1
|
Chen Y, van den Nieuwendijk AMC, Wu L, Moran E, Skoulikopoulou F, van Riet V, Overkleeft HS, Davies GJ, Armstrong Z. Molecular Basis for Inhibition of Heparanases and β-Glucuronidases by Siastatin B. J Am Chem Soc 2024; 146:125-133. [PMID: 38118176 PMCID: PMC10785800 DOI: 10.1021/jacs.3c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, β-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a β-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-β-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-β-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.
Collapse
Affiliation(s)
- Yurong Chen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | | | - Liang Wu
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Elisha Moran
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Foteini Skoulikopoulou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Vera van Riet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Hermen S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Zachary Armstrong
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| |
Collapse
|
2
|
Fernández-Murga ML, Gil-Ortiz F, Serrano-García L, Llombart-Cussac A. A New Paradigm in the Relationship between Gut Microbiota and Breast Cancer: β-glucuronidase Enzyme Identified as Potential Therapeutic Target. Pathogens 2023; 12:1086. [PMID: 37764894 PMCID: PMC10535898 DOI: 10.3390/pathogens12091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring malignancy and the second cancer-specific cause of mortality in women in developed countries. Over 70% of the total number of BCs are hormone receptor-positive (HR+), and elevated levels of circulating estrogen (E) in the blood have been shown to be a major risk factor for the development of HR+ BC. This is attributable to estrogen's contribution to increased cancer cell proliferation, stimulation of angiogenesis and metastasis, and resistance to therapy. The E metabolism-gut microbiome axis is functional, with subjacent individual variations in the levels of E. It is conceivable that the estrobolome (bacterial genes whose products metabolize E) may contribute to the risk of malignant neoplasms of hormonal origin, including BC, and may serve as a potential biomarker and target. It has been suggested that β-glucuronidase (GUS) enzymes of the intestinal microbiome participate in the strobolome. In addition, it has been proposed that bacterial GUS enzymes from the gastrointestinal tract participate in hormone BC. In this review, we discuss the latest knowledge about the role of the GUS enzyme in the pathogenesis of BC, focusing on (i) the microbiome and E metabolism; (ii) diet, estrobolome, and BC development; (iii) other activities of the bacterial GUS; and (iv) the new molecular targets for BC therapeutic application.
Collapse
Affiliation(s)
- M. Leonor Fernández-Murga
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | | | - Lucía Serrano-García
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | - Antonio Llombart-Cussac
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| |
Collapse
|
3
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
4
|
Phong NV, Zhao Y, Min BS, Yang SY, Kim JA. Inhibitory Activity of Bioactive Phloroglucinols from the Rhizomes of Dryopteris crassirhizoma on Escherichia coli β-Glucuronidase: Kinetic Analysis and Molecular Docking Studies. Metabolites 2022; 12:metabo12100938. [PMID: 36295840 PMCID: PMC9610990 DOI: 10.3390/metabo12100938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinols-one of the major secondary metabolites in Dryopteris crassirhizoma-exhibit various pharmacological effects, such as antiviral, antioxidant, and antidiabetic activities. This study evaluated 30 phloroglucinols isolated from the rhizomes of D. crassirhizoma for their inhibitory activity on β-glucuronidase via in vitro assays. Among them, dimeric phloroglucinols 13-15 moderately inhibited β-glucuronidase, and trimeric phloroglucinols 26-28 showed strong inhibitory effects, with IC50 values ranging from 5.6 to 8.0 μM. Enzyme kinetic analysis confirmed all six active compounds to be in a competitive mode of inhibition. Molecular docking simulations revealed the key binding interactions with the active site of β-glucuronidase protein and the binding mechanisms of these active metabolites. Our results suggest that the rhizomes of D. crassirhizoma and trimeric compounds 26-28 may serve as potential candidates for discovering and developing new β-glucuronidase inhibitors.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yan Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Byung Sun Min
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea
- Correspondence: (S.Y.Y.); (J.A.K.); Tel.: +82-33-738-7921 (S.Y.Y.); +82-53-950-8574 (J.A.K.)
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (S.Y.Y.); (J.A.K.); Tel.: +82-33-738-7921 (S.Y.Y.); +82-53-950-8574 (J.A.K.)
| |
Collapse
|
5
|
Yuan F, Yang Y, Zhou H, Quan J, Liu C, Wang Y, Zhang Y, Yu X. Heparanase in cancer progression: Structure, substrate recognition and therapeutic potential. Front Chem 2022; 10:926353. [PMID: 36157032 PMCID: PMC9500389 DOI: 10.3389/fchem.2022.926353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Yu
- *Correspondence: Yujing Zhang, ; Xing Yu,
| |
Collapse
|
6
|
de Boer C, Armstrong Z, Lit VAJ, Barash U, Ruijgrok G, Boyango I, Weitzenberg MM, Schröder SP, Sarris AJC, Meeuwenoord NJ, Bule P, Kayal Y, Ilan N, Codée JDC, Vlodavsky I, Overkleeft HS, Davies GJ, Wu L. Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo. Proc Natl Acad Sci U S A 2022; 119:e2203167119. [PMID: 35881786 PMCID: PMC9351465 DOI: 10.1073/pnas.2203167119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/22/2022] [Indexed: 01/30/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.
