1
|
Li G, Liu L, Du W, Cao H. Local flux coordination and global gene expression regulation in metabolic modeling. Nat Commun 2023; 14:5700. [PMID: 37709734 PMCID: PMC10502109 DOI: 10.1038/s41467-023-41392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Genome-scale metabolic networks (GSMs) are fundamental systems biology representations of a cell's entire set of stoichiometrically balanced reactions. However, such static GSMs do not incorporate the functional organization of metabolic genes and their dynamic regulation (e.g., operons and regulons). Specifically, there are numerous topologically coupled local reactions through which fluxes are coordinated; the global growth state often dynamically regulates many gene expression of metabolic reactions via global transcription factor regulators. Here, we develop a GSM reconstruction method, Decrem, by integrating locally coupled reactions and global transcriptional regulation of metabolism by cell state. Decrem produces predictions of flux and growth rates, which are highly correlated with those experimentally measured in both wild-type and mutants of three model microorganisms Escherichia coli, Saccharomyces cerevisiae, and Bacillus subtilis under various conditions. More importantly, Decrem can also explain the observed growth rates by capturing the experimentally measured flux changes between wild-types and mutants. Overall, by identifying and incorporating locally organized and regulated functional modules into GSMs, Decrem achieves accurate predictions of phenotypes and has broad applications in bioengineering, synthetic biology, and microbial pathology.
Collapse
Affiliation(s)
- Gaoyang Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li Liu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Wei Du
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China.
| |
Collapse
|
2
|
Liu Y, Cheng H, Li H, Zhang Y, Wang M. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Appl Environ Microbiol 2023; 89:e0023023. [PMID: 37272803 PMCID: PMC10305015 DOI: 10.1128/aem.00230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Bacillus subtilis has been widely used and generally recognized as a safe host for the production of recombinant proteins, high-value chemicals, and pharmaceuticals. Thus, its metabolic engineering attracts significant attention. Nevertheless, the limited availability of selective markers makes this process difficult and time-consuming, especially in the case of multistep biosynthetic pathways. Here, we employ CRISPR/Cas9 technology to build an easy cloning toolkit that addresses commonly encountered obstacles in the metabolic engineering of B. subtilis, including the chromosomal integration locus, promoter, terminator, and guide RNA (gRNA) target. Six promoters were characterized, and the promoter strengths ranged from 0.9- to 23-fold that of the commonly used strong promoter P43. We characterized seven terminators in B. subtilis, and the termination efficiencies (TEs) of the seven terminators are all more than 90%. Six gRNA targets were designed upstream of the promoter and downstream of the terminator. Using a green fluorescent protein (GFP) reporter, we confirmed integration efficiency with the single-locus integration site is up to 100%. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important product, lycopene. By heterologous expression of the essential genes for lycopene synthesis on the B. subtilis genome, a total of 13 key genes involved in the lycopene biosynthetic pathway were manipulated. Moreover, our findings showed that the gene cluster ispG-idi-dxs-ispD could positively affect the production of lycopene, while the cluster dxr-ispE-ispF-ispH had a negative effect on lycopene production. Hence, our multilocus integration strategy can facilitate the pathway assembly for production of complex chemicals and pharmaceuticals in B. subtilis. IMPORTANCE We present a toolkit that allows for rapid cloning procedures and one-step subcloning to move from plasmid-based expression to stable chromosome integration and expression in a production strain in less than a week. The utility of the customized tool was demonstrated by integrating the MEP (2C-methyl-d-erythritol-4-phosphate) pathway, part of the pentose phosphate pathway (PPP), and the hetero-lycopene biosynthesis genes by stable expression in the genome. The tool could be useful to engineer B. subtilis strains through diverse recombination events and ultimately improve its potential and scope of industrial application as biological chassis.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haoni Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingzhe Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
3
|
Bi X, Cheng Y, Xu X, Lv X, Liu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis. Biotechnol Bioeng 2023; 120:1623-1639. [PMID: 36788025 DOI: 10.1002/bit.28355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Wu Y, Kawabata H, Kita K, Ishikawa S, Tanaka K, Yoshida KI. Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis. Microb Cell Fact 2022; 21:266. [PMID: 36539761 PMCID: PMC9768902 DOI: 10.1186/s12934-022-01993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. RESULTS The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP+ as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. CONCLUSION The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.
Collapse
Affiliation(s)
- Yuzheng Wu
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Honami Kawabata
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kyosuke Kita
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kan Tanaka
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan ,grid.419082.60000 0004 1754 9200Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| |
Collapse
|
5
|
Grinanda D, Hirasawa T. Effectiveness of the Bacillus subtilis genome-reduced strain as an ethanol production host. Biosci Biotechnol Biochem 2022; 86:543-551. [PMID: 35102407 DOI: 10.1093/bbb/zbac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/14/2022]
Abstract
We investigated the performance of a genome-reduced strain of Bacillus subtilis MGB874, whose 0.87 Mbp of genomic DNA was cumulatively deleted, as an ethanol production host. A recombinant strain A267_EtOH was constructed by introducing the pdc and adhB genes from Zymomonas mobilis, both of which were expressed from an isopropyl-β-d-1-thiogalactopyranoside-inducible spac promoter, into the A267 strain, a tryptophan prototrophic derivative of the MGB874 with disruption of metabolic pathways for producing lactic acid, acetic acid, and acetoin. Focusing on the stationary phase in fed-batch fermentation, 1.6 g L-1 ethanol was produced by the A267_EtOH strain after 144 h. Moreover, its ethanol production further increased by approximately 3.7-fold (5.9 g L-1) at 80 h through replacing the spac promoter for expressing pdc and adhB genes with the lytR promoter and the yield was about 112%. These results indicate that the MGB874 is an effective host for ethanol production during the stationary phase.
