1
|
Glading A. KRIT1 in vascular biology and beyond. Biosci Rep 2024; 44:BSR20231675. [PMID: 38980708 PMCID: PMC11263069 DOI: 10.1042/bsr20231675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024] Open
Abstract
KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.
Collapse
Affiliation(s)
- Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, U.S.A
| |
Collapse
|
2
|
Romanos SG, Srinath A, Li Y, Xie B, Chen C, Li Y, Moore T, Bi D, Sone JY, Lightle R, Hobson N, Zhang D, Koskimäki J, Shen L, McCurdy S, Lai CC, Stadnik A, Piedad K, Carrión-Penagos J, Shkoukani A, Snellings D, Shenkar R, Sulakhe D, Ji Y, Lopez-Ramirez MA, Kahn ML, Marchuk DA, Ginsberg MH, Girard R, Awad IA. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res 2023; 14:513-529. [PMID: 35715588 PMCID: PMC9758276 DOI: 10.1007/s12975-022-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Collapse
Affiliation(s)
- Sharbel G Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yan Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Nick Hobson
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catherine Chinhchu Lai
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Daniel Snellings
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yuan Ji
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
4
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Swamy H, Glading AJ. Contribution of protein-protein interactions to the endothelial barrier-stabilizing function of KRIT1. J Cell Sci 2021; 135:274104. [PMID: 34918736 PMCID: PMC8917353 DOI: 10.1242/jcs.258816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Krev-interaction trapped 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1 binding, disrupt KRIT1's protein tyrosine binding domain (PTB), or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ/barrier function in KRIT1 depleted endothelial cells correlated with decreased 1 integrin activity and maintenance of cortical actin fibers. Together, our findings indicate that Rap1 binding, ICAP1 binding, and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity may be involved in barrier stabilization.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
6
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
7
|
Lopez‐Ramirez MA, McCurdy S, Li W, Haynes MK, Hale P, Francisco K, Oukoloff K, Bautista M, Choi CH, Sun H, Gongol B, Shyy JY, Ballatore C, Sklar LA, Gingras AR. Inhibition of the HEG1-KRIT1 interaction increases KLF4 and KLF2 expression in endothelial cells. FASEB Bioadv 2021; 3:334-355. [PMID: 33977234 PMCID: PMC8103725 DOI: 10.1096/fba.2020-00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 11/11/2022] Open
Abstract
The transmembrane protein heart of glass1 (HEG1) directly binds to and recruits Krev interaction trapped protein 1 (KRIT1) to endothelial junctions to form the HEG1-KRIT1 protein complex that establishes and maintains junctional integrity. Genetic inactivation or knockdown of endothelial HEG1 or KRIT1 leads to the upregulation of transcription factors Krüppel-like factors 4 and 2 (KLF4 and KLF2), which are implicated in endothelial vascular homeostasis; however, the effect of acute inhibition of the HEG1-KRIT1 interaction remains incompletely understood. Here, we report a high-throughput screening assay and molecular design of a small-molecule HEG1-KRIT1 inhibitor to uncover acute changes in signaling pathways downstream of the HEG1-KRIT1 protein complex disruption. The small-molecule HEG1-KRIT1 inhibitor 2 (HKi2) was demonstrated to be a bona fide inhibitor of the interaction between HEG1 and KRIT1 proteins, by competing orthosterically with HEG1 through covalent reversible interactions with the FERM (4.1, ezrin, radixin, and moesin) domain of KRIT1. The crystal structure of HKi2 bound to KRIT1 FERM revealed that it occupies the same binding pocket on KRIT1 as the HEG1 cytoplasmic tail. In human endothelial cells (ECs), acute inhibition of the HEG1-KRIT1 interaction by HKi2 increased KLF4 and KLF2 mRNA and protein levels, whereas a structurally similar inactive compound failed to do so. In zebrafish, HKi2 induced expression of klf2a in arterial and venous endothelium. Furthermore, genome-wide RNA transcriptome analysis of HKi2-treated ECs under static conditions revealed that, in addition to elevating KLF4 and KLF2 expression, inhibition of the HEG1-KRIT1 interaction mimics many of the transcriptional effects of laminar blood flow. Furthermore, HKi2-treated ECs also triggered Akt signaling in a phosphoinositide 3-kinase (PI3K)-dependent manner, as blocking PI3K activity blunted the Akt phosphorylation induced by HKi2. Finally, using an in vitro colocalization assay, we show that HKi6, an improved derivative of HKi2 with higher affinity for KRIT1, significantly impedes recruitment of KRIT1 to mitochondria-localized HEG1 in CHO cells, indicating a direct inhibition of the HEG1-KRIT1 interaction. Thus, our results demonstrate that early events of the acute inhibition of HEG1-KRIT1 interaction with HKi small-molecule inhibitors lead to: (i) elevated KLF4 and KLF2 gene expression; and (ii) increased Akt phosphorylation. Thus, HKi's provide new pharmacologic tools to study acute inhibition of the HEG1-KRIT1 protein complex and may provide insights to dissect early signaling events that regulate vascular homeostasis.