Collapse
Affiliation(s)
- Casper de Boer
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Zachary Armstrong
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Current address: Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Vincent A. J. Lit
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Uri Barash
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Gijs Ruijgrok
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ilanit Boyango
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Merle M. Weitzenberg
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sybrin P. Schröder
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alexi J. C. Sarris
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Nico J. Meeuwenoord
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Pedro Bule
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Current address: Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Yasmine Kayal
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- The Rosalind Franklin Institute, Harwell, OX11 0FA, UK
| |
Collapse
|
7
|
Li M, Xie L, Wang M, Lin Y, Zhong J, Zhang Y, Zeng J, Kong G, Xi P, Li H, Ma LJ, Jiang Z. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathog 2022; 18:e1010157. [PMID: 35512028 PMCID: PMC9113603 DOI: 10.1371/journal.ppat.1010157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. However, knowledge about pathogenesis of Foc is limited. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, an Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, milR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Banana Fusarium wilt.
Collapse
Affiliation(s)
- Minhui Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| | - Lifei Xie
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Meng Wang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yilian Lin
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Jiaqi Zhong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Bioinformatics section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Jing Zeng
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Guanghui Kong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Pinggen Xi
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Huaping Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (ML); (LJM); (ZJ)
| | - Zide Jiang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| |
Collapse
|
8
|
Huang H, Hou X, Xu R, Deng Z, Wang Y, Du G, Rao Y, Chen J, Kang Z. Structure and cleavage pattern of a hyaluronate 3-glycanohydrolase in the glycoside hydrolase 79 family. Carbohydr Polym 2022; 277:118838. [PMID: 34893255 DOI: 10.1016/j.carbpol.2021.118838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022]
Abstract
Hyaluronidases have attracted a great deal of interest in the field of medicine due to their fundamental roles in the breakdown of hyaluronan. However, little is known about the catalytic mechanism of the hyaluronate 3-glycanohydrolases. Here, we report the crystal structure and cleavage pattern of a leech hyaluronidase (LHyal), which hydrolyzes the β-1,3-glycosidic bonds of hyaluronan. LHyal exhibits the typical structural features of glycoside hydrolase 79 family but contains a variable 'exo-pocket' loop where basic residues R102 and K103 are the structural determinants of hyaluronan binding. Through analysis of the hydrolysis of even- and odd-numbered hyaluronan oligosaccharides, we demonstrate that hexasaccharide is the shortest natural substrate, which can be cleaved from both the reducing and non-reducing ends to release disaccharides, and pentasaccharides are the smallest fragments for recognition and hydrolysis. These observations provide new insights into the degradation of hyaluronan and the evolutionary relationships of the GH79 family enzymes.
Collapse
Affiliation(s)
- Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiaodong Hou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhiwei Deng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yijian Rao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Structural and biochemical basis of a marine bacterial glycoside hydrolase family 2 β-glycosidase with broad substrate specificity. Appl Environ Microbiol 2021; 88:e0222621. [PMID: 34818100 DOI: 10.1128/aem.02226-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uronic acids are commonly found in marine polysaccharides and increase structural complexity sanand intrinsic recalcitrance to enzymatic attack. The glycoside hydrolase family 2 (GH2) include proteins that target sugar conjugates with hexuronates and are involved in the catabolism and cycling of marine polysaccharides. Here, we reported a novel GH2, AqGalA from a marine algae-associated Bacteroidetes with broad-substrate specificity. Biochemical analyses revealed that AqGalA exhibits hydrolyzing activities against β-galacturonide, β-glucuronide, and β-galactopyranoside via retaining mechanisms. We solved the AqGalA crystal structure in complex with galacturonic acid (GalA) and showed (via mutagenesis) that charge characteristics at uronate-binding subsites controlled substrate selectivity for uronide hydrolysis. Additionally, conformational flexibility of the AqGalA active site pocket was proposed as a key component for broad substrate enzyme selectivity. Our AqGalA structural and functional data augments the current understanding of substrate recognition of GH2 enzymes and provided key insights into the bacterial use of uronic acid containing polysaccharides. IMPORTANCE The decomposition of algal glycans driven by marine bacterial communities represents one of the largest heterotrophic transformation of organic matter fueling marine food webs and global carbon cycling. However, our knowledge of the carbohydrate cycling is limited due to structural complexity of marine polysaccharides and the complicated enzymatic machinery of marine microbes. To degrade algal glycan, marine bacteria such as members of Bacteroidetes produce a complex repertoire of carbohydrate-active enzymes (CAZymes) matching the structural specificity of the different carbohydrates. In this study, we investigated an extracellular GH2 β-glycosidase, AqGalA from a marine Bacteroidetes to identify the key components responsible for glycuronides recognition and hydrolysis. The broad substrate specificity of AqGalA against glycosides with diverse stereochemical substitutions indicates its potential in processing complex marine polysaccharides. Our findings promote a better understanding of microbially-driven mechanisms of marine carbohydrate cycling.