Collapse
Affiliation(s)
- Dita Grinanda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Sanchez-Vizuete P, Dergham Y, Bridier A, Deschamps J, Dervyn E, Hamze K, Aymerich S, Le Coq D, Briandet R. The coordinated population redistribution between Bacillus subtilis submerged biofilm and liquid-air pellicle. Biofilm 2022; 4:100065. [PMID: 35024609 PMCID: PMC8732777 DOI: 10.1016/j.bioflm.2021.100065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bacillus subtilis is a widely used bacterial model to decipher biofilm formation, genetic determinants and their regulation. For several years, studies were conducted on colonies or pellicles formed at the interface with air, but more recent works showed that non-domesticated strains were able to form thick and structured biofilms on submerged surfaces. Taking advantage of time-lapse confocal laser scanning microscopy, we monitored bacterial colonization on the surface and observed an unexpected biphasic submerged biofilm development. Cells adhering to the surface firstly form elongated chains before being suddenly fragmented and released as free motile cells in the medium. This switching coincided with an oxygen depletion in the well which preceded the formation of the pellicle at the liquid-air interface. Residual bacteria still associated with the solid surface at the bottom of the well started to express matrix genes under anaerobic metabolism to build the typical biofilm protruding structures.
Collapse
Affiliation(s)
- Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.,Faculty of Science, Lebanese University, 1003, Beirut, Lebanon
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Faculty of Science, Lebanese University, 1003, Beirut, Lebanon
| | - Stéphane Aymerich
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Well Knowledge of the Physiology of Actinobacillus succinogenes to Improve Succinic Acid Production. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anaerobic fermentation of glucose and fructose was performed by Actinobacillus succinogenes 130Z in batch mode using three different volume of bioreactors (0.25, 1 and 3 L). The strategy used was the addition of MgCO3 and fumaric acid (FA) as mineral carbon and the precursor of succinic acid, respectively, in the culture media. Kinetics and yields of succinic acid (SA) production in the presence of sugars in a relevant synthetic medium were investigated. Work on the bench scale (3 L) showed the best results when compared to the small anaerobic reactor’s succinic acid yield and productivity after 96 h of fermentation. For an equal mixture of glucose and fructose used as substrate at 0.4 mol L−1 with the addition of FA as enhancer and under proven optimal conditions (pH 6.8, T = 37 °C, anaerobic condition and 1% v/v of biomass), about 0.5 mol L−1 of SA was obtained, while the theoretical production of succinic acid was 0.74 mol L−1. This concentration corresponded to an experimental yield of 0.88 (mol-C SA/mol-C sugars consumed anaerobically) and a volumetric productivity of 0.48 g-SA L−1 h−1. The succinic acid yield and concentration obtained were significant and in the order of those reported in the literature.
Collapse
|
8
|
Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis. mBio 2021; 12:mBio.03438-20. [PMID: 33824210 PMCID: PMC8092299 DOI: 10.1128/mbio.03438-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new mechanism for NADPH balancing was discovered in Bacillus subtilis. It pivots on the bifunctional enzyme YtsJ, which is known to catalyze NADP-dependent malate decarboxylation. We found that in the presence of excessive NADPH, the same enzyme switches to malolactic activity and creates a transhydrogenation cycle that ultimately converts NADPH to NADH. This provides a regulated mechanism to immediately adjust NADPH/NADP+ in response to instantaneous needs. The redox cofactor NADPH is required as a reducing equivalent in about 100 anabolic reactions throughout metabolism. To ensure fitness under all conditions, the demand is fulfilled by a few dehydrogenases in central carbon metabolism that reduce NADP+ with electrons derived from the catabolism of nutrients. In the case of Bacillus subtilis growing on glucose, quantitative flux analyses indicate that NADPH production largely exceeds biosynthetic needs, suggesting a hitherto unknown mechanism for NADPH balancing. We investigated the role of the four malic enzymes present in B. subtilis that could bring about a metabolic cycle for transhydrogenation of NADPH into NADH. Using quantitative 13C metabolic flux analysis, we found that isoform YtsJ alone contributes to NADPH balancing in vivo and demonstrated relevant NADPH-oxidizing activity by YtsJ in vitro. To our surprise, we discovered that depending on NADPH, YtsJ switches activity from a pyruvate-producing malic enzyme to a lactate-generating malolactic enzyme. This switch in activity allows YtsJ to adaptively compensate for cellular NADPH over- and underproduction upon demand. Finally, NADPH-dependent bifunctional activity was also detected in the YtsJ homolog in Escherichia coli MaeB. Overall, our study extends the known redox cofactor balancing mechanisms by providing first-time evidence that the type of catalyzed reaction by an enzyme depends on metabolite abundance.
Collapse
|
9
|
Castillo Alfonso F, Vigueras-Ramírez G, Rosales-Colunga LM, Del Monte-Martínez A, Olivares Hernández R. Propionate as the preferred carbon source to produce 3-indoleacetic acid in B. subtilis: comparative flux analysis using five carbon sources. Mol Omics 2021; 17:554-564. [PMID: 33972977 DOI: 10.1039/d1mo00039j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
3-Indoleacetic acid (IAA) is a phytohormone that promotes plant root growth, improving the use of nutrients and crop yield and it is been reported that bacteria of the genus Bacillus are capable of producing this phytohormone under various growth conditions. Considering this metabolic capability, in this work, Bacillus subtilis was cultivated in five different carbon sources: glucose, acetate, propionate, citrate and glycerol; and l-tryptophan (Trp) was used as an inducer for the IAA production. Based on the experimental results it was observed that the highest growth rate was achieved using glucose as a carbon source (μ = 0.12 h-1) and the lowest value was for citrate (μ = 0.08 h-1). On the other hand, the highest IAA production was obtained using propionate Yp/s = 0.975 (gIAA gTrp-1) and the lowest was when glucose was the substrate Yp/s = 0.803 (gIAA gTrp-1). In order to explore the metabolism and understand these differences, the experimental data was used to calculate the flux distribution using the genomic-scale metabolic model of Bacillus subtilis. Performing a comparative analysis it is observed that the fluxes towards precursors increase when propionate is the carbon source.