Collapse
Affiliation(s)
- Miguel Alejandro Lopez‐Ramirez
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Sara McCurdy
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Wenqing Li
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Mark K. Haynes
- Department of PathologyCenter for Molecular DiscoveryUniversity of New Mexico School of MedicineAlbuquerqueNMUSA
| | - Preston Hale
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Karol Francisco
- Department of Chemistry & BiochemistryUniversity of California San DiegoLa JollaCAUSA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Matthew Bautista
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Chelsea H.J. Choi
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Hao Sun
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Brendan Gongol
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - John Y. Shyy
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Larry A. Sklar
- Department of PathologyCenter for Molecular DiscoveryUniversity of New Mexico School of MedicineAlbuquerqueNMUSA
| | | |
Collapse
|
8
|
Riolo G, Ricci C, Battistini S. Molecular Genetic Features of Cerebral Cavernous Malformations (CCM) Patients: An Overall View from Genes to Endothelial Cells. Cells 2021; 10:704. [PMID: 33810005 PMCID: PMC8005105 DOI: 10.3390/cells10030704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that affect predominantly microvasculature in the brain and spinal cord. CCM can occur either in sporadic or familial form, characterized by autosomal dominant inheritance and development of multiple lesions throughout the patient's life. Three genes associated with CCM are known: CCM1/KRIT1 (krev interaction trapped 1), CCM2/MGC4607 (encoding a protein named malcavernin), and CCM3/PDCD10 (programmed cell death 10). All the mutations identified in these genes cause a loss of function and compromise the protein functions needed for maintaining the vascular barrier integrity. Loss of function of CCM proteins causes molecular disorganization and dysfunction of endothelial adherens junctions. In this review, we provide an overall vision of the CCM pathology, starting with the genetic bases of the disease, describing the role of the proteins, until we reach the cellular level. Thus, we summarize the genetics of CCM, providing a description of CCM genes and mutation features, provided an updated knowledge of the CCM protein structure and function, and discuss the molecular mechanisms through which CCM proteins may act within endothelial cells, particularly in endothelial barrier maintenance/regulation and in cellular signaling.
Collapse
Affiliation(s)
| | | | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (C.R.)
| |
Collapse
|
9
|
Retta SF, Perrelli A, Trabalzini L, Finetti F. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2021; 2152:3-25. [PMID: 32524540 DOI: 10.1007/978-1-0716-0640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Andrea Perrelli
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Lorenza Trabalzini
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Finetti
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
10
|
De Luca E, Perrelli A, Swamy H, Nitti M, Passalacqua M, Furfaro AL, Salzano AM, Scaloni A, Glading AJ, Retta SF. Protein kinase Cα regulates the nucleocytoplasmic shuttling of KRIT1. J Cell Sci 2021; 134:jcs250217. [PMID: 33443102 PMCID: PMC7875496 DOI: 10.1242/jcs.250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.
Collapse
Affiliation(s)
- Elisa De Luca
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Lecce, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| |
Collapse
|
11
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
12
|
da Fontoura Galvão G, Veloso da Silva E, Fontes-Dantas FL, Filho RC, Alves-Leon S, Marcondes de Souza J. First Report of Concomitant Pathogenic Mutations Within MGC4607/CCM2 and KRIT1/CCM1 in a Familial Cerebral Cavernous Malformation Patient. World Neurosurg 2020; 142:481-486.e1. [DOI: 10.1016/j.wneu.2020.06.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
|
13
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
14
|
Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020; 691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.