Collapse
|
10
|
FAD-dependent C-glycoside-metabolizing enzymes in microorganisms: Screening, characterization, and crystal structure analysis. Proc Natl Acad Sci U S A 2021; 118:2106580118. [PMID: 34583991 DOI: 10.1073/pnas.2106580118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
C-glycosides have a unique structure, in which an anomeric carbon of a sugar is directly bonded to the carbon of an aglycone skeleton. One of the natural C-glycosides, carminic acid, is utilized by the food, cosmetic, and pharmaceutical industries, for a total of more than 200 tons/y worldwide. However, a metabolic pathway of carminic acid has never been identified. In this study, we isolated the previously unknown carminic acid-catabolizing microorganism and discovered a flavoenzyme "C-glycoside 3-oxidase" named CarA that catalyzes oxidation of the sugar moiety of carminic acid. A Basic Local Alignment Search Tool (BLAST) search demonstrated that CarA homologs were distributed in soil microorganisms but not intestinal ones. In addition to CarA, two CarA homologs were cloned and heterologously expressed, and their biochemical properties were determined. Furthermore, a crystal structure of one homolog was determined. Together with the biochemical analysis, the crystal structure and a mutagenesis analysis of CarA revealed the mechanisms underlying their substrate specificity and catalytic reaction. Our study suggests that CarA and its homologs play a crucial role in the metabolism of C-glycosides in nature.
Collapse
|
11
|
Wang P, Jia Y, Wu R, Chen Z, Yan R. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol 2021; 190:114566. [PMID: 33865833 DOI: 10.1016/j.bcp.2021.114566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial β-glucuronidase enzymes (BGUSs) are at the interface of host-microbial metabolic symbiosis, playing an important role in health and disease as well as medication outcomes (efficacy or toxicity) by deconjugating a large number of endogenous and exogenous glucuronides. In recent years, BGUSs inhibition has emerged as a new approach to manage diseases and medication therapy and attracted an increasing research interest. However, a growing body of evidence underlines great genetic diversity, functional promiscuity and varied inhibition propensity of BGUSs, which have posed big challenges to identifying BGUSs involved in a specific pathophysiological or pharmacological process and developing effective inhibition. In this article, we offered a general introduction of the function, in particular the physiological, pathological and pharmacological roles, of BGUSs and their taxonomic distribution in human gut microbiota, highlighting the structural features (active sites and adjacent loop structures) that affecting the protein-substrate (inhibitor) interactions. Recent advances in BGUSs-mediated deconjugation of drugs and carcinogens and the discovery and applications of BGUS inhibitors in management of medication therapy, typically, irinotecan-induced diarrhea and non-steroidal anti-inflammatory drugs (NSAIDs)-induced enteropathy, were also reviewed. At the end, we discussed the perspectives and the challenges of tailoring BGUS inhibition towards precision medicine.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zhiqiang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
12
|
Kondo T, Kichijo M, Nakaya M, Takenaka S, Arakawa T, Kotake T, Fushinobu S, Sakamoto T. Biochemical and structural characterization of a novel 4‐
O
‐α‐
l
‐rhamnosyl‐β‐
d
‐glucuronidase from
Fusarium oxysporum. FEBS J 2021; 288:4918-4938. [DOI: 10.1111/febs.15795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion Osaka Prefecture University Sakai Japan
- Department of Nutrition Otemae College of Nutrition and Confectionery Osaka Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation Osaka Prefecture University Habikino Japan
| | - Takatoshi Arakawa
- Department of Biotechnology The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering Saitama University Saitama Japan
| | - Shinya Fushinobu
- Department of Biotechnology The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| |
Collapse
|
13
|
Liu M, Yu J, Lv B, Hou Y, Liu X, Feng X, Li C. Improving the activity and thermostability of GH2 β-glucuronidases via domain reassembly. Biotechnol Bioeng 2021; 118:1962-1972. [PMID: 33559890 DOI: 10.1002/bit.27710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 11/07/2022]
Abstract
Glycoside hydrolase family 2 (GH2) enzymes are generally composed of three domains: TIM-barrel domain (TIM), immunoglobulin-like β-sandwich domain (ISD), and sugar-binding domain (SBD). The combination of these three domains yields multiple structural combinations with different properties. Theoretically, the drawbacks of a given GH2 fold may be circumvented by efficiently reassembling the three domains. However, very few successful cases have been reported. In this study, we used six GH2 β-glucuronidases (GUSs) from bacteria, fungi, or humans as model enzymes and constructed a series of mutants by reassembling the domains from different GUSs. The mutants PGUS-At, GUS-PAA, and GUS-PAP, with reassembled domains from fungal GUSs, showed improved expression levels, activity, and thermostability, respectively. Specifically, compared to the parental enzyme, the mutant PGUS-At displayed 3.8 times higher expression, the mutant GUS-PAA displayed 1.0 time higher catalytic efficiency (kcat /Km ), and the mutant GUS-PAP displayed 7.5 times higher thermostability at 65°C. Furthermore, two-hybrid mutants, GUS-AEA and GUS-PEP, were constructed with the ISD from a bacterial GUS and SBD and TIM domain from fungal GUSs. GUS-AEA and GUS-PEP showed 30.4% and 23.0% higher thermostability than GUS-PAP, respectively. Finally, molecular dynamics simulations were conducted to uncover the molecular reasons for the increased thermostability of the mutant.