Collapse
Affiliation(s)
- Freddy Castillo Alfonso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico.
| | - Luis Manuel Rosales-Colunga
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, S.L.P, Mexico
| | - Alberto Del Monte-Martínez
- Centro de Estudios de Proteínas, Univerisdad de La Habana, Calle 25 #455, e/J e I, vedado, 10400, Havana, Cuba
| | - Roberto Olivares Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de Mexico, 05348, Mexico.
| |
Collapse
|
10
|
Shen J, Chen J, Solem C, Jensen PR, Liu JM. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors. Appl Environ Microbiol 2020; 86:e02114-20. [PMID: 33036990 PMCID: PMC7688235 DOI: 10.1128/aem.02114-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/22/2023] Open
Abstract
Identifying and overcoming the limitations preventing efficient high-yield production of chemicals remain important tasks in metabolic engineering. In an attempt to rewire Corynebacterium glutamicum to produce ethanol, we attained a low yield (63% of the theoretical) when using resting cells on glucose, and large amounts of succinate and acetate were formed. To prevent the by-product formation, we knocked out the malate dehydrogenase and replaced the native E3 subunit of the pyruvate dehydrogenase complex (PDHc) with that from Escherichia coli, which is active only under aerobic conditions. However, this tampering resulted in a 10-times-reduced glycolytic flux as well as a greatly increased NADH/NAD+ ratio. When we replaced glucose with fructose, we found that the glycolytic flux was greatly enhanced, which led us to speculate whether the source of reducing power could be the pentose phosphate pathway (PPP) that is bypassed when fructose is metabolized. Indeed, after shutting down the PPP by deleting the zwf gene, encoding glucose-6-phosphate dehydrogenase, the ethanol yield on glucose increased significantly, to 92% of the theoretical. Based on that, we managed to rechannel the metabolism of C. glutamicum into d-lactate with high yield, 98%, which is the highest that has been reported. It is further demonstrated that the PPP-inactivated platform strain can offer high-yield production of valuable chemicals using lactose contained in dairy waste as feedstock, which paves a promising way for potentially turning dairy waste into a valuable product.IMPORTANCE The widely used industrial workhorse C. glutamicum possesses a complex anaerobic metabolism under nongrowing conditions, and we demonstrate here that the PPP in resting C. glutamicum is a source of reducing power that can interfere with otherwise redox-balanced metabolic pathways and reduce yields of desired products. By harnessing this physiological insight, we employed the PPP-inactivated platform strains to produce ethanol, d-lactate, and alanine using the dairy waste whey permeate as the feedstock. The production yield was high, and our results show that inactivation of the PPP flux in resting cells is a promising strategy when the aim is to use nongrowing C. glutamicum cells for producing valuable compounds. Overall, we describe the benefits of disrupting the oxidative PPP in nongrowing C. glutamicum and provide a feasible approach toward waste valorization.
Collapse
Affiliation(s)
- Jing Shen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jun Chen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jian-Ming Liu
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Samarah LZ, Khattar R, Tran TH, Stopka SA, Brantner CA, Parlanti P, Veličković D, Shaw JB, Agtuca BJ, Stacey G, Paša-Tolić L, Tolić N, Anderton CR, Vertes A. Single-Cell Metabolic Profiling: Metabolite Formulas from Isotopic Fine Structures in Heterogeneous Plant Cell Populations. Anal Chem 2020; 92:7289-7298. [PMID: 32314907 DOI: 10.1021/acs.analchem.0c00936] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Characterization of the metabolic heterogeneity in cell populations requires the analysis of single cells. Most current methods in single-cell analysis rely on cell manipulation, potentially altering the abundance of metabolites in individual cells. A small sample volume and the chemical diversity of metabolites are additional challenges in single-cell metabolomics. Here, we describe the combination of fiber-based laser ablation electrospray ionization (f-LAESI) with 21 T Fourier transform ion cyclotron resonance mass spectrometry (21TFTICR-MS) for in situ single-cell metabolic profiling in plant tissue. Single plant cells infected by bacteria were selected and sampled directly from the tissue without cell manipulation through mid-infrared ablation with a fine optical fiber tip for ionization by f-LAESI. Ultrahigh performance 21T-FTICR-MS enabled the simultaneous capture of isotopic fine structures (IFSs) for 47 known and 11 unknown compounds, thus elucidating their elemental compositions from single cells and providing information on metabolic heterogeneity in the cell population.