Collapse
Affiliation(s)
- Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Belmonte
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
15
|
Fisher OS, Li X, Liu W, Zhang R, Boggon TJ. Crystallographic Studies of the Cerebral Cavernous Malformations Proteins. Methods Mol Biol 2020; 2152:291-302. [PMID: 32524560 DOI: 10.1007/978-1-0716-0640-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral cavernous malformations (CCM) are dysplasias that primarily occur in the neurovasculature, and are associated with mutations in three genes: KRIT1, CCM2, and PDCD10, the protein products of which are KRIT1 (Krev/Rap1 Interaction Trapped 1; CCM1, cerebral cavernous malformations 1), CCM2 (cerebral cavernous malformations 2; OSM, osmosensing scaffold for MEKK3), and CCM3 (cerebral cavernous malformations 3; PDCD10, programmed cell death 10). Until recently, these proteins were relatively understudied at the molecular level, and only three folded domains were documented. These were a band 4.1, ezrin, radixin, moesin (FERM), and an ankyrin repeat domain (ARD) in KRIT1, and a phosphotyrosine-binding (PTB) domain in CCM2. Over the past 10 years, a crystallographic approach has been used to discover a series of previously unidentified domains within the CCM proteins. These include a non-functional Nudix (or pseudonudix) domain in KRIT1, a harmonin homology domain (HHD) in CCM2, and dimerization and focal adhesion targeting (FAT)-homology domains within CCM3. Many of the roles of these domains have been revealed by structure-guided studies that show the CCM proteins can directly interact with one another to form a signaling scaffold, and that the "CCM complex" functions in signal transduction by interacting with other binding partners, including ICAP1, RAP1, and MEKK3. In this chapter, we describe the crystallization of CCM protein domains alone, and with their interaction partners.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Xiaofeng Li
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Abcam Inc., Branford, CT, USA
| | - Weizhi Liu
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rong Zhang
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA. .,Department of Molecular Biophysics and Biochemistry, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Cai Q, Hosokawa T, Zeng M, Hayashi Y, Zhang M. Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure 2019; 28:290-300.e4. [PMID: 31879129 DOI: 10.1016/j.str.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
18
|
Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, Sun K, Klapproth S, Hirbawi J, Byzova TV, Plow EF, Moser M, Qin J. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun 2017; 8:1744. [PMID: 29170462 PMCID: PMC5701058 DOI: 10.1038/s41467-017-01822-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of transmembrane receptor integrin by talin is essential for inducing cell adhesion. However, the pathway that recruits talin to the membrane, which critically controls talin's action, remains elusive. Membrane-anchored mammalian small GTPase Rap1 is known to bind talin-F0 domain but the binding was shown to be weak and thus hardly studied. Here we show structurally that talin-F0 binds to human Rap1b like canonical Rap1 effectors despite little sequence homology, and disruption of the binding strongly impairs integrin activation, cell adhesion, and cell spreading. Furthermore, while being weak in conventional binary binding conditions, the Rap1b/talin interaction becomes strong upon attachment of activated Rap1b to vesicular membranes that mimic the agonist-induced microenvironment. These data identify a crucial Rap1-mediated membrane-targeting mechanism for talin to activate integrin. They further broadly caution the analyses of weak protein-protein interactions that may be pivotal for function but neglected in the absence of specific cellular microenvironments.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jun Yang
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Thomas Bromberger
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany
| | - Ashley Holly
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Fan Lu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Huan Liu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Kevin Sun
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sarah Klapproth
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany
| | - Jamila Hirbawi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany.
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Vetter IR. Interface analysis of small GTP binding protein complexes suggests preferred membrane orientations. Biol Chem 2017; 398:637-651. [PMID: 28002022 DOI: 10.1515/hsz-2016-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/15/2022]
Abstract
Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.