Collapse
Affiliation(s)
- Mingzhu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Jing Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Yuhui Hou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Xinhe Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, PR China
| |
Collapse
|
14
|
Bharti S, Maurya RK, Venugopal U, Singh R, Akhtar MS, Krishnan MY. Rv1717 Is a Cell Wall - Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front Microbiol 2021; 11:611122. [PMID: 33584576 PMCID: PMC7873859 DOI: 10.3389/fmicb.2020.611122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding the function of conserved hypothetical protein (CHP)s expressed by a pathogen in the infected host can lead to better understanding of its pathogenesis. The present work describes the functional characterization of a CHP, Rv1717 of Mycobacterium tuberculosis (Mtb). Rv1717 has been previously reported to be upregulated in TB patient lungs. Rv1717 belongs to the cupin superfamily of functionally diverse proteins, several of them being carbohydrate handling proteins. Bioinformatic analysis of the amino acid sequence revealed similarity to glycosyl hydrolases. Enzymatic studies with recombinant Rv1717 purified from Escherichia coli showed that the protein is a β-D-galactosidase specific for pyranose form rather than the furanose form. We expressed the protein in Mycobacterium smegmatis (Msm), which lacks its ortholog. In MsmRv1717, the protein was found to localize to the cell wall (CW) with a preference to the poles. MsmRv1717 showed significant changes in colony morphology and cell surface properties. Most striking observation was its unusual Congo red colony morphotype, reduced ability to form biofilms, pellicles and autoagglutinate. Exogenous Rv1717 not only prevented biofilm formation in Msm, but also degraded preformed biofilms, suggesting that its substrate likely exists in the exopolysaccharides of the biofilm matrix. Presence of galactose in the extracellular polymeric substance (EPS) has not been reported before and hence we used the galactose-specific Wisteria floribunda lectin (WFL) to test the same. The lectin extensively bound to Msm and Mtb EPS, but not the bacterium per se. Purified Rv1717 also hydrolyzed exopolysaccharides extracted from Msm biofilm. Eventually, to decipher its role in Mtb, we downregulated its expression and demonstrate that the strain is unable to disperse from in vitro biofilms, unlike the wild type. Biofilms exposed to carbon starvation showed a sudden upregulation of Rv1717 transcripts supporting the potential role of Rv1717 in Mtb dispersing from a deteriorating biofilm.
Collapse
Affiliation(s)
- Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Radhika Singh
- Toxicology and Health Risk Assessment Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
15
|
Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In Silico Characterization and Phylogenetic Distribution of Extracellular Matrix Components in the Model Rhizobacteria Pseudomonas fluorescens F113 and Other Pseudomonads. Microorganisms 2020; 8:E1740. [PMID: 33171989 PMCID: PMC7716237 DOI: 10.3390/microorganisms8111740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Biofilms are complex structures that are crucial during host-bacteria interaction and colonization. Bacteria within biofilms are surrounded by an extracellular matrix (ECM) typically composed of proteins, polysaccharides, lipids, and DNA. Pseudomonads contain a variety of ECM components, some of which have been extensively characterized. However, neither the ECM composition of plant-associated pseudomonads nor their phylogenetic distribution within the genus has been so thoroughly studied. In this work, we use in silico methods to describe the ECM composition of Pseudomonas fluorescens F113, a plant growth-promoting rhizobacteria and model for rhizosphere colonization. These components include the polysaccharides alginate, poly-N-acetyl-glucosamine (PNAG) and levan; the adhesins LapA, MapA and PsmE; and the functional amyloids in Pseudomonas. Interestingly, we identified novel components: the Pseudomonas acidic polysaccharide (Pap), whose presence is limited within the genus; and a novel type of Flp/Tad pilus, partially different from the one described in P. aeruginosa. Furthermore, we explored the phylogenetic distribution of the most relevant ECM components in nearly 600 complete Pseudomonas genomes. Our analyses show that Pseudomonas populations contain a diverse set of gene/gene clusters potentially involved in the formation of their ECMs, showing certain commensal versus pathogen lifestyle specialization.
Collapse
Affiliation(s)
| | | | | | | | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain; (E.B.-R.); (D.G.-S.); (R.R.); (M.R.-N.)
| |
Collapse
|
16
|
Smith PJ, O'Neill MA, Backe J, York WS, Peña MJ, Urbanowicz BR. Analytical Techniques for Determining the Role of Domain of Unknown Function 579 Proteins in the Synthesis of O-Methylated Plant Polysaccharides. SLAS Technol 2020; 25:345-355. [PMID: 32204644 DOI: 10.1177/2472630320912692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix polysaccharides are a diverse group of structurally complex carbohydrates and account for a large portion of the biomass consumed as food or used to produce fuels and materials. Glucuronoxylan and arabinogalactan protein are matrix glycans that have sidechains decorated with 4-O-methyl glucuronosyl residues. Methylation is a key determinant of the physical properties of these wall glycopolymers and consequently affects both their biological function and ability to interact with other wall polymers. Indeed, there is increasing interest in determining the distribution and abundance of methyl-etherified polysaccharides in different plant species, tissues, and developmental stages. There is also a need to understand the mechanisms involved in their biosynthesis. Members of the Domain of Unknown Function (DUF) 579 family have been demonstrated to have a role in the biosynthesis of methyl-etherified glycans. Here we describe methods for the analysis of the 4-O-methyl glucuronic acid moieties that are present in sidechains of arabinogalactan proteins. These methods are then applied toward the analysis of loss-of-function mutants of two DUF579 family members that lack this modification in muro. We also present a procedure to assay DUF579 family members for enzymatic activity in vitro using acceptor oligosaccharides prepared from xylan of loss-of-function mutants. Our approach facilitates the characterization of enzymes that modify glycosyl residues during cell wall synthesis and the structures that they generate.