Collapse
Affiliation(s)
- Laith Z Samarah
- Department of Chemistry, George Washington University, Washington D.C. 20052, United States
| | - Rikkita Khattar
- Department of Chemistry, George Washington University, Washington D.C. 20052, United States
| | - Tina H Tran
- Department of Chemistry, George Washington University, Washington D.C. 20052, United States
| | - Sylwia A Stopka
- Department of Chemistry, George Washington University, Washington D.C. 20052, United States
| | - Christine A Brantner
- Nanofabrication and Imaging Center, George Washington University, Washington D.C. 20052, United States
| | - Paola Parlanti
- Nanofabrication and Imaging Center, George Washington University, Washington D.C. 20052, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Akos Vertes
- Department of Chemistry, George Washington University, Washington D.C. 20052, United States
| |
Collapse
|
12
|
Wang D, Kim H, Lee S, Kim DH, Joe MH. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10. Microb Cell Fact 2020; 19:101. [PMID: 32398084 PMCID: PMC7216703 DOI: 10.1186/s12934-020-01361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer and has been applied in many fields. Bacillus siamensis SB1001 was a newly isolated poly-γ-glutamic acid producer with sucrose as its optimal carbon source. To improve the utilization of carbon source, and then molasses can be effectively used for γ-PGA production, 60cobalt gamma rays was used to mutate the genes of B. siamensis SB1001. Results Bacillus siamensis IR10 was screened for the production of γ-PGA from untreated molasses. In batch fermentation, 17.86 ± 0.97 g/L γ-PGA was obtained after 15 h, which is 52.51% higher than that of its parent strain. Fed-batch fermentation was performed to further improve the yield of γ-PGA with untreated molasses, yielding 41.40 ± 2.01 g/L of γ-PGA with a productivity of 1.73 ± 0.08 g/L/h. An average γ-PGA productivity of 1.85 g/L/h was achieved in the repeated fed-batch fermentation. This is the first report of such a high γ-PGA productivity. The analysis of the enzyme activities showed that they were affected by the carbon sources, enhanced ICDH and GDH, and decreased ODHC, which are important for γ-PGA production. Conclusion These results suggest that untreated molasses can be used for economical and industrial-scale production of γ-PGA by B. siamensis IR10.![]()
Collapse
Affiliation(s)
- Dexin Wang
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.,Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics,Center for Fungal Pathogenesis, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyangmi Kim
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, Republic of Korea
| | - Sungbeom Lee
- Radiation Research Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics,Center for Fungal Pathogenesis, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ho Joe
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
13
|
Sha Y, Sun T, Qiu Y, Zhu Y, Zhan Y, Zhang Y, Xu Z, Li S, Feng X, Xu H. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6263-6274. [PMID: 31088055 DOI: 10.1021/acs.jafc.9b01755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of commercial poly-γ-glutamic acid (γ-PGA) production by glutamate-dependent strains requires understanding the glutamate dependence mechanism in the strains. Here, we first systematically analyzed the response pattern of Bacillus subtilis to glutamate addition by comparative transcriptomics. Glutamate addition induced great changes in intracellular metabolite concentrations and significantly upregulated genes involved in the central metabolic pathways. Subsequent gene overexpression experiments revealed that only the enhancement of glutamate synthesis pathway successfully led to γ-PGA accumulation without glutamate addition, indicating the key role of intracellular glutamate for γ-PGA synthesis in glutamate-dependent strains. Finally, by a combination of metabolic engineering targets, the γ-PGA titer reached 10.21 ± 0.42 g/L without glutamate addition. Exogenous glutamate further enhanced the γ-PGA yield (35.52 ± 0.26 g/L) and productivity (0.74 g/(L h)) in shake-flask fermentation. This work provides insights into the glutamate dependence mechanism in B. subtilis and reveals potential molecular targets for increasing economical γ-PGA production.
Collapse
Affiliation(s)
- Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Yijing Zhan
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
- Nanjing Shineking Biotech Co., Ltd. , Nanjing 210061 , People's Republic of China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , People's Republic of China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| |
Collapse
|
14
|
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A. Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase. Appl Microbiol Biotechnol 2018; 102:6613-6625. [DOI: 10.1007/s00253-018-9106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
15
|
Kanno N, Matsuura K, Haruta S. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris. Microbes Environ 2018. [PMID: 29540639 PMCID: PMC5877347 DOI: 10.1264/jsme2.me17143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD+/NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.
Collapse
Affiliation(s)
- Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
16
|
Badur MG, Metallo CM. Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metab Eng 2018; 45:95-108. [PMID: 29199104 PMCID: PMC5927620 DOI: 10.1016/j.ymben.2017.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/11/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Metabolic dysfunction has reemerged as an essential hallmark of tumorigenesis, and metabolic phenotypes are increasingly being integrated into pre-clinical models of disease. The complexity of these metabolic networks requires systems-level interrogation, and metabolic flux analysis (MFA) with stable isotope tracing present a suitable conceptual framework for such systems. Here we review efforts to elucidate mechanisms through which metabolism influences tumor growth and survival, with an emphasis on applications using stable isotope tracing and MFA. Through these approaches researchers can now quantify pathway fluxes in various in vitro and in vivo contexts to provide mechanistic insights at molecular and physiological scales respectively. Knowledge and discoveries in cancer models are paving the way toward applications in other biological contexts and disease models. In turn, MFA approaches will increasingly help to uncover new therapeutic opportunities that enhance human health.