Collapse
Affiliation(s)
- Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund
| |
Collapse
|
20
|
Abstract
The disease known as cerebral cavernous malformations mostly occurs in the central nervous system, and their typical histological presentations are multiple lumen formation and vascular leakage at the brain capillary level, resulting in disruption of the blood-brain barrier. These abnormalities result in severe neurological symptoms such as seizures, focal neurological deficits and hemorrhagic strokes. CCM research has identified ‘loss of function’ mutations of three ccm genes responsible for the disease and also complex regulation of multiple signaling pathways including the WNT/β-catenin pathway, TGF-β and Notch signaling by the ccm genes. Although CCM research is a relatively new and small scientific field, as CCM research has the potential to regulate systemic blood vessel permeability and angiogenesis including that of the blood-brain barrier, this field is growing rapidly. In this review, I will provide a brief overview of CCM pathogenesis and function of ccm genes based on recent progress in CCM research. [BMB Reports 2016; 49(5): 255-262]
Collapse
Affiliation(s)
- Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
21
|
de Vos IJHM, Vreeburg M, Koek GH, van Steensel MAM. Review of familial cerebral cavernous malformations and report of seven additional families. Am J Med Genet A 2016; 173:338-351. [PMID: 27792856 DOI: 10.1002/ajmg.a.38028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/18/2016] [Indexed: 11/11/2022]
Abstract
Cerebral cavernous malformations are vascular anomalies of the central nervous system characterized by clusters of enlarged, leaky capillaries. They are caused by loss-of-function mutations in KRIT1, CCM2, or PDCD10. The proteins encoded by these genes are involved in four partially interconnected signaling pathways that control angiogenesis and endothelial permeability. Cerebral cavernous malformations can occur sporadically, or as a familial autosomal dominant disorder (FCCM) with incomplete clinical and neuroradiological penetrance and great inter-individual variability. Although the clinical course is unpredictable, symptoms typically present during adult life and include headaches, focal neurological deficits, seizures, and potentially fatal stroke. In addition to neural lesions, extraneural cavernous malformations have been described in familial disease in several tissues, in particular the skin. We here present seven novel FCCM families with neurologic and cutaneous lesions. We review histopathological and clinical features and provide an update on the pathophysiology of cerebral cavernous malformations and associated cutaneous vascular lesions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,School of Medicine and School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
Affiliation(s)
- Xiaofeng Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Myosin MyTH4-FERM structures highlight important principles of convergent evolution. Proc Natl Acad Sci U S A 2016; 113:E2906-15. [PMID: 27166421 DOI: 10.1073/pnas.1600736113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
Collapse
|
24
|
Lee HS, Im W. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design. Protein Sci 2016; 25:865-76. [PMID: 26813336 DOI: 10.1002/pro.2890] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/11/2022]
Abstract
Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/.
Collapse
Affiliation(s)
- Hui Sun Lee
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, 66047
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66047
| |
Collapse
|
25
|
de Kreuk BJ, Gingras AR, Knight JD, Liu JJ, Gingras AC, Ginsberg MH. Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity. eLife 2016; 5:e11394. [PMID: 26780829 PMCID: PMC4733052 DOI: 10.7554/elife.11394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1’s ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1’s ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions. DOI:http://dx.doi.org/10.7554/eLife.11394.001 Blood vessels are lined with cells known as vascular endothelial cells. These cells are connected to each other at junctions that consist of several different proteins. The junctions help to control how the blood vessel develops and provide a barrier that controls the movement of water and certain other molecules through the vessel wall. This barrier becomes weakened in diseases like sepsis and atherosclerosis. Two proteins that are essential for the heart and blood vessels to develop correctly are called “Heart of Glass” (HEG1) and Rasip1. Although a protein has been identified that binds to HEG1 at the cell junctions, this binding only involves a small region of HEG1. This led de Kreuk, Gingras et al. to look for other proteins that interact with HEG1 and that might be important for controlling the development of the blood vessels. This revealed that HEG1 binds directly to Rasip1. Further experiments revealed that HEG1 is essential for targeting Rasip1 to the junctions between the endothelial cells, and that this helps to stabilize the cell junctions. Mutant forms of Rasip1 that lacked a particular sequence in the middle of the protein were unable to bind to HEG1 and did not localize to the cell junctions. These studies open the door to future work to define how the interaction of Rasip1 and HEG1 is controlled and how Rasip1 stabilizes blood vessels. DOI:http://dx.doi.org/10.7554/eLife.11394.002
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - James Dr Knight
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jian J Liu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
26
|
Chrzanowska-Wodnicka M, White GC, Quilliam LA, Whitehead KJ. Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature. PLoS One 2015; 10:e0145689. [PMID: 26714318 PMCID: PMC4694701 DOI: 10.1371/journal.pone.0145689] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. Rationale How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. Results and Conclusions The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium–for the life-supporting function of the vasculature.
