1
|
Leveraro S, D'Accolti M, Marzola E, Caselli E, Guerrini R, Rowinska-Zyrek M, Remelli M, Bellotti D. Positively charged residues play a significant role in enhancing the antibacterial activity of calcitermin. J Inorg Biochem 2025; 262:112761. [PMID: 39427590 DOI: 10.1016/j.jinorgbio.2024.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A systematic study on the human antimicrobial peptide calcitermin (VAIALKAAHYHTHKE) and its carefully designed derivatives was undertaken to verify the impact of divalent copper and zinc ions on the stability, coordination and antimicrobial activity of the formed complexes. In this work we investigate the calcitermin mutants where the alanine in position 7 and 8 is substituted with an arginine residue, with the aim of enhancing the antibacterial activity. Additionally, the analogue where alanine in position 7 is replaced with a histidine is considered, to obtain a chelating sequence with four histidines in alternate position; the aim of this change was to increase the cationic properties of the peptide under acidic conditions and possibly enhance its binding ability towards the metal ions. Through a comprehensive analytical approach involving potentiometric titrations, mass spectrometry, UV-Vis spectrophotometry, NMR and circular dichroism, we delved into the formation equilibria and coordination chemistry of the formed copper(II) and zinc(II) complexes. Antimicrobial assays are also performed to assess the bioactivity of the compounds against a broad spectrum of microorganisms, revealing the pivotal role of positively charged residues in enhancing the antibacterial activity of calcitermin. The obtained results serve as an important stepping stone towards the development of novel metal-based antimicrobial agents.
Collapse
Affiliation(s)
- Silvia Leveraro
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy
| | | | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy
| | - Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
2
|
Athira PP, Anooja VV, Anju MV, Archana K, Neelima S, Muhammed Musthafa S, Bright Singh IS, Philip R. Antibacterial Efficacy and Mechanisms of Action of a Novel Beta-Defensin from Snakehead Murrel, Channa striata. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10307-2. [PMID: 38963507 DOI: 10.1007/s12602-024-10307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Beta-defensins, identified from fishes, constitute a crucial category of antimicrobial peptides important in combating bacterial fish pathogens. The present investigation centers on the molecular and functional characterization of CsDef, a 63-amino acid beta-defensin antimicrobial peptide derived from snakehead murrel (Channa striata). The physicochemical attributes of CsDef align with the distinctive characteristics observed in AMPs. CsDef was recombinantly produced, and the recombinant peptide, rCsDef, exhibited notable antibacterial efficacy against bacterial fish pathogens with an MIC of 16 μM for V. proteolyticus. A. hydrophila exhibited 91% inhibition, E. tarda 92%, and V. harveyi 53% at 32 μM of rCsDef. The rCsDef exhibited a multifaceted mechanism of action against bacteria, i.e., through membrane depolarization, membrane permeabilization, and generation of ROS. The rCsDef was non-hemolytic to hRBCs and non-cytotoxic to normal mammalian cell line CHO-K1. However, it exhibited anticancer properties in MCF-7. rCsDef demonstrated notable stability with respect to pH, temperature, salt, metal ions, and proteases. These findings suggest it is a potential candidate molecule for prospective applications in aquaculture.
Collapse
Affiliation(s)
- P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
3
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores. J Am Chem Soc 2023; 145:26095-26105. [PMID: 37989570 DOI: 10.1021/jacs.3c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Carratalá JV, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Design strategies for positively charged endolysins: Insights into Artilysin development. Biotechnol Adv 2023; 69:108250. [PMID: 37678419 DOI: 10.1016/j.biotechadv.2023.108250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
5
|
Agrillo B, Porritiello A, Gratino L, Balestrieri M, Proroga YT, Mancusi A, Cozzi L, Vicenza T, Dardano P, Miranda B, Escribá PV, Gogliettino M, Palmieri G. Antimicrobial activity, membrane interaction and structural features of short arginine-rich antimicrobial peptides. Front Microbiol 2023; 14:1244325. [PMID: 37869668 PMCID: PMC10585156 DOI: 10.3389/fmicb.2023.1244325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its β-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells. To further elucidate the influence of a lysine-to-arginine replacement on RiLK1 conformational properties, antimicrobial activity and peptide-liposome interaction, a new RiLK1-derivative, named RiLK3, in which the lysine is replaced with an arginine residue, was projected and characterised in comparison with its parental compound. The results evidenced that lysine-to-arginine mutation not only did not assure an improvement in the antimicrobial potency of RiLK1 in terms of bactericidal, virucidal and fungicidal activities, but rather it was completely abolished against the hepatitis A virus. Therefore, RiLK1 exhibited a wide range of antimicrobial activity like other cationic peptides, although the exact mechanisms of action are not completely understood. Moreover, tryptophan fluorescence measurements confirmed that RiLK3 bound to negatively charged lipid vesicles with an affinity lower than that of RiLK1, although no substantial differences from the structural and self-assembled point of view were evidenced. Therefore, our findings imply that antimicrobial efficacy and selectivity are affected by several complex and interrelated factors related to substitution of lysine with arginine, such as their relative proportion and position. In this context, this study could provide a better rationalisation for the optimization of antimicrobial peptide sequences, paving the way for the development of novel AMPs with broad applications.