Collapse
Affiliation(s)
- Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, USA; Moores Cancer Center, University of California, San Diego, La Jolla, USA; Diabetes and Endocrinology Research Center, University of California, San Diego, La Jolla, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
17
|
Liu H, Cheng T, Zou H, Zhang H, Xu X, Sun C, Aboulnaga E, Cheng Z, Zhao G, Xian M. High titer mevalonate fermentation and its feeding as a building block for isoprenoids (isoprene and sabinene) production in engineered Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
MOU H, HONG M, LIU XY, LI MC, HUANG MZ, CHU J, ZHUANG YP, ZHANG SL. Accurate Determination of Isotopic Abundance of Intracellular Metabolites of Saccharopolysporaerythraea Based on Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Okahashi N, Matsuda F, Yoshikawa K, Shirai T, Matsumoto Y, Wada M, Shimizu H. Metabolic engineering of isopropyl alcohol-producingEscherichia colistrains with13C-metabolic flux analysis. Biotechnol Bioeng 2017; 114:2782-2793. [DOI: 10.1002/bit.26390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/02/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Nobuyuki Okahashi
- Department of Bioinfomatic Engineering; Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| | - Fumio Matsuda
- Department of Bioinfomatic Engineering; Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| | - Katsunori Yoshikawa
- Department of Bioinfomatic Engineering; Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| | - Tomokazu Shirai
- Synthetic Chemicals Laboratory; Mitsui Chemicals Inc.; Mobara Chiba Japan
| | - Yoshiko Matsumoto
- Synthetic Chemicals Laboratory; Mitsui Chemicals Inc.; Mobara Chiba Japan
| | - Mitsufumi Wada
- Synthetic Chemicals Laboratory; Mitsui Chemicals Inc.; Mobara Chiba Japan
| | - Hiroshi Shimizu
- Department of Bioinfomatic Engineering; Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| |
Collapse
|
20
|
Bulusu V, Prior N, Snaebjornsson MT, Kuehne A, Sonnen KF, Kress J, Stein F, Schultz C, Sauer U, Aulehla A. Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development. Dev Cell 2017; 40:331-341.e4. [PMID: 28245920 PMCID: PMC5337618 DOI: 10.1016/j.devcel.2017.01.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 12/01/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022]
Abstract
How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from 13C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation. Identification of glycolytic activity gradient in mouse presomitic mesoderm Development of a pyruvate FRET-reporter mouse model Real-time imaging reveals pyruvate gradient dynamics Metabolic state is linked to presomitic mesoderm cell differentiation
Collapse
Affiliation(s)
- Vinay Bulusu
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Nicole Prior
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marteinn T Snaebjornsson
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katharina F Sonnen
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jana Kress
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
21
|
Tanaka K, Natsume A, Ishikawa S, Takenaka S, Yoshida KI. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb Cell Fact 2017; 16:67. [PMID: 28431560 PMCID: PMC5401388 DOI: 10.1186/s12934-017-0682-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. RESULTS When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. CONCLUSIONS The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.
Collapse
Affiliation(s)
- Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Ayane Natsume
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, Kobe, Japan
| | - Shu Ishikawa
- Graduate School of Science, Technology and Innovation, Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Shinji Takenaka
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, Kobe, Japan
| | - Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
22
|
Rodrigues CJC, Pereira RFS, Fernandes P, Cabral JMS, de Carvalho CCCR. Cultivation-based strategies to find efficient marine biocatalysts. Biotechnol J 2017; 12. [PMID: 28294564 DOI: 10.1002/biot.201700036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 11/05/2022]
Abstract
Marine bacteria have evolved to survive in the marine environment by using unique physiological, biochemical and metabolic features and the ability to produce enzymes and compounds which may have commercial value. The Azores archipelago presents several ecosystems with strong volcanic activity where bacteria thrive under e.g. high temperatures. In this study, samples collected in the island of São Miguel were screened for biocatalysts possessing e.g. lipase, esterase, amylase, and inulinase activities. After isolation of several hundred bacterial strains, high throughput screening methods allowed the fast identification of biocatalysts. The first cultivation tests were performed on 24-wells microtiter plates with online oxygen monitoring and bacteria able to grow within 24 h were selected for further process development. Bacteria able to produce the desired enzymes were selected for the first round of tests. Four Bacillus strains presented high inulinase activity. The next step in process development was the determination of key parameters for enzyme activity such as temperature, pH, salinity and substrate concentration. The highest inulinase activity, 2.2 gsugars /gprotein h, was attained when the supernatant of a culture of a Bacillus subtilis strain was used in a magnetically stirred bioreactor. This study demonstrates how bacterial strains from marine environments may be used successfully in biotechnological processes.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo F S Pereira
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
He L, Xiu Y, Jones JA, Baidoo EE, Keasling JD, Tang YJ, Koffas MA. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions. Metab Eng 2017; 39:247-256. [DOI: 10.1016/j.ymben.2016.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
|
24
|
Carvalho M, Roca C, Reis MAM. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. BIORESOURCE TECHNOLOGY 2016; 218:491-497. [PMID: 27394995 DOI: 10.1016/j.biortech.2016.06.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.
Collapse
Affiliation(s)
- Margarida Carvalho
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Christophe Roca
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria A M Reis
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
25
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
26
|
Bradfield MFA, Nicol W. The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type Actinobacillus succinogenes. Appl Microbiol Biotechnol 2016; 100:9641-9652. [PMID: 27631960 DOI: 10.1007/s00253-016-7763-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
Increased pentose phosphate pathway flux, relative to total substrate uptake flux, is shown to enhance succinic acid (SA) yields under continuous, non-growth conditions of Actinobacillus succinogenes biofilms. Separate fermentations of glucose and xylose were conducted in a custom, continuous biofilm reactor at four different dilution rates. Glucose-6-phosphate dehydrogenase assays were performed on cell extracts derived from in situ removal of biofilm at each steady state. The results of the assays were coupled to a kinetic model that revealed an increase in oxidative pentose phosphate pathway (OPPP) flux relative to total substrate flux with increasing SA titre, for both substrates. Furthermore, applying metabolite concentration data to metabolic flux models that include the OPPP revealed similar flux relationships to those observed in the experimental kinetic analysis. A relative increase in OPPP flux produces additional reduction power that enables increased flux through the reductive branch of the TCA cycle, leading to increased SA yields, reduced by-product formation and complete closure of the overall redox balance.
Collapse
Affiliation(s)
- Michael F A Bradfield
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, Private Bag X20, Pretoria, 0002, South Africa
| | - Willie Nicol
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, Private Bag X20, Pretoria, 0002, South Africa.
| |
Collapse
|
27
|
Fang F, Dai B, Zhao G, Zhao H, Sun C, Liu H, Xian M. In depth understanding the molecular response to the enhanced secretion of fatty acids in S accharomyces cerevisiae due to one-step gene deletion of acyl-CoA synthetases. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Niedenführ S, ten Pierick A, van Dam PTN, Suarez-Mendez CA, Nöh K, Wahl SA. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics. Biotechnol Bioeng 2015; 113:1137-47. [PMID: 26479486 DOI: 10.1002/bit.25859] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 10/12/2015] [Indexed: 11/09/2022]
Abstract
Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.