Collapse
Affiliation(s)
| | - Gilbert C. White
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53201, United States of America
| | - Lawrence A. Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Kevin J. Whitehead
- Division of Cardiovascular Medicine, Pediatric Cardiology, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, United States of America
| |
Collapse
|
27
|
Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface. J Struct Biol 2015; 192:449-456. [PMID: 26458359 PMCID: PMC4651721 DOI: 10.1016/j.jsb.2015.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformations (CCM) are vascular dysplasias that usually occur in the brain and are associated with mutations in the KRIT1/CCM1, CCM2/MGC4607/OSM/Malcavernin, and PDCD10/CCM3/TFAR15 genes. Here we report the 2.9 Å crystal structure of the ankyrin repeat domain (ARD) and FERM domain of the protein product of KRIT1 (KRIT1; Krev interaction trapped 1). The crystal structure reveals that the KRIT1 ARD contains 4 ankyrin repeats. There is an unusual conformation in the ANK4 repeat that is stabilized by Trp-404, and the structure reveals a solvent exposed ankyrin groove. Domain orientations of the three copies within the asymmetric unit suggest a stable interaction between KRIT1 ARD and FERM domains, indicating a globular ARD-FERM module. This resembles the additional F0 domain found N-terminal to the FERM domain of talin. Structural analysis of KRIT1 ARD-FERM highlights surface regions of high evolutionary conservation, and suggests potential sites that could mediate interaction with binding partners. The structure therefore provides a better understanding of KRIT1 at the molecular level.
Collapse
|
28
|
Terawaki S, Kitano K, Aoyama M, Mori T, Hakoshima T. MT1‐MMP recognition by ERM proteins and its implication in CD44 shedding. Genes Cells 2015; 20:847-59. [DOI: 10.1111/gtc.12276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Shin‐ichi Terawaki
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Ken Kitano
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Miki Aoyama
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| |
Collapse
|
29
|
van den Berg MCW, Burgering BMT. CCM1 and the second life of proteins in adhesion complexes. Cell Adh Migr 2015; 8:146-57. [PMID: 24714220 DOI: 10.4161/cam.28437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
30
|
Mott HR, Owen D. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Crit Rev Biochem Mol Biol 2015; 50:85-133. [PMID: 25830673 DOI: 10.3109/10409238.2014.999191] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras superfamily small G proteins are master regulators of a diverse range of cellular processes and act via downstream effector molecules. The first structure of a small G protein-effector complex, that of Rap1A with c-Raf1, was published 20 years ago. Since then, the structures of more than 60 small G proteins in complex with their effectors have been published. These effectors utilize a diverse array of structural motifs to interact with the G protein fold, which we have divided into four structural classes: intermolecular β-sheets, helical pairs, other interactions, and pleckstrin homology (PH) domains. These classes and their representative structures are discussed and a contact analysis of the interactions is presented, which highlights the common effector-binding regions between and within the small G protein families.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
31
|
Riecken LB, Tawamie H, Dornblut C, Buchert R, Ismayel A, Schulz A, Schumacher J, Sticht H, Pohl KJ, Cui Y, Reis A, Morrison H, Abou Jamra R. Inhibition of RAS Activation Due to a Homozygous Ezrin Variant in Patients with Profound Intellectual Disability. Hum Mutat 2015; 36:270-8. [DOI: 10.1002/humu.22737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Lars Björn Riecken
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | - Hasan Tawamie
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Carsten Dornblut
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | - Rebecca Buchert
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Amina Ismayel
- Praxis of Pediatrics; Jesser El Sheghour; Idlib Syria
| | - Alexander Schulz
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | | | - Heinrich Sticht
- Bioinformatics; Institute of Biochemistry; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Katja J. Pohl
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | - Yan Cui
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | - André Reis
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Helen Morrison
- Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena Germany
| | - Rami Abou Jamra
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
32
|