Collapse
Affiliation(s)
| | - Alessandra Porritiello
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Lorena Gratino
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Marco Balestrieri
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Yolande Therese Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Principia Dardano
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Bruno Miranda
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma, Spain
- Laminar Pharmaceuticals, Palma, Spain
| | - Marta Gogliettino
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Gianna Palmieri
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
- Materias S.R.L., Naples, Italy
| |
Collapse
|
6
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How cell penetrating peptides behave differently from pore forming peptides: structure and stability of induced transmembrane pores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550729. [PMID: 37546874 PMCID: PMC10402029 DOI: 10.1101/2023.07.26.550729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Peptide induced trans-membrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that whereas AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
|
7
|
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Infect Immun 2023; 91:e0036122. [PMID: 36472443 PMCID: PMC9872612 DOI: 10.1128/iai.00361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded β-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two β1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.
Collapse
|
8
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
9
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
10
|
Influence of lipid bilayer composition on the activity of antimicrobial quaternary ammonium ionenes, the interplay of intrinsic lipid curvature and polymer hydrophobicity, the role of cardiolipin. Colloids Surf B Biointerfaces 2021; 207:112016. [PMID: 34364250 DOI: 10.1016/j.colsurfb.2021.112016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Incorporation of hydrophobic component into amphiphilic polycations structure is frequently accompanied by an increase of antimicrobial activity. There is, however, a group of relatively hydrophilic polycations containing quaternary ammonium moieties along mainchain, ionenes, which also display strong antimicrobial and limited hemolytic properties. In this work, an influence of a hydrophobic side group length on antimicrobial mechanism of action is investigated in a series of novel amphiphilic ionenes. High antimicrobial activity was found by determination of minimum inhibitory concentration (MIC) and minimum bactericidal, and fungicidal concentration (MBC and MFC) in both growth media and a buffer. Biocompatibility was estimated by hemolytic and mammalian cells viability assays. Mechanistic studies were performed using large unilamellar vesicles (LUVs) with different lipid composition, as simplified models of cell membranes. The investigated ionenes are potent and selective antimicrobial molecules displaying a decrease of antimicrobial activity correlated with increase of hydrophobicity. Studies using LUVs revealed that the cardiolipin is an essential component responsible for the lipid bilayer permeabilization by investigated ionens. In contrast to relatively hydrophilic ionenes, more hydrophobic polymers showed an ability to stabilize membranes composed of lipids with negative spontaneous curvature in a certain range of polymer to lipid ratio. The results substantially contribute to the understanding of antimicrobial activity of the investigated class of polymers.
Collapse
|
11
|
Neelima S, Archana K, Athira PP, Anju MV, Anooja VV, Bright Singh IS, Philip R. Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836). J Genet Eng Biotechnol 2021; 19:71. [PMID: 33978838 PMCID: PMC8116387 DOI: 10.1186/s43141-021-00175-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Background The concern regarding a post-antibiotic era with increasing drug resistance by pathogens imposes the need to discover alternatives for existing antibiotics. Antimicrobial peptides (AMPs) with their versatile therapeutic properties are a group of promising molecules with curative potentials. These evolutionarily conserved molecules play important roles in the innate immune system of several organisms. The β-defensins are a group of cysteine rich cationic antimicrobial peptides that play an important role in the innate immune system by their antimicrobial activity against the invading pathogens. The present study deals with a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger. Total RNA was isolated from the gills, cDNA was synthesized and the β-defensin isoform obtained by polymerase chain reaction was cloned and subjected to structural and functional characterization in silico. Results A β-defensin isoform could be detected from the gill mRNA of red-toothed trigger fish, Odonus niger. The cDNA encoded a 63 amino acid peptide, β-defensin, with a 20 amino acid signal sequence followed by 43 amino acid cationic mature peptide (On-Def) having a molecular weight of 5.214 kDa and theoretical pI of 8.89. On-Def possessed six highly conserved cysteine residues forming disulfide bonds between C1–C5, C2–C4, and C3–C6, typical of β-defensins. An anionic pro-region was observed prior to the β-defensin domain within the mature peptide. Clustal alignment and phylogenetic analyses revealed On-Def as a group 2 β-defensin. Furthermore, it shared some structural similarities and functional motifs with β-defensins from other organisms. On-Def was predicted to be non-hemolytic with anti-bacterial, anti-viral, anti-fungal, anti-cancer, and immunomodulatory potential. Conclusion On-Def is the first report of a β-defensin from the red-toothed trigger fish, Odonus niger. The antimicrobial profile showed the potential for further studies as a suitable candidate for antimicrobial peptide therapeutics.
Collapse
Affiliation(s)
- S Neelima
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - P P Athira
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India.
| |
Collapse
|
12
|
Yu W, Ning N, Xue Y, Huang Y, Guo F, Li T, Yang B, Luo D, Sun Y, Li Z, Wang J, He Z, Cheng S, Zhang X, Wang H. A Chimeric Cationic Peptide Composed of Human β-Defensin 3 and Human β-Defensin 4 Exhibits Improved Antibacterial Activity and Salt Resistance. Front Microbiol 2021; 12:663151. [PMID: 34025617 PMCID: PMC8137984 DOI: 10.3389/fmicb.2021.663151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Human beta-defensins (hBDs) play an important role in the host defense against various microbes, showing different levels of antibacterial activity and salt resistance in vitro. It is of interest to investigate whether can chimeric hBD analogs enhanced antibacterial activity and salt resistance. In this study, we designed a chimeric human defensin, named H4, by combining sequences of human beta-defensin-3 (hBD-3) and human beta-defensin-4 (hBD-4), then evaluated its antibacterial activity, salt resistance, and cytotoxic effects. The result showed that the antibacterial activity of H4 against most tested strains, including Klebsiella pneumonia, Enterococcus faecalis, Staphyloccocus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumannii was significantly improved compared to that of hBD-3 and hBD-4. Notably, H4 exhibited significantly better antibacterial activity against multidrug resistant isolate A. baumannii MDR-ZJ06 than commonly used antibiotics. Chimeric H4 still showed more than 80% antibacterial activity at high salt concentration (150 μM), which proves its good salt tolerance. The cytotoxic effect assay showed that the toxicity of H4 to Hela, Vero, A549 cells and erythrocytes at a low dose (<10 μg/ml) was similar to that of hBD-3 and hBD-4. In conclusion, given its broad spectrum of antibacterial activity and high salt resistance, chimeric H4 could serve as a promising template for new therapeutic antimicrobial agents.