Collapse
Affiliation(s)
- Sebastian Niedenführ
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angela ten Pierick
- Department of Biotechnology, Delft University of Technology, 2628BC Delft, The Netherlands
| | - Patricia T N van Dam
- Department of Biotechnology, Delft University of Technology, 2628BC Delft, The Netherlands
| | - Camilo A Suarez-Mendez
- Department of Biotechnology, Delft University of Technology, 2628BC Delft, The Netherlands. .,Departamento de Procesos y Energia, Universidad Nacional de Colombia, Carrera 80 No. 65-223, Blq. M3, Medellin, Colombia.
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, 2628BC Delft, The Netherlands.
| |
Collapse
|
29
|
Mairinger T, Steiger M, Nocon J, Mattanovich D, Koellensperger G, Hann S. Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis. Anal Chem 2015; 87:11792-802. [PMID: 26513365 DOI: 10.1021/acs.analchem.5b03173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of (13)C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for (13)C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, (13)C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of Pichia pastoris employing two different tracers, i.e., 1,6(13)C2-glucose and uniformly labeled (13)C-glucose.
Collapse
Affiliation(s)
- Teresa Mairinger
- Department of Chemistry, University of Natural Resources and Life Sciences-BOKU Vienna , Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib) , Muthgasse 11, 1190 Vienna, Austria
| | - Matthias Steiger
- Austrian Centre of Industrial Biotechnology (acib) , Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences-BOKU Vienna , Muthgasse 18, 1190 Vienna, Austria
| | - Justyna Nocon
- Department of Biotechnology, University of Natural Resources and Life Sciences-BOKU Vienna , Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (acib) , Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences-BOKU Vienna , Muthgasse 18, 1190 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringerstrasse 38, 1090 Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, University of Natural Resources and Life Sciences-BOKU Vienna , Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib) , Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
30
|
Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R, Mariadassou M, Aymerich S, Hecker M, Noirot P, Becher D, Fromion V. Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng 2015; 32:232-243. [PMID: 26498510 DOI: 10.1016/j.ymben.2015.10.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/24/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by simplifying hypotheses. Here, we show that the constraint-based modeling method Resource Balance Analysis (RBA), calibrated using genome-wide absolute protein quantification data, accurately predicts resource allocation in the model bacterium Bacillus subtilis for a wide range of growth conditions. The regulation of most cellular processes is consistent with the objective of growth rate maximization except for a few suboptimal processes which likely integrate more complex objectives such as coping with stressful conditions and survival. As a proof of principle by using simulations, we illustrated how calibrated RBA could aid rational design of strains for maximizing protein production, offering new opportunities to investigate design principles in prokaryotes and to exploit them for biotechnological applications.
Collapse
Affiliation(s)
- Anne Goelzer
- INRA, UR1404, MaIAGE, F-78350 Jouy-en-Josas, France
| | - Jan Muntel
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | - Victor Chubukov
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthieu Jules
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Eric Prestel
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Rolf Nölker
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | | | - Stéphane Aymerich
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | - Philippe Noirot
- INRA, UMR Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech,UMR Micalis, F-78350 Jouy-en-Josas, France
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | | |
Collapse
|
31
|
Chou HH, Marx CJ, Sauer U. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 2015; 11:e1005007. [PMID: 25715029 PMCID: PMC4340650 DOI: 10.1371/journal.pgen.1005007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities.
Collapse
Affiliation(s)
- Hsin-Hung Chou
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Nikel PI, Chavarría M. Quantitative Physiology Approaches to Understand and Optimize Reducing Power Availability in Environmental Bacteria. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Huang L, Kim D, Liu X, Myers CR, Locasale JW. Estimating relative changes of metabolic fluxes. PLoS Comput Biol 2014; 10:e1003958. [PMID: 25412287 PMCID: PMC4238958 DOI: 10.1371/journal.pcbi.1003958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/01/2014] [Indexed: 01/24/2023] Open
Abstract
Fluxes are the central trait of metabolism and Kinetic Flux Profiling (KFP) is an effective method of measuring them. To generalize its applicability, we present an extension of the method that estimates the relative changes of fluxes using only relative quantitation of 13C-labeled metabolites. Such features are directly tailored to the more common experiment that performs only relative quantitation and compares fluxes between two conditions. We call our extension rKFP. Moreover, we examine the effects of common missing data and common modeling assumptions on (r)KFP, and provide practical suggestions. We also investigate the selection of measuring times for (r)KFP and provide a simple recipe. We then apply rKFP to 13C-labeled glucose time series data collected from cells under normal and glucose-deprived conditions, estimating the relative flux changes of glycolysis and its branching pathways. We identify an adaptive response in which de novo serine biosynthesis is compromised to maintain the glycolytic flux backbone. Together, these results greatly expand the capabilities of KFP and are suitable for broad biological applications. Metabolism underlies all biological processes, and its quantitative study is crucial for our understanding. The central trait of metabolism, metabolic fluxes, cannot be directly measured and are estimated usually through modeling. Existing modeling methods, however, are limited by poorly-characterized parameters, crude precision, or labor-intensiveness. Motivated by these limitations, and recognizing a most common goal in the field of comparing the fluxes between two conditions, we develop an extension of an existing method that takes in time-series relative-quantitation data of isotope-labeled metabolites (a kind of data that modern metabolomic technologies readily generate), and outputs the relative changes of fluxes in the metabolic networks of interest. We also carefully examine some issues on model construction and experimental design, and improve the reliability and strength of the method. We apply our method to data collected from cells in normal and glucose-deprived conditions, demonstrate the efficacy of the method and arrive at new biological insight.