Fisher OS, Liu W, Zhang R, Stiegler AL, Ghedia S, Weber JL, Boggon TJ. Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 2014; 290:2842-53. [PMID: 25525273 DOI: 10.1074/jbc.m114.616433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Familial cerebral cavernous malformations (CCMs) are predominantly neurovascular lesions and are associated with mutations within the KRIT1, CCM2, and PDCD10 genes. The protein products of KRIT1 and CCM2 (Krev interaction trapped 1 (KRIT1) and cerebral cavernous malformations 2 (CCM2), respectively) directly interact with each other. Disease-associated mutations in KRIT1 and CCM2 mostly result in loss of their protein products, although rare missense point mutations can also occur. From gene sequencing of patients known or suspected to have one or more CCMs, we discover a series of missense point mutations in KRIT1 and CCM2 that result in missense mutations in the CCM2 and KRIT1 proteins. To place these mutations in the context of the molecular level interactions of CCM2 and KRIT1, we map the interaction of KRIT1 and CCM2 and find that the CCM2 phosphotyrosine binding (PTB) domain displays a preference toward the third of the three KRIT1 NPX(Y/F) motifs. We determine the 2.75 Å co-crystal structure of the CCM2 PTB domain with a peptide corresponding to KRIT1(NPX(Y/F)3), revealing a Dab-like PTB fold for CCM2 and its interaction with KRIT1(NPX(Y/F)3). We find that several disease-associated missense mutations in CCM2 have the potential to interrupt the KRIT1-CCM2 interaction by destabilizing the CCM2 PTB domain and that a KRIT1 mutation also disrupts this interaction. We therefore provide new insights into the architecture of CCM2 and how the CCM complex is disrupted in CCM disease.
Collapse
Affiliation(s)
- Oriana S Fisher
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Weizhi Liu
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Rong Zhang
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Amy L Stiegler
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sondhya Ghedia
- the Department of Clinical Genetics, Royal North Shore Hospital, Pacific Highway, St. Leonards, New South Wales 2065, Australia, and
| | | | - Titus J Boggon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,
| |
Collapse
|
33
|
Stiegler AL, Zhang R, Liu W, Boggon TJ. Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem 2014; 289:25362-73. [PMID: 25059659 DOI: 10.1074/jbc.m114.584011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sorting nexin 17 (SNX17) is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. SNX17 localizes to early endosomes where it directly binds NPX(Y/F) motifs in the cytoplasmic tails of its target receptors to mediate their rates of endocytic internalization, recycling, and/or degradation. SNX17 has also been implicated in mediating cell signaling and can interact with cytoplasmic proteins. KRIT1 (Krev interaction trapped 1), a cytoplasmic adaptor protein associated with cerebral cavernous malformations, has previously been shown to interact with SNX17. Here, we demonstrate that SNX17 indeed binds directly to KRIT1 and map the binding to the second Asn-Pro-Xaa-Tyr/Phe (NPX(Y/F)) motif in KRIT1. We further characterize the interaction as being mediated by the FERM domain of SNX17. We present the co-crystal structure of SNX17-FERM with the KRIT1-NPXF2 peptide to 3.0 Å resolution and demonstrate that the interaction is highly similar in structure and binding affinity to that between SNX17 and P-selectin. We verify the molecular details of the interaction by site-directed mutagenesis and pulldown assay and thereby confirm that the major binding site for SNX17 is confined to the NPXF2 motif in KRIT1. Taken together, our results verify a direct interaction between SNX17 and KRIT1 and classify KRIT1 as a SNX17 binding partner.
Collapse
Affiliation(s)
- Amy L Stiegler
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Rong Zhang
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Weizhi Liu
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Titus J Boggon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7. [PMID: 24481819 DOI: 10.1242/jcs.138388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Collapse
Affiliation(s)
- Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
35
|
Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2013; 71:1881-92. [PMID: 24287896 DOI: 10.1007/s00018-013-1532-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, SHM B-316A, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
36
|
Zhang H, Chang YC, Brennan ML, Wu J. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. J Mol Cell Biol 2013; 6:128-39. [PMID: 24287201 DOI: 10.1093/jmcb/mjt044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rap1-interacting adaptor molecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 Å. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rap1:RIAM association, leading to a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM mediates Rap1-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their small GTPase partners.