Collapse
Affiliation(s)
- Wenjing Yu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Xue
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Ludong University, Yantai, China
| | - Yanyu Huang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Feng Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Boning Yang
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yakun Sun
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiwei Cheng
- College of Life Science, Ludong University, Yantai, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
13
|
Nikolenko VN, Oganesyan MV, Sankova MV, Bulygin KV, Vovkogon AD, Rizaeva NA, Sinelnikov MY. Paneth cells: Maintaining dynamic microbiome-host homeostasis, protecting against inflammation and cancer. Bioessays 2020; 43:e2000180. [PMID: 33244814 DOI: 10.1002/bies.202000180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
The human intestines are constantly under the influence of numerous pathological factors: enteropathogenic microorganisms, food antigens, physico-chemical stress associated with digestion and bacterial metabolism, therefore it must be provided with a system of protection against adverse impact. Recent studies have shown that Paneth cells play a crucial role in maintaining homeostasis of the small intestines. Paneth cells perform many vital functions aimed at maintaining a homeostatic balance between normal microbiota, infectious pathogens and the human body, regulate the qualitative composition and number of intestinal microorganisms, prevent the introduction of potentially pathogenic species, and protect stem cells from damage. Paneth cells take part in adaptive and protective-inflammatory reactions. Paneth cells maintain dynamic balance between microbial populations, and the macroorganism, preventing the development of intestinal infections and cancer. They play a crucial role in gastrointestinal homeostasis and may be key factors in the etiopathological progression of intestinal diseases.
Collapse
Affiliation(s)
- Vladimir N Nikolenko
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia.,Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Marine V Oganesyan
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Maria V Sankova
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia.,Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Andzhela D Vovkogon
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Negoriya A Rizaeva
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | | |
Collapse
|
14
|
Dishman AF, Lee MW, de Anda J, Lee EY, He J, Huppler AR, Wong GCL, Volkman BF. Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1. ACS Infect Dis 2020; 6:1204-1213. [PMID: 32243126 PMCID: PMC7258946 DOI: 10.1021/acsinfecdis.0c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Antimicrobial peptides (AMPs) are
a class of molecules which generally
kill pathogens via preferential cell membrane disruption. Chemokines
are a family of signaling proteins that direct immune cell migration
and share a conserved α–β tertiary structure. Recently,
it was found that a subset of chemokines can also function as AMPs,
including CCL20, CXCL4, and XCL1. It is therefore surprising that
machine learning based analysis predicts that CCL20 and CXCL4’s
α-helices are membrane disruptive, while XCL1’s helix
is not. XCL1, however, is the only chemokine known to be a metamorphic
protein which can interconvert reversibly between two distinct native
structures (a β-sheet dimer and the α–β chemokine
structure). Here, we investigate XCL1’s antimicrobial mechanism
of action with a focus on the role of metamorphic folding. We demonstrate
that XCL1 is a molecular “Swiss army knife” that can
refold into different structures for distinct context-dependent functions:
whereas the α–β chemokine structure controls cell
migration by binding to G-Protein Coupled Receptors (GPCRs), we find
using small angle X-ray scattering (SAXS) that only the β-sheet
and unfolded XCL1 structures can induce negative Gaussian curvature
(NGC) in membranes, the type of curvature topologically required for
membrane permeation. Moreover, the membrane remodeling activity of
XCL1’s β-sheet structure is strongly dependent on membrane
composition: XCL1 selectively remodels bacterial model membranes but
not mammalian model membranes. Interestingly, XCL1 also permeates
fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense
which requires Th17 mediated cell-based responses. These observations
suggest that metamorphic XCL1 is capable of a versatile multimodal
form of antimicrobial defense.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Michelle W. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jie He
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Anna R. Huppler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| |
Collapse
|
15
|
Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183302. [PMID: 32311341 DOI: 10.1016/j.bbamem.2020.183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Carsten Kroll
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kenneth Bradley
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt E Amrein
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
16
|
Tai HM, Huang HN, Tsai TY, You MF, Wu HY, Rajanbabu V, Chang HY, Pan CY, Chen JY. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS One 2020; 15:e0230021. [PMID: 32160226 PMCID: PMC7065771 DOI: 10.1371/journal.pone.0230021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Supplementing chicken feed with antibiotics can improve survival and prevent disease outbreaks. However, overuse of antibiotics may promote the development of antibiotic-resistant bacteria. Recently, antimicrobial peptides have been proposed as alternatives to antibiotics in animal husbandry. Here, we evaluate the effects of antimicrobial peptide, Epinephelus lanceolatus piscidin (EP), in Gallus gallus domesticus. The gene encoding EP was isolated, sequenced, codon-optimized and cloned into a Pichia pastoris recombinant protein expression system. The expressed recombinant EP (rEP) was then used as a dietary supplement for G. g. domesticus; overall health, growth performance and immunity were assessed. Supernatant from rEP-expressing yeast showed in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria, according to an inhibition-zone diameter (mm) assay. Moreover, the antimicrobial peptide function of rEP was temperature independent. The fermentation broth yielded a spray-dried powder formulation containing 262.9 μg EP/g powder, and LC-MS/MS (tandem MS) analysis confirmed that rEP had a molecular weight of 4279 Da, as expected for the 34-amino acid peptide; the DNA sequence of the expression vector was also validated. We then evaluated rEP as a feed additive for G. g. domesticus. Treatment groups included control, basal diet and rEP at different doses (0.75, 1.5, 3.0, 6.0 and 12%). Compared to control, rEP supplementation increased G. g. domesticus weight gain, feed efficiency, IL-10 and IFN-γ production. Our results suggest that crude rEP could provide an alternative to traditional antibiotic feed additives for G. g. domesticus, serving to enhance growth and health of the animals.