Collapse
Affiliation(s)
- Lei Huang
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Dongsung Kim
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York, United States of America
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Christopher R. Myers
- Laboratory of Atomic and Solid State Physics, and Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
- Field of Computational Biology and Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jason W. Locasale
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York, United States of America
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- Field of Computational Biology and Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lee SH, Kim S, Kwon MA, Jung YH, Shin YA, Kim KH. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium,Clostridium acetobutylicum. Biotechnol Bioeng 2014; 111:2528-36. [DOI: 10.1002/bit.25314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Sang-Hyun Lee
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Republic of Korea
- R&D Center; GS Caltex Corporation; Daejeon 305-380 Republic of Korea
| | - Sooah Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Republic of Korea
| | - Min-A Kwon
- R&D Center; GS Caltex Corporation; Daejeon 305-380 Republic of Korea
| | - Young Hoon Jung
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Republic of Korea
| | - Yong-An Shin
- R&D Center; GS Caltex Corporation; Daejeon 305-380 Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Republic of Korea
| |
Collapse
|
35
|
Adler P, Frey LJ, Berger A, Bolten CJ, Hansen CE, Wittmann C. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Appl Environ Microbiol 2014; 80:4702-16. [PMID: 24837393 PMCID: PMC4148806 DOI: 10.1128/aem.01048-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.
Collapse
Affiliation(s)
- Philipp Adler
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Carl Erik Hansen
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
36
|
Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. 13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol 2014; 179:42-9. [DOI: 10.1016/j.jbiotec.2014.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/19/2023]
|
37
|
Okahashi N, Kajihata S, Furusawa C, Shimizu H. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids. Metabolites 2014; 4:408-20. [PMID: 24957033 PMCID: PMC4101513 DOI: 10.3390/metabo4020408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/10/2014] [Accepted: 05/20/2014] [Indexed: 12/25/2022] Open
Abstract
13C metabolic flux analysis (MFA) is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs) is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs). Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.
Collapse
Affiliation(s)
- Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shuichi Kajihata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chikara Furusawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 2014; 55:253-63. [PMID: 24882210 DOI: 10.1016/j.molcel.2014.05.008] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/09/2023]
Abstract
Eukaryotic cells compartmentalize biochemical processes in different organelles, often relying on metabolic cycles to shuttle reducing equivalents across intracellular membranes. NADPH serves as the electron carrier for the maintenance of redox homeostasis and reductive biosynthesis, with separate cytosolic and mitochondrial pools providing reducing power in each respective location. This cellular organization is critical for numerous functions but complicates analysis of metabolic pathways using available methods. Here we develop an approach to resolve NADP(H)-dependent pathways present within both the cytosol and the mitochondria. By tracing hydrogen in compartmentalized reactions that use NADPH as a cofactor, including the production of 2-hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, we can observe metabolic pathway activity in these distinct cellular compartments. Using this system we determine the direction of serine/glycine interconversion within the mitochondria and cytosol, highlighting the ability of this approach to resolve compartmentalized reactions in intact cells.
Collapse
Affiliation(s)
- Caroline A Lewis
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seth J Parker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian P Fiske
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dan Y Gui
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Natalie I Vokes
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: Steady-state metabolic flux variation. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C. Adaptation ofBacillus subtiliscarbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ Microbiol 2014; 16:1898-917. [DOI: 10.1111/1462-2920.12438] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Kohlstedt
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Praveen K. Sappa
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Hanna Meyer
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Sandra Maaß
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Adrienne Zaprasis
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Tamara Hoffmann
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Judith Becker
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Michael Hecker
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Michael Lalk
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Jörg Stülke
- Department for General Microbiology; Georg-August-University Göttingen; Göttingen Germany
| | - Erhard Bremer
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| |
Collapse
|
41
|
Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 2014; 80:2901-9. [PMID: 24584250 DOI: 10.1128/aem.00061-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
When microbes lack the nutrients necessary for growth, they enter stationary phase. In cases when energy sources are still present in the environment, they must decide whether to continue to use their metabolic program to harvest the available energy. Here we characterized the metabolic response to a variety of types of nutrient starvation in Escherichia coli and Bacillus subtilis. We found that E. coli exhibits a range of phenotypes, with the lowest metabolic rates under nitrogen starvation and highest rates under magnesium starvation. In contrast, the phenotype of B. subtilis was dominated by its decision to form metabolically inactive endospores. While its metabolic rates under most conditions were thus lower than those of E. coli, when sporulation was suppressed by a genetic perturbation or an unnatural starvation condition, the situation was reversed. To further probe stationary-phase metabolism, we used quantitative metabolomics to investigate possible small-molecule signals that may regulate the metabolic rate of E. coli and initiate sporulation in B. subtilis. We hypothesize a role for phosphoenolpyruvate (PEP) in regulating E. coli glucose uptake and for the redox cofactors NAD(H) and NADP(H) in initiation of sporulation. Our work is directly relevant to synthetic biology and metabolic engineering, where active metabolism during stationary phase, which uncouples production from growth, remains an elusive goal.
Collapse
|
42
|
Muntel J, Fromion V, Goelzer A, Maaβ S, Mäder U, Büttner K, Hecker M, Becher D. Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)). Mol Cell Proteomics 2014; 13:1008-19. [PMID: 24696501 DOI: 10.1074/mcp.m113.032631] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MS(E)). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of "protein costs" of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities.
