1
|
Krishnan P, Branco RCS, Weaver SA, Chang G, Lee CC, Syed F, Evans-Molina C. miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis. J Biol Chem 2024; 300:107827. [PMID: 39342996 PMCID: PMC11538863 DOI: 10.1016/j.jbc.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with proinflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with proinflammatory cytokines (interleukin-1β, interferonγ, and tumor necrosis factor α) to model type 1 diabetes in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA-seq data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers were observed in islets derived from nonobese diabetic mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Renato Chaves Souto Branco
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Staci A Weaver
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Garrick Chang
- Department of Physics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chih-Chun Lee
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Roudebush VA Medical Center, Indianapolis, Indiana, USA.
| |
Collapse
|
2
|
Krishnan P, Branco RCS, Weaver SA, Chang G, Lee CC, Syed F, Evans-Molina C. miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585543. [PMID: 38562689 PMCID: PMC10983918 DOI: 10.1101/2024.03.18.585543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1β, IFNγ, and TNFα) to model type 1 diabetes (T1D) in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Medicine, Indianapolis, IN 46202, USA
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
| | - Renato Chaves Souto Branco
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Staci A. Weaver
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Garrick Chang
- Department of Physics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chih-Chun Lee
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Farooq Syed
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indianapolis, IN 46202, USA
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
- Department of Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Pu X, Ma S, Zhao B, Tang S, Lu Q, Liu W, Wang Y, Cen Y, Wu C, Fu X. Transcriptome meta-analysis reveals the hair genetic rules in six animal breeds and genes associated with wool fineness. Front Genet 2024; 15:1401369. [PMID: 38948362 PMCID: PMC11211574 DOI: 10.3389/fgene.2024.1401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Wool plays an irreplaceable role in the lives of livestock and the textile industry. The variety of hair quality and shape leads to the diversity of its functions and applications, and the finer wool has a higher economic value. In this study, 10 coarse and 10 fine ordos fine wool sheep skin samples were collected for RNA-seq, and coarse and fine skin/hair follicle RNA-seq datasets of other five animal breeds were obtained from NCBI. Weighted gene co-expression network analysis showed that the common genes were clustered into eight modules. Similar gene expression patterns in sheep and rabbits with the same wool types, different gene expression patterns in animal species with different hair types, and brown modules were significantly correlated with species and breeds. GO and KEGG enrichment analyses showed that, most genes in the brown module associated with hair follicle development. Hence, gene expression patterns in skin tissues may determine hair morphology in animal. The analysis of differentially expressed genes revealed that 32 highly expressed candidate genes associated with the wool fineness of Ordos fine wool sheep. Among them, KAZALD1 (grey module), MYOC (brown module), C1QTNF6 (brown module), FOS (tan module), ITGAM, MX2, MX1, and IFI6 genes have been reported to be involved in the regulation of the hair follicle cycle or hair loss. Additionally, 12 genes, including KAZALD1, MYOC, C1QTNF6, and FOS, are differentially expressed across various animal breeds and species. The above results suggest that different sheep breeds share a similar molecular regulatory basis of wool fineness. Finally, the study provides a theoretical reference for molecular breeding of sheep breeds as well as for the investigation of the origin and evolution of animal hair.