Collapse
Affiliation(s)
- Hsueh-Ming Tai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Tsung-Yu Tsai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Ming-Feng You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Venugopal Rajanbabu
- Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural university, Tiruchchirapalli, Tamil Nadu, India
| | - Hsiao-Yun Chang
- Biotechnology Department, Asia University, Wufeng, Taichung, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Zhao G, Chen Y, He Y, Chen F, Gong Y, Chen S, Xu Y, Su Y, Wang C, Wang J. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomater Sci 2019; 7:2440-2451. [PMID: 30939184 DOI: 10.1039/c9bm00003h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing drug resistance necessitates the discovery of novel bactericides. Human defensin (HD) peptides can eliminate resistant bacteria and are promising candidates for next-generation antibiotics. T7E21R-HD5 is a potent bactericide designed by site mutations at enteric HD5. To facilitate the development of T7E21R-HD5 into an intestinal antibiotic, we employed a mesoporous silica nanoparticle (MSN) as the peptide carrier. Despite its ineffectiveness at killing bacteria, the MSN intensified the outer membrane penetration and inner membrane permeabilization abilities of T7E21R-HD5 and thus enhanced its antibacterial action against multidrug resistant (MDR) E. coli, which broadened the role of MSNs in drug delivery. For the reduction in T7E21R-HD5 losses in the stomach, we further modified MSN@T7E21R-HD5 with succinylated casein (SCN), a milk protein that can be specifically degraded by intestinal protease. SCN coating decreased T7E21R-HD5 release from the MSNs, especially in a highly acidic environment. The controlled release of MSN@T7E21R-HD5 from SCN encapsulation was confirmed in the presence of trypsin. MSN@T7E21R-HD5@SCN was nontoxic to host cells, and it was capable of inactivating MDR E. coli in vivo and alleviating intestinal inflammation by suppressing the production of inflammatory factors TNF-α, IL-1β, and MMP-9. This study provides a peptide-based nanobiotic with efficacy to combat intestinal infection, especially against drug-resistant bacteria. The biocompatible and readily prepared MSN/SCN delivery system may benefit further intestinal antibiotic design and promote the drug transformation of additional enterogenic functional molecules.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yao C, Kang Z, Yu B, Chen Q, Liu Y, Wang Q. All-Factor Analysis and Correlations on the Transmembrane Process for Arginine-Rich Cell-Penetrating Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9286-9296. [PMID: 31265309 DOI: 10.1021/acs.langmuir.9b01169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Currently, arginine-rich cell-penetrating peptides (CPPs), due to their little cytotoxicity and high transmembrane efficiency, are considered as one of the important intracellular carriers. Although the mechanism of the transmembrane process for arginine-rich CPPs was proposed, the quantitative correlations and the key factors involved in this process still deserve further investigation. In this study, all-atom molecular dynamics and the umbrella sampling technique were employed to study the arginine-rich CPPs transmembrane process. In the adsorption process of CPPs from solution to the surface of the lipid bilayer, the adsorption free energy (ΔGA) is found to be linearly related to the interaction energy change (ΔEA): ΔGA = 0.0426ΔEA + 36.7, R2 = 0.92. In the CPPs transmembrane process, the transmembrane free energy barrier (ΔGB) is roughly correlated with the corresponding interaction energy change (ΔEB): ΔGB = 0.108ΔEB +135, R2 = 0.73. The multiple salt bridges of guanidinium-PO4 account for 65% of the overall interaction energy, so the increased negative charges of the lipid bilayer or more salt bridges would facilitate CPPs adsorption and transmembrane processes. Also, the increased negative charges of the lipid bilayer would reduce the amount of water to be carried into the pore and further reduce the ΔGB. The peptide backbone would not have a direct impact on transmembrane efficiency. The ΔGB is also found to be related to the length of the pore (L): ΔGB = 46.2L - 31.3, R2 = 0.92, which makes the transmembrane efficiency estimable. This work is expected to deliver an in-depth understanding and help the optimization of CPPs.