Collapse
Affiliation(s)
- Peter J Smith
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jason Backe
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| |
Collapse
|
17
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
18
|
Almandil NB, Taha M, Gollapalli M, Rahim F, Ibrahim M, Mosaddik A, Anouar EH. Indole bearing thiadiazole analogs: synthesis, β-glucuronidase inhibition and molecular docking study. BMC Chem 2019; 13:14. [PMID: 31384763 PMCID: PMC6661955 DOI: 10.1186/s13065-019-0522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/16/2019] [Indexed: 12/05/2022] Open
Abstract
Indole based thiadiazole derivatives (1-22) have synthesized, characterized by NMR and HREI-MS and evaluated for β-Glucuronidase inhibition. All compounds showed outstanding β-glucuronidase activity with IC50 values ranging between 0.5 ± 0.08 to 38.9 ± 0.8 µM when compared with standard d-saccharic acid 1,4 lactone (IC50 value of 48.1 ± 1.2 µM). The compound 6, a 2,3-dihydroxy analog was found the most potent among the series with IC50 value 0.5 ± 0.08 µM. Structure activity relationship has been established for all compounds. To confirm the binding interactions of these newly synthesized compounds, molecular docking study have been carried out which reveal that these compounds established stronger hydrogen bonding networks with active site residues.
Collapse
Affiliation(s)
- Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohammed Gollapalli
- Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Mohamed Ibrahim
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Ashik Mosaddik
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942 Saudi Arabia
| |
Collapse
|
19
|
Balbaa M, Awad D, Elaal AA, Mahsoub S, Moharram M, Sadek O, Rezki N, Aouad MR, Badawy METI, El Ashry ESH. Action of Thioglycosides of 1,2,4-Triazoles and Imidazoles on the Oxidative Stress and Glycosidases in Mice with Molecular Docking. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1573413715666181212150955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
,2,3-Triazoles and imidazoles are important five-membered heterocyclic
scaffolds due to their extensive biological activities. These products have been an area of growing
interest to many researchers around the world because of their enormous pharmaceutical scope.
Methods:
The in vivo and in vitro enzyme inhibition of some thioglycosides encompassing 1,2,4-
triazole N1, N2, and N3 and/or imidazole moieties N4, N5, and N6. The effect on the antioxidant
enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) was
investigated as well as their effect on α-glucosidase and β-glucuronidase. Molecular docking studies
were carried out to investigate the mode of the binding interaction of the compounds with α-
glucosidase and β -glucuronidase. In addition, quantitative structure-activity relationship (QSAR)
investigation was applied to find out the correlation between toxicity and physicochemical properties.
Results:
The decrease of the antioxidant status was revealed by the in vivo effect of the tested compounds.
Furthermore, the in vivo and in vitro inhibitory effects of the tested compounds were clearly
pronounced on α-glucosidase, but not β-glucuronidase. The IC50 and Ki values revealed that the thioglycoside
- based 1,2,4-triazole N3 possesses a high inhibitory action. In addition, the in vitro studies
demonstrated that the whole tested 1,2,4-triazole are potent inhibitors with a Ki magnitude of 10-6
and exhibited a competitive type inhibition. On the other hand, the thioglycosides - based imidazole
ring showed an antioxidant activity and exerted a slight in vivo stimulation of α-glucosidase and β-
glucuronidase. Molecular docking proved that the compounds exhibited binding affinity with the
active sites of α -glucosidase and β-glucuronidase (docking score ranged from -2.320 to -4.370
kcal/mol). Furthermore, QSAR study revealed that the HBD and RB were found to have an overall
significant correlation with the toxicity.