Collapse
Affiliation(s)
- Xue Pu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Shengchao Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bingru Zhao
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sen Tang
- Key Laboratory of Herbivorous Livestock Genetics, Ministry of Agriculture, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yaqian Wang
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yunlin Cen
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Saucedo-Cuevas L, Ma MPQ, Le AH, Akin N, Pham TD, Ho TM, Pita G, Gonzalez-Neira A, De Vos M, Smitz J, Anckaert E, Vuong LN. Epigenetic variation in neonatal tissues in infants conceived using capacitation-in vitro maturation vs. in vitro fertilization. Fertil Steril 2024; 121:506-518. [PMID: 38052376 DOI: 10.1016/j.fertnstert.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE To investigate alterations of the global DNA methylation profile in placenta, cord blood, and neonatal buccal smears in infants conceived using in vitro maturation (IVM) with a prematuration step (capacitation-IVM [CAPA-IVM]) vs. in vitro fertilization (IVF). DESIGN Analysis of data from the offspring of participants in a randomized controlled trial. SETTING Private clinic. PATIENTS Forty-six women with polycystic ovary syndrome and/or high antral follicle count and their offspring (58 newborns). INTERVENTION(S) Women with polycystic ovary syndrome and/or a high antral follicle count participating in the clinical trial were randomized to undergo CAPA-IVM or conventional IVF. MAIN OUTCOME MEASURE(S) At delivery, biological samples including cord blood, placental tissue, and a neonatal buccal smear were collected. Genome-wide DNA methylation was determined using the Illumina Infinium MethylationEPIC BeadChip. Variability in methylation was also considered, and mean variances for the two treatment categories were compared. RESULTS In neonatal buccal smears, there were no significant differences between the CAPA-IVM and conventional IVF groups on the basis of the CpG probe after linear regression analysis using a significant cut-off of false-discovery rate <0.05 and |Δβ|≥0.05. In cord blood, only one CpG site showed a significant gain of methylation in the CAPA-IVM group. In the placenta, CAPA-IVM was significantly associated with changes in methylation at five CpG sites. Significantly more variable DNA methylation was found in five probes in the placenta, 54 in cord blood, and two in buccal smears after IVM of oocytes. In cord blood samples, 20 CpG sites had more variable methylation in the conventional IVF vs. IVM group. Isolated CpG sites showing differences in methylation in cord blood were not associated with changes in gene expression of the overlapping genes. CONCLUSION(S) Capacitation-IVM appeared to be associated with only a small amount of epigenetic variation in cord blood, placental tissue, and neonate buccal smears. CLINICAL TRIAL REGISTRATION NUMBER NCT03405701 (www. CLINICALTRIALS gov).
Collapse
Affiliation(s)
- Laura Saucedo-Cuevas
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Mai P Q Ma
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam; HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Anh H Le
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam; HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Nazli Akin
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Toan D Pham
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam; HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam; HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna Gonzalez-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michel De Vos
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium; Department of Obstetrics, Gynecology, Perinatology, and Reproductology, Institute of Professional Education, Sechenov University, Moscow, Russia
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
5
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Wang X, Liu R, Li S, Xia W, Guo H, Yao W, Liang X, Lu Y, Zhang H. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed Pharmacother 2023; 164:114929. [PMID: 37236028 DOI: 10.1016/j.biopha.2023.114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Amrhein JA, Berger LM, Tjaden A, Krämer A, Elson L, Tolvanen T, Martinez-Molina D, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Discovery of 3-Amino-1 H-pyrazole-Based Kinase Inhibitors to Illuminate the Understudied PCTAIRE Family. Int J Mol Sci 2022; 23:ijms232314834. [PMID: 36499165 PMCID: PMC9736855 DOI: 10.3390/ijms232314834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20-120 nM and 50-180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Tuomas Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Solnavägen 1, 17177 Solna, Sweden
| | | | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
- Correspondence: (S.K.); (T.H.)
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Correspondence: (S.K.); (T.H.)
| |
Collapse
|
9
|
Xing J, Chen C. Hyperinsulinemia: beneficial or harmful or both on glucose homeostasis. Am J Physiol Endocrinol Metab 2022; 323:E2-E7. [PMID: 35635329 DOI: 10.1152/ajpendo.00441.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin, a principal anabolic hormone produced by pancreatic β-cells, has a primary function of storage of nutrients following excessive energy intake. Pre- or early type 2 diabetes stages present hyperinsulinemia (β-cell dysfunction) and insulin resistance. Initiation of hyperinsulinemia is triggered by a loss of first-phase glucose-stimulated insulin secretion with altered membrane ion channel distribution. More factors, including insulin resistance and excessive proliferation of β-cells, deteriorate the hyperinsulinemia, whereas the hyperinsulinemia contributes to further development of insulin resistance and type 2 diabetes; to develop eventually late-stage diabetes with absolute insulin deficiency. In this mini-review, the major focus was put on the causes and pathophysiology of hyperinsulinemia, and the metabolic consequences and current treatment of hyperinsulinemia were discussed. The data used in this narrative review were collected mainly from relevant discoveries in the past 3 years.