Collapse
Affiliation(s)
- Cai Yao
- Department of Chemistry and Soft Matter Research Center , Zhejiang University , Hangzhou 310027 , China
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center , Zhejiang University , Hangzhou 310027 , China
| | - Bin Yu
- Department of Chemistry and Soft Matter Research Center , Zhejiang University , Hangzhou 310027 , China
| | - Qu Chen
- School of Biological and Chemical Engineering , Zhejiang University of Science and Technology , Hangzhou 310023 , China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center , Zhejiang University , Hangzhou 310027 , China
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
19
|
Chen F, Tang Y, Zheng H, Xu Y, Wang J, Wang C. Roles of the Conserved Amino Acid Residues in Reduced Human Defensin 5: Cysteine and Arginine Are Indispensable for Its Antibacterial Action and LPS Neutralization. ChemMedChem 2019; 14:1457-1465. [DOI: 10.1002/cmdc.201900282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Yong Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao HospitalThird Military Medical University Chongqing 400037 China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| |
Collapse
|
20
|
Lee MW, Lee EY, Ferguson AL, Wong GCL. Machine learning antimicrobial peptide sequences: Some surprising variations on the theme of amphiphilic assembly. Curr Opin Colloid Interface Sci 2018; 38:204-213. [PMID: 31093008 DOI: 10.1016/j.cocis.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptides (AMPs) collectively constitute a key component of the host innate immune system. They span a diverse space of sequences and can be α-helical, β-sheet, or unfolded in structure. Despite a wealth of knowledge about them from decades of experiments, it remains difficult to articulate general principles governing such peptides. How are they different from other molecules that are also cationic and amphiphilic? What other functions, in immunity and otherwise, are enabled by these simple sequences? In this short review, we present some recent work that engages these questions using methods not usually applied to AMP studies, such as machine learning. We find that not only do AMP-like sequences confer membrane remodeling activity to an unexpectedly broad range of protein classes, their cationic and amphiphilic signature also allows them to act as meta-antigens and self-assemble with immune ligands into nanocrystalline complexes for multivalent presentation to Toll-like receptors.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Ernest Y Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Andrew L Ferguson
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, United States
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
21
|
Lai PK, Kaznessis YN. Insights into Membrane Translocation of Protegrin Antimicrobial Peptides by Multistep Molecular Dynamics Simulations. ACS OMEGA 2018; 3:6056-6065. [PMID: 29978143 PMCID: PMC6026836 DOI: 10.1021/acsomega.8b00483] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Protegrin-1 (PG-1) is a cationic arginine-rich antimicrobial peptide. It is widely accepted that PG-1 induces membrane disruption by forming pores that lead to cell death. However, the insertion mechanism for these highly cationic peptides into the hydrophobic membrane environment is still poorly understood at the molecular scale. It has previously been determined that the association of arginine guanidinium and lipid phosphate groups results in strong bidentate bonds that stabilize peptide-lipid complexes. It has also been suggested that arginine residues are able to drag phosphate groups as they insert inside the membrane to form a toroidal pore. However, whether bidentate bonds play a significant role in inducing a pore formation remains unclear. To investigate the role of bidentate complexes in PG-1 translocation, we conducted molecular dynamics simulations. Two computational electroporation methods were implemented to examine the translocation process. We found that PG-1 could insert into the membrane, provided the external electric potential is large enough to first induce a water column or a pore within the lipid bilayer membrane. We also found that the highly charged PG-1 is capable in itself of inducing molecular electroporation. Substitution of arginines with charge-equivalent lysines showed a markedly reduced tendency for insertion. This indicates that the guanidinium group likely facilitates PG-1 translocation. Potential of mean force calculations suggests that peptide insertion inside the hydrophobic environment of the membrane core is not favored. We found that formation of a water column or a pore might be a prerequisite for PG-1 translocation. We also found that PG-1 can stabilize the pore after insertion. We suggest that PG-1 could be a pore inducer and stabilizer. This work sheds some light on PG-1 translocation mechanisms at the molecular level. Methods presented in this study may be extended to other arginine-rich antimicrobial and cell-penetrating peptides.
Collapse
|
22
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|
23
|
A Simplified Derivative of Human Defensin 5 with Potent and Efficient Activity against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2018; 62:AAC.01504-17. [PMID: 29158275 DOI: 10.1128/aac.01504-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/04/2017] [Indexed: 02/08/2023] Open
Abstract
The increasing incidence of multidrug-resistant Acinetobacter baumannii (MDRAb) infections worldwide has necessitated the development of novel antibiotics. Human defensin 5 (HD5) is an endogenous peptide with a complex architecture and antibacterial activity against MDRAb In the present study, we attempted to simplify the structure of HD5 by removing disulfide bonds. We found that the Cys2-4 bond was most indispensable for HD5 to inactivate MDRAb, although the antibacterial activity of the derivative was significantly attenuated. We then replaced the noncationic and nonhydrophobic residues with electropositive Arg to increase the antibacterial activity of HD5 derivative that contains a Cys2-4 bond, obtaining another derivative termed HD5d5. The in vitro antibacterial assay and irradiation-wound-infection animal experiment both showed that HD5d5 was much more effective than HD5 at eliminating MDRAb Further investigations revealed that HD5d5 efficiently bound to outer membrane lipid A and penetrated membranes, leading to bacterial collapse and peptide translocation. Compared to HD5, more HD5d5 molecules were located in the cytoplasm of MDRAb, and HD5d5 was more efficient at reducing the activities of superoxide dismutase and catalase, causing the accumulation of reactive oxygen species that are detrimental to microbes. In addition, HD5 failed to suppress the pathogenic outer membrane protein A of Acinetobacter baumannii (AbOmpA) at concentrations up to 50 μg/ml, whereas HD5d5 strongly bound to AbOmpA and exhibited a dramatic toxin-neutralizing ability, thus expanding the repertoire of drugs that is available to treat MDRAb infections.