Conclusion:
These data suggest that the inhibition of α-glucosidase is accompanied by an oxidative
stress action.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmad Abd Elaal
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shimaa Mahsoub
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mayssaa Moharram
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Omayma Sadek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah AlMunawarah 30002, Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah AlMunawarah 30002, Saudi Arabia
| | - Mohamed El-Taher Ibrahim Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
20
|
A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- O-Mono-β-d-Glucuronide. Appl Environ Microbiol 2018; 84:AEM.00755-18. [PMID: 30054355 DOI: 10.1128/aem.00755-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which possesses a higher sweetness and stronger pharmacological activity than those of glycyrrhizin (GL), can be obtained by removal of the distal glucuronic acid (GlcA) from GL. In this study, we isolated a β-glucuronidase (TpGUS79A) from the filamentous fungus Talaromyces pinophilus Li-93 that can specifically and precisely convert GL to GAMG without the formation of the by-product glycyrrhetinic acid (GA) from the further hydrolysis of GAMG. First, TpGUS79A was purified and identified through matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF-TOF MS) and deglycosylation, indicating that TpGUS79A is a highly N-glycosylated monomeric protein with a molecular mass of around 85 kDa, including around 25 kDa of glycan moiety. The gene for TpGUS79A was then cloned and verified by heterologous expression in Pichia pastoris TpGUS79A belonged to glycoside hydrolase family 79 (GH79) but shared low amino acid sequence identity (<35%) with the available GH79 GUS enzymes. TpGUS79A had strict specificity toward the glycan moiety but poor specificity toward the aglycone moiety. Interestingly, TpGUS79A recognized and hydrolyzed the distal glucuronic bond of GL but could not cleave the glucuronic bond in GAMG. TpGUS79A showed a much higher catalytic efficiency on GL (kcat/Km of 11.14 mM-1 s-1) than on the artificial substrate pNP β-glucopyranosiduronic acid (kcat/Km of 0.01 mM-1 s-1), which is different from the case for most GUSs. Homology modeling, substrate docking, and sequence alignment were employed to identify the key residues for substrate recognition. Finally, a fed-batch fermentation in a 150-liter fermentor was established to prepare GAMG through GL hydrolysis by T. pinophilus Li-93. Therefore, TpGUS79A is potentially a powerful biocatalyst for environmentally friendly and cost-effective production of GAMG.IMPORTANCE Compared to chemical methods, the biotransformation of glycyrrhizin (GL) into glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which has a higher sweetness and stronger pharmacological activity than those of GL, via catalysis by β-glucuronidase is an environmentally friendly approach due to the mild reaction conditions and the high yield of GAMG. However, currently available GUSs show low substrate specificity toward GL and further hydrolyze GAMG to glycyrrhetinic acid (GA) as a by-product, increasing the difficulty of subsequent separation and purification. In the present study, we succeeded in isolating a novel β-glucuronidase (named TpGUS79A) from Talaromyces pinophilus Li-93 that specifically hydrolyzes GL to GAMG without the formation of GA. TpGUS79A also shows higher activity on GL than those of the previously characterized GUSs. Moreover, the gene for TpGUS79A was cloned and its function verified by heterologous expression in P. pastoris Therefore, TpGUS79A can serve as a powerful biocatalyst for the cost-effective production of GAMG through GL transformation.
Collapse
|
21
|
Increased activity of β -glucuronidase variants produced by site-directed mutagenesis. Enzyme Microb Technol 2018; 109:20-24. [DOI: 10.1016/j.enzmictec.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
|
22
|
Lv B, Sun H, Huang S, Feng X, Jiang T, Li C. Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins. J Biol Chem 2017; 293:433-443. [PMID: 29146597 DOI: 10.1074/jbc.m117.801910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/06/2017] [Indexed: 01/20/2023] Open
Abstract
Glycoside hydrolases (GHs) have attracted special attention in research aimed at modifying natural products by partial removal of sugar moieties to manipulate their solubility and efficacy. However, these modifications are challenging to control because the low substrate specificity of most GHs often generates undesired by-products. We previously identified a GH2-type fungal β-glucuronidase from Aspergillus oryzae (PGUS) exhibiting promiscuous substrate specificity in hydrolysis of triterpenoid saponins. Here, we present the PGUS structure, representing the first structure of a fungal β-glucuronidase, and that of an inactive PGUS mutant in complex with the native substrate glycyrrhetic acid 3-O-mono-β-glucuronide (GAMG). PGUS displayed a homotetramer structure with each monomer comprising three distinct domains: a sugar-binding, an immunoglobulin-like β-sandwich, and a TIM barrel domain. Two catalytic residues, Glu414 and Glu505, acted as acid/base and nucleophile, respectively. Structural and mutational analyses indicated that the GAMG glycan moiety is recognized by polar interactions with nine residues (Asp162, His332, Asp414, Tyr469, Tyr473, Asp505, Arg563, Asn567, and Lys569) and that the aglycone moiety is recognized by aromatic stacking and by a π interaction with the four aromatic residues Tyr469, Phe470, Trp472, and Tyr473 Finally, structure-guided mutagenesis to precisely manipulate PGUS substrate specificity in the biotransformation of glycyrrhizin into GAMG revealed that two amino acids, Ala365 and Arg563, are critical for substrate specificity. Moreover, we obtained several mutants with dramatically improved GAMG yield (>95%). Structural analysis suggested that modulating the interaction of β-glucuronidase simultaneously toward glycan and aglycone moieties is critical for tuning its substrate specificity toward triterpenoid saponins.
Collapse
Affiliation(s)
- Bo Lv
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Hanli Sun
- Institute of Biophysics, Chinese Academy of Science, 100101 Beijing, China
| | - Shen Huang
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Xudong Feng
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Tao Jiang
- Institute of Biophysics, Chinese Academy of Science, 100101 Beijing, China
| | - Chun Li
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| |
Collapse
|
23
|
Hassan AS, Houston K, Lahnstein J, Shirley N, Schwerdt JG, Gidley MJ, Waugh R, Little A, Burton RA. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS One 2017; 12:e0182537. [PMID: 28771585 PMCID: PMC5542645 DOI: 10.1371/journal.pone.0182537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.