Collapse
Affiliation(s)
- JingJing Xing
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Gillani SQ, Reshi I, Nabi N, Un Nisa M, Sarwar Z, Bhat S, Roberts TM, Higgins JMG, Andrabi S. PCTAIRE1 promotes mitotic progression and resistance against antimitotic and apoptotic signals. J Cell Sci 2022; 135:jcs258831. [PMID: 35044463 PMCID: PMC8918779 DOI: 10.1242/jcs.258831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/29/2021] [Indexed: 10/24/2022] Open
Abstract
PCTAIRE1 (also known as CDK16) is a serine-threonine kinase implicated in physiological processes like neuronal development, vesicle trafficking, spermatogenesis and cell proliferation. However, its exact role in cell division remains unclear. In this study, using a library screening approach, we identified PCTAIRE1 among several candidates that resisted mitotic arrest and mitotic cell death induced by polyomavirus small T (PolST) expression in mammalian cells. Our study showed that PCTAIRE1 is a mitotic kinase that localizes at centrosomes during G2 and at spindle poles as the cells enter mitosis, and then at the midbody during cytokinesis. We also report that PCTAIRE1 protein levels fluctuate through the cell cycle and reach their peak at mitosis, during which there is an increase in PCTAIRE1 phosphorylation as well. Interestingly, knockdown of PCTAIRE1 resulted in aberrant mitosis by interfering with spindle assembly and chromosome segregation. Further, we found that PCTAIRE1 promotes resistance of cancer cells to antimitotic drugs, and this underscores the significance of PCTAIRE1 as a potential drug target for overcoming chemotherapeutic resistance. Taken together, these studies establish PCTAIRE1 as a critical mediator of mitotic progression and highlight its role in chemotherapeutic resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Irfana Reshi
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Sameer Bhat
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Thomas M. Roberts
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. G. Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University,Newcastle upon Tyne NE2 4HH, UK
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
11
|
Nöthling J, Abrahams N, Toikumo S, Suderman M, Mhlongo S, Lombard C, Seedat S, Hemmings SMJ. Genome-wide differentially methylated genes associated with posttraumatic stress disorder and longitudinal change in methylation in rape survivors. Transl Psychiatry 2021; 11:594. [PMID: 34799556 PMCID: PMC8604994 DOI: 10.1038/s41398-021-01608-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rape is associated with a high risk for posttraumatic stress disorder (PTSD). DNA methylation changes may confer risk or protection for PTSD following rape by regulating the expression of genes implicated in pathways affected by PTSD. We aimed to: (1) identify epigenome-wide differences in methylation profiles between rape-exposed women with and without PTSD at 3-months post-rape, in a demographically and ethnically similar group, drawn from a low-income setting; (2) validate and replicate the findings of the epigenome-wide analysis in selected genes (BRSK2 and ADCYAP1); and (3) investigate baseline and longitudinal changes in BRSK2 and ADCYAP1 methylation over six months in relation to change in PTSD symptom scores over 6 months, in the combined discovery/validation and replication samples (n = 96). Rape-exposed women (n = 852) were recruited from rape clinics in the Rape Impact Cohort Evaluation (RICE) umbrella study. Epigenome-wide differentially methylated CpG sites between rape-exposed women with (n = 24) and without (n = 24) PTSD at 3-months post-rape were investigated using the Illumina EPIC BeadChip in a discovery cohort (n = 48). Validation (n = 47) and replication (n = 49) of BRSK2 and ADCYAP1 methylation findings were investigated using EpiTYPER technology. Longitudinal change in BRSK2 and ADCYAP1 was also investigated using EpiTYPER technology in the combined sample (n = 96). In the discovery sample, after adjustment for multiple comparisons, one differentially methylated CpG site (chr10: 61385771/ cg01700569, p = 0.049) and thirty-four differentially methylated regions were associated with PTSD status at 3-months post-rape. Decreased BRSK2 and ADCYAP1 methylation at 3-months and 6-months post-rape were associated with increased PTSD scores at the same time points, but these findings did not remain significant in adjusted models. In conclusion, decreased methylation of BRSK2 may result in abnormal neuronal polarization, synaptic development, vesicle formation, and disrupted neurotransmission in individuals with PTSD. PTSD symptoms may also be mediated by differential methylation of the ADCYAP1 gene which is involved in stress regulation. Replication of these findings is required to determine whether ADCYAP1 and BRSK2 are biomarkers of PTSD and potential therapeutic targets.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa.
