome Biology, Kinki University Faculty of Medicine Osaka, Japan; Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|