Collapse
Affiliation(s)
- Ali Saleh Hassan
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Jelle Lahnstein
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Invergowrie, Dundee, Scotland
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Rachel A. Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
24
|
Imaizumi C, Tomatsu H, Kitazawa K, Yoshimi Y, Shibano S, Kikuchi K, Yamaguchi M, Kaneko S, Tsumuraya Y, Kotake T. Heterologous expression and characterization of an Arabidopsis β-l-arabinopyranosidase and α-d-galactosidases acting on β-l-arabinopyranosyl residues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4651-4661. [PMID: 28981776 PMCID: PMC5853685 DOI: 10.1093/jxb/erx279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
The major plant sugar l-arabinose (l-Ara) has two different ring forms, l-arabinofuranose (l-Araf) and l-arabinopyranose (l-Arap). Although l-Ara mainly appears in the form of α-l-Araf residues in cell wall components, such as pectic α-1,3:1,5-arabinan, arabinoxylan, and arabinogalactan-proteins (AGPs), lesser amounts of it can also be found as β-l-Arap residues of AGPs. Even though AGPs are known to be rapidly metabolized, the enzymes acting on the β-l-Arap residues remain to be identified. In the present study, four enzymes, which we call β-l-ARAPASE (APSE) and α-GALACTOSIDASE 1 (AGAL1), AGAL2, and AGAL3, are identified as those enzymes that are likely to be responsible for the hydrolysis of the β-l-Arap residues in Arabidopsis thaliana. An Arabidopsis apse-1 mutant showed significant reduction in β-l-arabinopyranosidase activity, and an apse-1 agal3-1 double-mutant exhibited even less activity. The apse-1 and the double-mutants both had more β-l-Arap residues in the cell walls than wild-type plants. Recombinant APSE expressed in the yeast Pichia pastoris specifically hydrolyzed β-l-Arap residues and released l-Ara from gum arabic and larch arabinogalactan. The recombinant AGAL3 also showed weak β-l-arabinopyranosidase activity beside its strong α-galactosidase activity. It appears that the β-l-Arap residues of AGPs are hydrolysed mainly by APSE and partially by AGALs in Arabidopsis.
Collapse
Affiliation(s)
- Chiemi Imaizumi
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Harumi Tomatsu
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Kiminari Kitazawa
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Yoshihisa Yoshimi
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Seiji Shibano
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Kaoru Kikuchi
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Satoshi Kaneko
- Faculty of Agriculture, University of the Ryukyus, Senbaru, Nishihara, Okinawa, Japan
| | - Yoichi Tsumuraya
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
- Correspondence:
| |
Collapse
|
25
|
Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, Wang J, Nie L, Tong L, Shen A, Zheng M, Huang M, Tan M, Liu H, Huang X, Ding J, Geng M. Aspirin Inhibits Cancer Metastasis and Angiogenesis via Targeting Heparanase. Clin Cancer Res 2017; 23:6267-6278. [PMID: 28710312 DOI: 10.1158/1078-0432.ccr-17-0242] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/26/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Recent epidemiological and clinical studies have suggested the benefit of aspirin for patients with cancer, which inspired increasing efforts to demonstrate the anticancer ability of aspirin and reveal the molecular mechanisms behind. Nevertheless, the anticancer activity and related mechanisms of aspirin remain largely unknown. This study aimed to confirm this observation, and more importantly, to investigate the potential target contributed to the anticancer of aspirin.Experimental Design: A homogeneous time-resolved fluorescence (HTRF) assay was used to examine the impact of aspirin on heparanase. Streptavidin pull-down, surface plasmon resonance (SPR) assay, and molecular docking were performed to identify heparanase as an aspirin-binding protein. Transwell, rat aortic rings, and chicken chorioallantoic membrane model were used to evaluate the antimetastasis and anti-angiogenesis effects of aspirin, and these phenotypes were tested in a B16F10 metastatic model, MDA-MB-231 metastatic model, and MDA-MB-435 xenograft model.Results: This study identified heparanase, an oncogenic extracellular matrix enzyme involved in cancer metastasis and angiogenesis, as a potential target of aspirin. We had discovered that aspirin directly binds to Glu225 region of heparanase and inhibits the enzymatic activity. Aspirin impeded tumor metastasis, angiogenesis, and growth in heparanase-dependent manner.Conclusions: In summary, this study has illustrated heparanase as a target of aspirin for the first time. It provides insights for a better understanding of the mechanisms of aspirin in anticancer effects, and offers a direction for the development of small-molecule inhibitors of heparanase. Clin Cancer Res; 23(20); 6267-78. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoyang Dai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qiuming Pan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Danni Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yuan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Litong Nie
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Linjiang Tong
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Aijun Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Minjia Tan
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| |
Collapse
|
26
|
Wu L, Jiang J, Jin Y, Kallemeijn WW, Kuo CL, Artola M, Dai W, van Elk C, van Eijk M, van der Marel GA, Codée JDC, Florea BI, Aerts JMFG, Overkleeft HS, Davies GJ. Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat Chem Biol 2017; 13:867-873. [PMID: 28581485 DOI: 10.1038/nchembio.2395] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
Abstract
Humans express at least two distinct β-glucuronidase enzymes that are involved in disease: exo-acting β-glucuronidase (GUSB), whose deficiency gives rise to mucopolysaccharidosis type VII, and endo-acting heparanase (HPSE), whose overexpression is implicated in inflammation and cancers. The medical importance of these enzymes necessitates reliable methods to assay their activities in tissues. Herein, we present a set of β-glucuronidase-specific activity-based probes (ABPs) that allow rapid and quantitative visualization of GUSB and HPSE in biological samples, providing a powerful tool for dissecting their activities in normal and disease states. Unexpectedly, we find that the supposedly inactive HPSE proenzyme proHPSE is also labeled by our ABPs, leading to surprising insights regarding structural relationships between proHPSE, mature HPSE, and their bacterial homologs. Our results demonstrate the application of β-glucuronidase ABPs in tracking pathologically relevant enzymes and provide a case study of how ABP-driven approaches can lead to discovery of unanticipated structural and biochemical functionality.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Jianbing Jiang
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yi Jin
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Wouter W Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Marta Artola
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Wei Dai
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Cas van Elk
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jeroen D C Codée
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herman S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| |
Collapse
|
27
|
Feng X, Tang H, Han B, Lv B, Li C. Enhancing the Thermostability of β-Glucuronidase by Rationally Redesigning the Catalytic Domain Based on Sequence Alignment Strategy. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xudong Feng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Heng Tang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Beijia Han
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Bo Lv
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
28
|
Pala D, Rivara S, Mor M, Milazzo FM, Roscilli G, Pavoni E, Giannini G. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology 2016; 26:640-54. [PMID: 26762172 PMCID: PMC4847616 DOI: 10.1093/glycob/cww003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022] Open
Abstract
Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules.