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa.
| | - Naeemah Abrahams
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Social and Behavioural Sciences, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Shibe Mhlongo
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Findley AS, Zhang X, Boye C, Lin YL, Kalita CA, Barreiro L, Lohmueller KE, Pique-Regi R, Luca F. A signature of Neanderthal introgression on molecular mechanisms of environmental responses. PLoS Genet 2021; 17:e1009493. [PMID: 34570765 PMCID: PMC8509894 DOI: 10.1371/journal.pgen.1009493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/12/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Ancient human migrations led to the settlement of population groups in varied environmental contexts worldwide. The extent to which adaptation to local environments has shaped human genetic diversity is a longstanding question in human evolution. Recent studies have suggested that introgression of archaic alleles in the genome of modern humans may have contributed to adaptation to environmental pressures such as pathogen exposure. Functional genomic studies have demonstrated that variation in gene expression across individuals and in response to environmental perturbations is a main mechanism underlying complex trait variation. We considered gene expression response to in vitro treatments as a molecular phenotype to identify genes and regulatory variants that may have played an important role in adaptations to local environments. We investigated if Neanderthal introgression in the human genome may contribute to the transcriptional response to environmental perturbations. To this end we used eQTLs for genes differentially expressed in a panel of 52 cellular environments, resulting from 5 cell types and 26 treatments, including hormones, vitamins, drugs, and environmental contaminants. We found that SNPs with introgressed Neanderthal alleles (N-SNPs) disrupt binding of transcription factors important for environmental responses, including ionizing radiation and hypoxia, and for glucose metabolism. We identified an enrichment for N-SNPs among eQTLs for genes differentially expressed in response to 8 treatments, including glucocorticoids, caffeine, and vitamin D. Using Massively Parallel Reporter Assays (MPRA) data, we validated the regulatory function of 21 introgressed Neanderthal variants in the human genome, corresponding to 8 eQTLs regulating 15 genes that respond to environmental perturbations. These findings expand the set of environments where archaic introgression may have contributed to adaptations to local environments in modern humans and provide experimental validation for the regulatory function of introgressed variants.