Collapse
Affiliation(s)
- Jan Muntel
- Institute for Microbiology, Ernst Moritz Arndt University Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
McKinlay JB, Oda Y, Rühl M, Posto AL, Sauer U, Harwood CS. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J Biol Chem 2014; 289:1960-70. [PMID: 24302724 PMCID: PMC3900946 DOI: 10.1074/jbc.m113.527515] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Indexed: 11/06/2022] Open
Abstract
When starved for nitrogen, non-growing cells of the photosynthetic bacterium Rhodopseudomonas palustris continue to metabolize acetate and produce H2, an important industrial chemical and potential biofuel. The enzyme nitrogenase catalyzes H2 formation. The highest H2 yields are obtained when cells are deprived of N2 and thus use available electrons to synthesize H2 as the exclusive product of nitrogenase. To understand how R. palustris responds metabolically to increase H2 yields when it is starved for N2, and thus not growing, we tracked changes in biomass composition and global transcript levels. In addition to a 3.5-fold higher H2 yield by non-growing cells we also observed an accumulation of polyhydroxybutyrate to over 30% of the dry cell weight. The transcriptome of R. palustris showed down-regulation of biosynthetic processes and up-regulation of nitrogen scavenging mechanisms in response to N2 starvation but gene expression changes did not point to metabolic activities that could generate the reductant necessary to explain the high H2 yield. We therefore tracked (13)C-labeled acetate through central metabolic pathways. We found that non-growing cells shifted their metabolism to use the tricarboxylic acid cycle to metabolize acetate in contrast to growing cells, which used the glyoxylate cycle exclusively. This shift enabled cells to more fully oxidize acetate, providing the necessary reducing power to explain the high H2 yield.
Collapse
Affiliation(s)
- James B. McKinlay
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Yasuhiro Oda
- the Department of Microbiology, University of Washington, Seattle, Washington 98195, and
| | - Martin Rühl
- the Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Amanda L. Posto
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Uwe Sauer
- the Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Caroline S. Harwood
- the Department of Microbiology, University of Washington, Seattle, Washington 98195, and
| |
Collapse
|
44
|
Bartholomae M, Meyer FM, Commichau FM, Burkovski A, Hillen W, Seidel G. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J 2014; 281:1132-43. [PMID: 24325460 DOI: 10.1111/febs.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.
Collapse
Affiliation(s)
- Maike Bartholomae
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact 2013; 12:114. [PMID: 24245823 PMCID: PMC3842631 DOI: 10.1186/1475-2859-12-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To engineer Saccharomyces cerevisiae for efficient xylose utilization, a fungal pathway consisting of xylose reductase, xylitol dehydrogenase, and xylulose kinase is often introduced to the host strain. Despite extensive in vitro studies on the xylose pathway, the intracellular metabolism rewiring in response to the heterologous xylose pathway remains largely unknown. In this study, we applied 13C metabolic flux analysis and stoichiometric modeling to systemically investigate the flux distributions in a series of xylose utilizing S. cerevisiae strains. RESULTS As revealed by 13C metabolic flux analysis, the oxidative pentose phosphate pathway was actively used for producing NADPH required by the fungal xylose pathway during xylose utilization of recombinant S. cerevisiae strains. The TCA cycle activity was found to be tightly correlated with the requirements of maintenance energy and biomass yield. Based on in silico simulations of metabolic fluxes, reducing the cell maintenance energy was found crucial to achieve the optimal xylose-based ethanol production. The stoichiometric modeling also suggested that both the cofactor-imbalanced and cofactor-balanced pathways could lead to optimal ethanol production, by flexibly adjusting the metabolic fluxes in futile cycle. However, compared to the cofactor-imbalanced pathway, the cofactor-balanced xylose pathway can lead to optimal ethanol production in a wider range of fermentation conditions. CONCLUSIONS By applying 13C-MFA and in silico flux balance analysis to a series of recombinant xylose-utilizing S. cerevisiae strains, this work brings new knowledge about xylose utilization in two aspects. First, the interplays between the fungal xylose pathway and the native host metabolism were uncovered. Specifically, we found that the high cell maintenance energy was one of the key factors involved in xylose utilization. Potential strategies to reduce the cell maintenance energy, such as adding exogenous nutrients and evolutionary adaptation, were suggested based on the in vivo and in silico flux analysis in this study. In addition, the impacts of cofactor balance issues on xylose utilization were systemically investigated. The futile pathways were identified as the key factor to adapt to different degrees of cofactor imbalances and suggested as the targets for further engineering to tackle cofactor-balance issues.
Collapse
Affiliation(s)
- Xueyang Feng
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Urbana, USA
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
46
|
Hörl M, Schnidder J, Sauer U, Zamboni N. Non-stationary13C-metabolic flux ratio analysis. Biotechnol Bioeng 2013; 110:3164-76. [DOI: 10.1002/bit.25004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Manuel Hörl
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Julian Schnidder
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| |
Collapse
|
47
|
Kochanowski K, Sauer U, Chubukov V. Somewhat in control--the role of transcription in regulating microbial metabolic fluxes. Curr Opin Biotechnol 2013; 24:987-93. [PMID: 23571096 DOI: 10.1016/j.copbio.2013.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
The most common way for microbes to control their metabolism is by controlling enzyme levels through transcriptional regulation. Yet recent studies have shown that in many cases, perturbations to the transcriptional regulatory network do not result in altered metabolic phenotypes on the level of the flux distribution. We suggest that this may be a consequence of cells protecting their metabolism against stochastic fluctuations in expression as well as enabling a fast response for those fluxes that may need to be changed quickly. Furthermore, it is impossible for a regulatory program to guarantee optimal expression levels in all conditions. Several studies have found examples of demonstrably suboptimal regulation of gene expression, and improvements to the regulatory network have been investigated in laboratory evolution experiments.
Collapse
Affiliation(s)
- Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str. 16, CH-8093 Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | | | | |
Collapse
|
48
|
Shen T, Rui B, Zhou H, Zhang X, Yi Y, Wen H, Zheng H, Wu J, Shi Y. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress. MOLECULAR BIOSYSTEMS 2012; 9:121-32. [PMID: 23128557 DOI: 10.1039/c2mb25285f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E. coli to paraquat-induced oxidative stress is globally conserved and coordinated.
Collapse
Affiliation(s)
- Tie Shen
- School of Life Science and Key Laboratory of Plant Physiology and Development Regulation, Guizhou Province, Guizhou Normal University, 550001, Guiyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|