Collapse
Affiliation(s)
- Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Ferdinando Maria Milazzo
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| | | | | | - Giuseppe Giannini
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| |
Collapse
|
29
|
Wu L, Viola CM, Brzozowski AM, Davies GJ. Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 2015; 22:1016-22. [PMID: 26575439 PMCID: PMC5008439 DOI: 10.1038/nsmb.3136] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan that forms a key component of the extracellular matrix (ECM). Breakdown of HS is carried out by heparanase (HPSE), an endo-β-glucuronidase of the glycoside hydrolase 79 (GH79) family. Overexpression of HPSE results in breakdown of extracellular HS and release of stored growth factors and hence is strongly linked to cancer metastasis. Here we present crystal structures of human HPSE at 1.6-Å to 1.9-Å resolution that reveal how an endo-acting binding cleft is exposed by proteolytic activation of latent proHPSE. We used oligosaccharide complexes to map the substrate-binding and sulfate-recognition motifs. These data shed light on the structure and interactions of a key enzyme involved in ECM maintenance and provide a starting point for the design of HPSE inhibitors for use as biochemical tools and anticancer therapeutics.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, University of York, York, UK
| | | | | | | |
Collapse
|
30
|
Functional and structural characterization of a heparanase. Nat Chem Biol 2015; 11:955-7. [DOI: 10.1038/nchembio.1956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/09/2015] [Indexed: 01/24/2023]
|
31
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Garron ML, Cygler M. Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol 2014; 28:87-95. [PMID: 25156747 DOI: 10.1016/j.sbi.2014.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.
Collapse
Affiliation(s)
- Marie-Line Garron
- Aix-Marseille University, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
33
|
Characterization of an α-L-Rhamnosidase fromStreptomyces avermitilis. Biosci Biotechnol Biochem 2014; 77:213-6. [DOI: 10.1271/bbb.120735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Jin P, Kang Z, Zhang N, Du G, Chen J. High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep 2014; 4:4471. [PMID: 24667183 PMCID: PMC3966032 DOI: 10.1038/srep04471] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/10/2014] [Indexed: 11/25/2022] Open
Abstract
Hyaluronidases (HAases), particularly leech HAases, have attracted intense attention due to their broad applications in medical treatments and great potential for the enzymatic production of hyaluronan oligosaccharides. However, little is known about this third interesting family of HAases. Here, we applied the random amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach to identify the first leech HAase-encoding gene. By combining protein engineering and high-density culture, we achieved high-level production (8.42 × 105 U ml−1) in the yeast Pichia pastoris secretory expression system. Compared with the commercial bovine testicular HAase, the recombinant leech HAase exhibited superior enzymatic properties. Furthermore, analysis of the hydrolytic process suggested that this novel enzyme adopts a nonprocessive endolytic mode, yielding a narrow-spectrum of specific HA oligosaccharides with different incubation times. Large-scale production of this novel leech HAase will not only greatly promote medical applications but also facilitate the enzymatic production of specific HA oligosaccharides.
Collapse
Affiliation(s)
- Peng Jin
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen Kang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Na Zhang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Jian Chen
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| |
Collapse
|
35
|
Synthesis of a pseudo-disaccharide library and its application to the characterisation of the heparanase catalytic site. PLoS One 2013; 8:e82111. [PMID: 24260588 PMCID: PMC3832595 DOI: 10.1371/journal.pone.0082111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/19/2013] [Indexed: 12/15/2022] Open
Abstract
A novel methodology is described for the efficient and divergent synthesis of pseudodisaccharides, molecules comprising of amino carbasugar analogues linked to natural sugars. The methodology is general and enables the introduction of diversity both at the carbasugar and the natural sugar components of the pseudodisaccharides. Using this approach, a series of pseudodisaccharides are synthesised that mimic the repeating backbone unit of heparan sulfate, and are tested for inhibition of heparanase, a disease-relevant enzyme that hydrolyses heparan sulfate. A new homology model of human heparanase is described based on a family 79 β-glucuronidase. This model is used to postulate a computational rationale for the observed activity of the different pseudodisaccharides and provide valuable information that informs the design of potential inhibitors of this enzyme.
Collapse
|
36
|
Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships. Curr Opin Struct Biol 2013; 23:652-9. [DOI: 10.1016/j.sbi.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
|