Collapse
Affiliation(s)
- Anthony S. Findley
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Yen Lung Lin
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia A. Kalita
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Luis Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
13
|
Grummer JA, Whitlock MC, Schulte PM, Taylor EB. Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss). BMC Ecol Evol 2021; 21:63. [PMID: 33888062 PMCID: PMC8063319 DOI: 10.1186/s12862-021-01795-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Background Identifying ecologically significant phenotypic traits and the genomic mechanisms that underly them are crucial steps in understanding traits associated with population divergence. We used genome-wide data to identify genomic regions associated with key traits that distinguish two ecomorphs of rainbow trout (Oncorhynchus mykiss)—insectivores and piscivores—that coexist for the non-breeding portion of the year in Kootenay Lake, southeastern British Columbia. “Gerrards” are large-bodied, rapidly growing piscivores with high metabolic rates that spawn north of Kootenay Lake in the Lardeau River, in contrast to the insectivorous populations that are on average smaller in body size, with lower growth and metabolic rates, mainly forage on aquatic insects, and spawn in tributaries immediately surrounding Kootenay Lake. We used pool-seq data representing ~ 60% of the genome and 80 fish per population to assess the level of genomic divergence between ecomorphs and to identify and interrogate loci that may play functional or selective roles in their divergence. Results Genomic divergence was high between sympatric insectivores and piscivores (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{\text{ST}}$$\end{document}FST = 0.188), and in fact higher than between insectivorous populations from Kootenay Lake and the Blackwater River (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{\text{ST}}$$\end{document}FST = 0.159) that are > 500 km apart. A window-based \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{\text{ST}}$$\end{document}FST analysis did not reveal “islands” of genomic differentiation; however, the window with highest \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{\text{ST}}$$\end{document}FST estimate did include a gene associated with insulin secretion. Although we explored the use of the “Local score” approach to identify genomic outlier regions, this method was ultimately not used because simulations revealed a high false discovery rate (~ 20%). Gene ontology (GO) analysis identified several growth processes as enriched in genes occurring in the ~ 200 most divergent genomic windows, indicating many loci of small effect involved in growth and growth-related metabolic processes are associated with the divergence of these ecomorphs. Conclusion Our results reveal a high degree of genomic differentiation between piscivorous and insectivorous populations and indicate that the large body piscivorous phenotype is likely not due to one or a few loci of large effect. Rather, the piscivore phenotype may be controlled by several loci of small effect, thus highlighting the power of whole-genome resequencing in identifying genomic regions underlying population-level phenotypic divergences. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01795-9.
Collapse
Affiliation(s)
- Jared A Grummer
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
| | - Michael C Whitlock
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Eric B Taylor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J Mol Med (Berl) 2021; 99:651-662. [PMID: 33661342 DOI: 10.1007/s00109-021-02040-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
One of the key events in cancer development is the ability of tumor cells to overcome nutrient deprivation and hypoxia. Among proteins performing metabolic adaptation to the various cellular nutrient conditions, liver kinase B 1 (LKB1) and its main downstream target adenosine monophosphate (AMP)-activated protein kinase α (AMPKα) are important sensors of energy requirements within the cell. Although LKB1 was originally described as a tumor suppressor, given its role in metabolism, it potentially acts as a double-edged sword. AMPKα, a master regulator of cell energy demands, is activated when ATP level drops under a certain threshold, responding accordingly through its downstream targets. Twelve downstream kinase targets of LKB1 have been described as AMPKα-like proteins. This group is comprised of novel (nua) kinase family (NUAK) kinases (NUAK1 and 2) linked to cell cycle progression and ultraviolet (UV)-damage; microtubule affinity regulating kinases (MARKs) (MARK1, MARK2, MARK3, and MARK4) that are involved in cell polarity; salt inducible kinases (SIK) (SIK1, SIK2, also known as Qin-induced kinase or QIK and SIK3) that are implicated in cell metabolism and adipose tissue development and mitotic regulation; maternal embryonic leuzine zipper kinase (MELK) that regulate oocyte maturation; and finally brain selective kinases (BRSKs) (BRSK1 and 2), which have been mainly characterized in the brain due to their role in neuronal polarization. Thus, many efforts have been made in order to harness LKB1 kinase and its downstream targets as a possible therapeutic hub in tumor development and propagation. In this review, we describe LKB1 and its downstream target AMPK summarize major functions of various AMPK-like proteins, while focusing on biological functions of BRSK1 and 2 in different models.