Collapse
|
24
|
Lee M, Lee EY, Lai GH, Kennedy NW, Posey AE, Xian W, Ferguson AL, Hill RB, Wong GCL. Molecular Motor Dnm1 Synergistically Induces Membrane Curvature To Facilitate Mitochondrial Fission. ACS CENTRAL SCIENCE 2017; 3:1156-1167. [PMID: 29202017 PMCID: PMC5704292 DOI: 10.1021/acscentsci.7b00338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 05/30/2023]
Abstract
Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.
Collapse
Affiliation(s)
- Michelle
W. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ghee Hwee Lai
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Nolan W. Kennedy
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ammon E. Posey
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United
States
| | - Wujing Xian
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Andrew L. Ferguson
- Department of Materials Science
and Engineering and Department of Chemical and Biomolecular
Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - R. Blake Hill
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gerard C. L. Wong
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
25
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Kaplan A, Lee MW, Wolf AJ, Limon JJ, Becker CA, Ding M, Murali R, Lee EY, Liu GY, Wong GCL, Underhill DM. Direct Antimicrobial Activity of IFN-β. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4036-4045. [PMID: 28411186 PMCID: PMC5469413 DOI: 10.4049/jimmunol.1601226] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
Abstract
Type I IFNs are a cytokine family essential for antiviral defense. More recently, type I IFNs were shown to be important during bacterial infections. In this article, we show that, in addition to known cytokine functions, IFN-β is antimicrobial. Parts of the IFN-β molecular surface (especially helix 4) are cationic and amphipathic, both classic characteristics of antimicrobial peptides, and we observed that IFN-β can directly kill Staphylococcus aureus Further, a mutant S. aureus that is more sensitive to antimicrobial peptides was killed more efficiently by IFN-β than was the wild-type S. aureus, and immunoblotting showed that IFN-β interacts with the bacterial cell surface. To determine whether specific parts of IFN-β are antimicrobial, we synthesized IFN-β helix 4 and found that it is sufficient to permeate model prokaryotic membranes using synchrotron x-ray diffraction and that it is sufficient to kill S. aureus These results suggest that, in addition to its well-known signaling activity, IFN-β may be directly antimicrobial and be part of a growing family of cytokines and chemokines, called kinocidins, that also have antimicrobial properties.
Collapse
Affiliation(s)
- Amber Kaplan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Andrea J Wolf
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jose J Limon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Courtney A Becker
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Minna Ding
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ramachandran Murali
- Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - George Y Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
- Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
27
|
Lee MW, Han M, Bossa GV, Snell C, Song Z, Tang H, Yin L, Cheng J, May S, Luijten E, Wong GCL. Interactions between Membranes and "Metaphilic" Polypeptide Architectures with Diverse Side-Chain Populations. ACS NANO 2017; 11:2858-2871. [PMID: 28212487 DOI: 10.1021/acsnano.6b07981] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 108 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.
Collapse
Affiliation(s)
| | | | - Guilherme Volpe Bossa
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Carly Snell
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sylvio May
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | | | | |
Collapse
|
28
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
29
|
Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins. PLoS One 2015; 10:e0144741. [PMID: 26675301 PMCID: PMC4684500 DOI: 10.1371/journal.pone.0144741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/22/2015] [Indexed: 02/07/2023] Open
Abstract
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.
Collapse
|
30
|
Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett 2015; 589:3915-20. [PMID: 26555191 DOI: 10.1016/j.febslet.2015.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides.
Collapse
|
31
|
Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides 2015. [PMID: 26206286 DOI: 10.1016/j.peptides.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
32
|
deRonde BM, Tew GN. Development of protein mimics for intracellular delivery. Biopolymers 2015; 104:265-80. [PMID: 25858701 PMCID: PMC4516575 DOI: 10.1002/bip.22658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003
| |
Collapse
|
33
|
Hu K, Jiang Y, Xie Y, Liu H, Liu R, Zhao Z, Lai R, Yang L. Small-Anion Selective Transmembrane "Holes" Induced by an Antimicrobial Peptide Too Short to Span Membranes. J Phys Chem B 2015; 119:8553-60. [PMID: 26126210 DOI: 10.1021/acs.jpcb.5b03133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Whereas many membrane-destabilization modes have been suggested for membrane-spanning antimicrobial peptides (AMPs), few are available for those too short to span membrane thickness. Here we show that ORB-1, a 15-residue disulfide-bridged AMP that is only ∼20 Å long even when fully stretched like a hairpin, may act by inducing small anion-selective transmembrane "holes" of negative mean curvature. In model membranes of Gram-negative bacteria, ORB-1 induces chloride transmembrane transport and formation of transmembrane channels of negative mean curvature, whereas the inactive analogue, ORB-N, does not, suggesting a correlation between antibacterial activity and ability to induce transmembrane channels. Given that ORB-N is the C-terminus amidated form of ORB-1, our results further suggest that formation of membrane-spanning dimers may be required to initiate the observed channel induction. Moreover, ORB-1 renders model bacterial membranes permeable to anions with effective hydration diameters of <1 nm (e.g., Cl(-) and NO3(-)), but not cations of similar sizes (e.g., H3O(+)), indicative of anion-selective transmembrane channels with an effective inner diameter of ≤1 nm. In addition, negative-intrinsic-curvature (NIC) lipids such as phosphoethanolamine (PE) may facilitate the membrane-destabilization process of ORB-1. Our findings may expand current understandings on how AMPs destabilize membranes and facilitate the pharmaceutical development of ORB-1.