Collapse
Affiliation(s)
- Hao Zhang
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
37
|
Gingras AR, Puzon-McLaughlin W, Ginsberg MH. The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 2013; 288:23639-49. [PMID: 23814056 PMCID: PMC3745310 DOI: 10.1074/jbc.m113.462911] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/19/2013] [Indexed: 12/31/2022] Open
Abstract
Loss of function mutation in Krev interaction trapped 1 (KRIT1) causes autosomal dominant familial cerebral cavernous malformations and disrupts cardiovascular development. The biological function of KRIT1 requires that its FERM (band 4.1, ezrin, radixin, moesin) domain physically interact with both the small GTPase Rap1 and the cytoplasmic tail of the Heart of glass (HEG1) membrane anchor. In this study, we show that the KRIT1 FERM domain can bind both Rap1 and HEG1 simultaneously, and we solved the crystal structure of the KRIT1-Rap1-HEG1 ternary complex. Rap1 binds on the surface of the F1 and F2 subdomains, in an interaction that leaves its Switch II region accessible to other potential effectors. HEG1 binds in a hydrophobic pocket at the KRIT1 F1 and F3 interface, and there is no overlap with the Rap1-binding site. Indeed, the affinity of KRIT1 or the KRIT1-Rap1 complex for HEG1 is comparable (Kd = 1.2 and 0.96 μm, respectively) showing that there is no competition between the two sites. Furthermore, analysis of this structure revealed a specific ionic interaction between the F2 lobe of KRIT1 and Rap1 that could explain the remarkable Rap1 specificity of KRIT1. This structural insight enabled design of KRIT1(K570I), a mutant that binds Rap1 with 8-fold lower affinity and exhibits increased binding to HRas. These data show that HEG1 can recruit the Rap1-KRIT complex to the plasma membrane where Rap1's Switch II region remains accessible and reveals an important determinant of KRIT1's specificity for Rap1.
Collapse
Affiliation(s)
- Alexandre R Gingras
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
38
|
Chrzanowska-Wodnicka M. Distinct functions for Rap1 signaling in vascular morphogenesis and dysfunction. Exp Cell Res 2013; 319:2350-9. [PMID: 23911990 DOI: 10.1016/j.yexcr.2013.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
Rap1 signaling is important for both major processes of vessel formation: vasculogenesis, or de novo vessel formation, and angiogenesis, sprouting of new vessels from pre-existing ones. We provide an overview of genetic studies in mice and zebrafish and discuss some of the proposed underlying mechanisms derived from cellular models, with particular emphasis on Rap1's role in angiogenesis, maintenance of endothelial barrier and connection with cerebral cavernous malformation (CCM), a neurological deficit that leads to seizures and lethal stroke. Lastly, we provide a brief summary of studies in cardiac and smooth muscle cells, where the Epac-Rap1 signaling axis is emerging as an important regulator of contractility.
Collapse
|
39
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Juanita M Phang
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiang Yu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna V Sokolova
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Heba Alkhamici
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Stella M Valenzuela
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M G Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia; School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Liu W, Boggon TJ. Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:494-8. [PMID: 23695561 DOI: 10.1107/s1744309113010762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
Abstract
Integrin cytoplasmic domain-associated protein-1 (ICAP1) is a suppressor of integrin activation and directly binds to the cytoplasmic tail of β1 integrins; its binding suppresses integrin activation by competition with talin. Krev/Rap1 interaction trapped-1 (KRIT1) releases ICAP1 suppression of integrin activation by sequestering ICAP1 away from integrin cytoplasmic tails. Here, the cocrystal structure of the PTB domain of ICAP1 in complex with a 29-amino-acid fragment (residues 170-198) of KRIT1 is presented to 1.7 Å resolution [the resolution at which 〈I/σ(I)〉 = 2.9 was 1.83 Å]. In previous studies, the structure of ICAP1 with integrin β1 was determined to 3.0 Å resolution and that of ICAP1 with the N-terminal portion of KRIT1 (residues 1-198) was determined to 2.54 Å resolution; therefore, this study provides the highest resolution structure yet of ICAP1 and allows further detailed analysis of the interaction of ICAP1 with its minimal binding region in KRIT1.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
41
|
Patel M, Côté JF. Ras GTPases' interaction with effector domains: Breaking the families' barrier. Commun Integr Biol 2013; 6:e24298. [PMID: 23986800 PMCID: PMC3737747 DOI: 10.4161/cib.24298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/01/2023] Open