Collapse
Affiliation(s)
| | | | | | | | - Rui Liu
- ‡Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | - Ren Lai
- ‡Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | |
Collapse
|
34
|
Efficient production of a correctly folded mouse α-defensin, cryptdin-4, by refolding during inclusion body solubilization. Protein Expr Purif 2015; 112:21-8. [PMID: 25913370 DOI: 10.1016/j.pep.2015.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
Abstract
Mammalian α-defensins contribute to innate immunity by exerting antimicrobial activity against various pathogens. To perform structural and functional analysis of α-defensins, large amounts of α-defensins are essential. Although many expression systems for the production of recombinant α-defensins have been developed, attempts to obtain large amounts of α-defensins have been only moderately successful. Therefore, in this study, we applied a previously developed aggregation-prone protein coexpression method for the production of mouse α-defensin cryptdin-4 (Crp4) in order to enhance the formation of inclusion bodies in Escherichia coli expression system. By using this method, we succeeded in obtaining a large amount of Crp4 in the form of inclusion bodies. Moreover, we attempted to refold Crp4 directly during the inclusion-body solubilization step under oxidative conditions. Surprisingly, even without any purification, Crp4 was efficiently refolded during the solubilization step of inclusion bodies, and the yield was better than that of the conventional refolding method. NMR spectra of purified Crp4 suggested that it was folded into its correct tertiary structure. Therefore, the method described in this study not only enhances the expression of α-defensin as inclusion bodies, but also eliminates the cumbersome and time-consuming refolding step.
Collapse
|
35
|
Sharma H, Mathew B, Nagaraj R. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity. J Pept Sci 2015; 21:501-11. [PMID: 25810238 DOI: 10.1002/psc.2770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/01/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N-terminus of HBD4. Our results show that l-arginine to d-arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l-arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d-arginine. Substitution of cysteine with the hydrophobic helix-promoting amino acid α-aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d-arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d-amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
36
|
Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 2015; 10:e0119525. [PMID: 25785690 PMCID: PMC4364940 DOI: 10.1371/journal.pone.0119525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
37
|
Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. J Invest Dermatol 2015; 135:1581-1589. [PMID: 25668237 PMCID: PMC4430421 DOI: 10.1038/jid.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2014] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule which has multiple mechanisms of antibacterial action, and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides (AMPs). Pentobra demonstrated potent and selective killing of P. acnes, but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5–7 logs) against multiple P. acnes clinical strains. Moreover, EM studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.
Collapse
|
38
|
Abstract
Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family. Contact:vladimir.bajic@kaust.edu.sa Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
A hybrid cationic peptide composed of human β-defensin-1 and humanized θ-defensin sequences exhibits salt-resistant antimicrobial activity. Antimicrob Agents Chemother 2014; 59:217-25. [PMID: 25348533 DOI: 10.1128/aac.03901-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Defensins are a major family of antimicrobial peptides expressed predominantly in neutrophils and epithelial cells, and play important roles in innate immune defense against infectious pathogens. Their biological functions in and beyond innate immunity, structure and activity relationships, mechanisms of action, and therapeutic potential continue to be interesting research topics. This review examines recent progress in our understanding of alpha and theta-defensins - the two structural classes composed of members of myeloid origin. RECENT FINDINGS A novel mode of antibacterial action is described for human enteric alpha-defensin 6, which forms structured nanonets to entrap bacterial pathogens and protect against bacterial invasion of the intestinal epithelium. The functional multiplicity and mechanistic complexity of defensins under different experimental conditions contribute to a debate over the role of enteric alpha-defensins in mucosal immunity against HIV-1 infection. Contrary to common belief, hydrophobicity rather than cationicity plays a dominant functional role in the action of human alpha-defensins; hydrophobicity-mediated high-order assembly endows human alpha-defensins with an extraordinary ability to acquire structural diversity and functional versatility. Growing evidence suggests that theta-defensins offer the best opportunity for therapeutic development as a novel class of broadly active anti-infective and anti-inflammatory agents. SUMMARY Defensins are the 'Swiss army knife' in innate immunity against microbial pathogens. Their modes of action are often reminiscent of the story of 'The Blind Men and the Elephant'. The functional diversity and mechanistic complexity, as well as therapeutic potential of defensins, will continue to attract attention to this important family of antimicrobial peptides.