Abstract
The Ras superfamily of proteins consists of five branches: Ras, Rho, Arf, Rab and Ran subfamilies. These proteins are involved in a plethora of biological functions spanning cytoskeletal organization, cell proliferation, transcription and intracellular trafficking. Ras-Binding Domains (RBDs) have classically been identified as autonomous ubiquitin-like folded regions that bind certain activated Ras GTPases of the Ras subfamily. In general, RBDs in many proteins have been tagged with membrane-targeting functions as in the case of the well-characterized c-Raf-RBD/Ras interaction. However, it is becoming apparent that the definition and functions of RBDs need to be revamped in order to reflect the new discoveries associated with this domain. Here, we discuss in more detail the recent advances associated with these RBDs. We highlight research identifying RBDs in formins, ELMOs and the RhoGEF, Syx and discuss the emerging role for RBDs in controlling autoinhibition relief and the newly recognized versatility of RBDs to interact with Rho and Arf family GTPases. In addition, these recent findings raise the exciting hypothesis that functional RBDs remain hidden in the proteome and are ready to be uncovered.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC Canada
| | | |
Collapse
|
42
|
Yang B, Sun H, Li W, Zhu C, Jian B, Hou W, Wang H, Yuan J, Yao B. Expression of Rap1 During Germ Cell Development in the Rat and Its Functional Implications in 2-Methoxyacetic Acid-induced Spermatocyte Apoptosis. Urology 2013; 81:696.e1-8. [DOI: 10.1016/j.urology.2012.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/09/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|
43
|
Ghai R, Bugarcic A, Liu H, Norwood SJ, Skeldal S, Coulson EJ, Li SSC, Teasdale RD, Collins BM. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc Natl Acad Sci U S A 2013; 110:E643-52. [PMID: 23382219 PMCID: PMC3581954 DOI: 10.1073/pnas.1216229110] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transit of proteins through the endosomal organelle following endocytosis is critical for regulating the homeostasis of cell-surface proteins and controlling signal transduction pathways. However, the mechanisms that control these membrane-transport processes are poorly understood. The Phox-homology (PX) domain-containing proteins sorting nexin (SNX) 17, SNX27, and SNX31 have emerged recently as key regulators of endosomal recycling and bind conserved Asn-Pro-Xaa-Tyr-sorting signals in transmembrane cargos via an atypical band, 4.1/ezrin/radixin/moesin (FERM) domain. Here we present the crystal structure of the SNX17 FERM domain bound to the sorting motif of the P-selectin adhesion protein, revealing both the architecture of the atypical FERM domain and the molecular basis for recognition of these essential sorting sequences. We further show that the PX-FERM proteins share a promiscuous ability to bind a wide array of putative cargo molecules, including receptor tyrosine kinases, and propose a model for their coordinated molecular interactions with membrane, cargo, and regulatory proteins.
Collapse
Affiliation(s)
| | | | - Huadong Liu
- Department of Biochemistry and
- Siebens Drake Medical Research Institute, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | - Sune Skeldal
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; and
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; and
| | - Shawn Shun-Cheng Li
- Department of Biochemistry and
- Siebens Drake Medical Research Institute, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
44
|
Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 2013; 49:719-29. [PMID: 23317506 DOI: 10.1016/j.molcel.2012.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/04/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
KRIT1 (Krev/Rap1 Interaction Trapped-1) mutations are observed in ∼40% of autosomal-dominant cerebral cavernous malformations (CCMs), a disease occurring in up to 0.5% of the population. We show that KRIT1 functions as a switch for β1 integrin activation by antagonizing ICAP1 (Integrin Cytoplasmic Associated Protein-1)-mediated modulation of "inside-out" activation. We present cocrystal structures of KRIT1 with ICAP1 and ICAP1 with integrin β1 cytoplasmic tail to 2.54 and 3.0 Å resolution (the resolutions at which I/σI = 2 are 2.75 and 3.0 Å, respectively). We find that KRIT1 binds ICAP1 by a bidentate surface, that KRIT1 directly competes with integrin β1 to bind ICAP1, and that KRIT1 antagonizes ICAP1-modulated integrin activation using this site. We also find that KRIT1 contains an N-terminal Nudix domain, in a region previously designated as unstructured. We therefore provide insights to integrin regulation and CCM-associated KRIT1 function.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|