Collapse
|
41
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
42
|
Rangarajan N, Bakshi S, Weisshaar JC. Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. Biochemistry 2013; 52:6584-94. [PMID: 23988088 DOI: 10.1021/bi400785j] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fluorescence microscopy enables detailed observation of the effects of the antimicrobial peptide Cecropin A on the outer membrane (OM) and cytoplasmic membrane (CM) of single E. coli cells with subsecond time resolution. Fluorescence from periplasmic GFP decays and cell growth halts when the OM is permeabilized. Fluorescence from the DNA stain Sytox Green rises when the CM is permeabilized and the stain enters the cytoplasm. The initial membrane disruptions are localized and stable. Septating cells are attacked earlier than nonseptating cells, and curved membrane surfaces are attacked in preference to cylindrical surfaces. Below a threshold bulk Cecropin A concentration, permeabilization is not observed over 30 min. Above this threshold, we observe a lag time of several minutes between Cecropin A addition and OM permeabilization and ∼30 s between OM and CM permeabilization. The long lag times and the existence of a threshold concentration for permeabilization suggest a nucleation mechanism. However, the roughly linear dependence of mean lag time on bulk peptide concentration is not easily reconciled with a nucleation step involving simultaneous insertion of multiple peptides into the bilayer. Monte Carlo simulations suggest that within seconds, the OM permeability becomes comparable to that of a pore of 100 nm diameter or of numerous small pores distributed over a similarly large area.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Chemistry and ‡Molecular Biophysics Program, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
43
|
Schmidt NW, Mishra A, Wang J, DeGrado WF, Wong GCL. Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission. J Am Chem Soc 2013; 135:13710-9. [PMID: 23962302 DOI: 10.1021/ja400146z] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The M2 protein is a multifunctional protein, which plays several roles in the replication cycle of the influenza A virus. Here we focus on its ability to promote budding of the mature virus from the cell surface. Using high-resolution small-angle X-ray scattering we show that M2 can restructure lipid membranes into bicontinuous cubic phases which are rich in negative Gaussian curvature (NGC). The active generation of negative Gaussian membrane curvature by M2 is essential to influenza virus budding. M2 has been observed to colocalize with the region of high NGC at the neck of a bud. The structural requirements for scission are even more stringent than those for budding, as the neck must be considerably smaller than the virus during 'pinch off'. Consistent with this, the amount of NGC in the induced cubic phases suggests that M2 proteins can generate high curvatures comparable to those on a neck with size 10× smaller than a spherical influenza virus. Similar experiments on variant proteins containing different M2 domains show that the cytoplasmic amphipathic helix is necessary and sufficient for NGC generation. Mutations to the helix which reduce its amphiphilicity and are known to diminish budding attenuated NGC generation. An M2 construct comprising the membrane interactive domains, the transmembrane helix and the cytoplasmic helix, displayed enhanced ability to generate NGC, suggesting that other domains cooperatively promote membrane curvature. These studies establish the importance of M2-induced NGC during budding and suggest that antagonizing this curvature is a viable anti-influenza strategy.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|
44
|
Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2013; 17:151-163. [PMID: 24778573 PMCID: PMC4000235 DOI: 10.1016/j.cossms.2013.09.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This 'saddle-splay curvature selection rule' is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials.
Collapse
Affiliation(s)
- Nathan W. Schmidt
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Hischenhuber B, Havlicek H, Todoric J, Höllrigl-Binder S, Schreiner W, Knapp B. Differential geometric analysis of alterations in MH α-helices. J Comput Chem 2013; 34:1862-79. [PMID: 23703160 PMCID: PMC3739936 DOI: 10.1002/jcc.23328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 01/03/2023]
Abstract
Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α-helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α-helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α-helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α-helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α-helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α-helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α-helices for a broad range of applications.
Collapse
Affiliation(s)
- Birgit Hischenhuber
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Su Y, Li S, Hong M. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR. Amino Acids 2013; 44:821-33. [PMID: 23108593 PMCID: PMC3570695 DOI: 10.1007/s00726-012-1421-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/24/2022]
Abstract
Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure-activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
47
|
Hu K, Schmidt NW, Zhu R, Jiang Y, Lai GH, Wei G, Palermo EF, Kuroda K, Wong GCL, Yang L. A critical evaluation of random copolymer mimesis of homogeneous antimicrobial peptides. Macromolecules 2013; 46:1908-1915. [PMID: 23750051 PMCID: PMC3671498 DOI: 10.1021/ma302577e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymeric synthetic mimics of antimicrobial peptides (SMAMPs) have recently demonstrated similar antimicrobial activity as natural antimicrobial peptides (AMPs) from innate immunity. This is surprising, since polymeric SMAMPs are heterogeneous in terms of chemical structure (random sequence) and conformation (random coil), in contrast to defined amino acid sequence and intrinsic secondary structure. To understand this better, we compare AMPs with a 'minimal' mimic, a well characterized family of polydisperse cationic methacrylate-based random copolymer SMAMPs. Specifically, we focus on a comparison between the quantifiable membrane curvature generating capacity, charge density, and hydrophobicity of the polymeric SMAMPs and AMPs. Synchrotron small angle x-ray scattering (SAXS) results indicate that typical AMPs and these methacrylate SMAMPs generate similar amounts of membrane negative Gaussian curvature (NGC), which is topologically necessary for a variety of membrane-destabilizing processes. Moreover, the curvature generating ability of SMAMPs is more tolerant of changes in the lipid composition than that of natural AMPs with similar chemical groups, consistent with the lower specificity of SMAMPs. We find that, although the amount of NGC generated by these SMAMPs and AMPs are similar, the SMAMPs require significantly higher levels of hydrophobicity and cationic charge to achieve the same level of membrane deformation. We propose an explanation for these differences, which has implications for new synthetic strategies aimed at improved mimesis of AMPs.
Collapse
Affiliation(s)
- Kan Hu
- CAS Key Laboratory of Soft Matter Chemistry, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Nathan W. Schmidt
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095 United States
| | - Rui Zhu
- CAS Key Laboratory of Soft Matter Chemistry, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Yunjiang Jiang
- CAS Key Laboratory of Soft Matter Chemistry, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Ghee Hwee Lai
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095 United States
| | - Gang Wei
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610064 China
| | - Edmund F. Palermo
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109 United States
| | - Kenichi Kuroda
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095 United States
| | - Lihua Yang
- CAS Key Laboratory of Soft Matter Chemistry, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610064 China
| |
Collapse
|