Collapse
|
15
|
Zhao Y, Chen H, Li C, Chen S, Xiao H. Comparative Transcriptomics Reveals the Molecular Genetic Basis of Cave Adaptability in Sinocyclocheilus Fish Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.589039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cavefish evolved a series of distinct survival mechanisms for adaptation to cave habitat. Such mechanisms include loss of eyesight and pigmentation, sensitive sensory organs, unique dietary preferences, and predation behavior. Thus, it is of great interest to understand the mechanisms underlying these adaptability traits of troglobites. The teleost genus Sinocyclocheilus (Cypriniformes: Cyprinidae) is endemic to China and has more than 70 species reported (including over 30 cavefish species). High species diversity and diverse phenotypes make the Sinocyclocheilus as an outstanding model for studying speciation and adaptive evolution. In this study, we conducted a comparative transcriptomics study on the brain tissues of two Sinocyclocheilus species (surface-dwelling species – Sinocyclocheilus malacopterus and semi-cave-dwelling species – Sinocyclocheilus rhinocerous living in the same water body. A total of 425,188,768 clean reads were generated, which contributed to 102,839 Unigenes. Bioinformatic analysis revealed a total of 3,289 differentially expressed genes (DEGs) between two species Comparing to S. malacopterus, 2,598 and 691 DEGs were found to be respectively, down-regulated and up-regulated in S. rhinocerous. Furthermore, it is also found tens of DEGs related to cave adaptability such as insulin secretion regulation (MafA, MafB, MafK, BRSK, and CDK16) and troglomorphic traits formation (CEP290, nmnat1, coasy, and pqbp1) in the cave-dwelling S. rhinocerous. Interestingly, most of the DEGs were found to be down-regulated in cavefish species and this trend of DEGs expression was confirmed through qPCR experiments. This study would provide an appropriate genetic basis for future studies on the formation of troglomorphic traits and adaptability characters of troglobites, and improve our understanding of mechanisms of cave adaptation.
Collapse
|
16
|
CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic β Cells. Cell Rep 2020; 28:2892-2904.e7. [PMID: 31509750 DOI: 10.1016/j.celrep.2019.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to vital cellular processes including cell cycle regulation. Loss of CDKs is associated with impaired insulin secretion and β cell survival; however, the function of CDK8 in β cells remains elusive. Here, we report that genetic ablation of Cdk8 improves glucose tolerance by increasing insulin secretion. We identify OSBPL3 as a CDK8-dependent phosphoprotein, which acts as a negative regulator of insulin secretion in response to glucose. We also show that embryonic gene silencing of neuropeptide Y in β cells is compromised in Cdk8-null mice, leading to continued expression into adulthood. Cdk8 ablation in β cells aggravates apoptosis and induces de novo expression of neuropeptides upon oxidative stress. Moreover, pancreatic islets exposed to stress display augmented apoptosis in the presence of these same neuropeptides. Our results reveal critical roles for CDK8 in β cell function and survival during metabolic stress that are in part mediated through de novo expression of neuropeptides.
Collapse
|
17
|
The Role of CDKs and CDKIs in Murine Development. Int J Mol Sci 2020; 21:ijms21155343. [PMID: 32731332 PMCID: PMC7432401 DOI: 10.3390/ijms21155343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) and their inhibitors (CDKIs) play pivotal roles in the regulation of the cell cycle. As a result of these functions, it may be extrapolated that they are essential for appropriate embryonic development. The twenty known mouse CDKs and eight CDKIs have been studied to varying degrees in the developing mouse, but only a handful of CDKs and a single CDKI have been shown to be absolutely required for murine embryonic development. What has become apparent, as more studies have shone light on these family members, is that in addition to their primary functional role in regulating the cell cycle, many of these genes are also controlling specific cell fates by directing differentiation in various tissues. Here we review the extensive mouse models that have been generated to study the functions of CDKs and CDKIs, and discuss their varying roles in murine embryonic development, with a particular focus on the brain, pancreas and fertility.
Collapse
|
18
|
Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020; 133:jcs241356. [PMID: 32546533 PMCID: PMC7375482 DOI: 10.1242/jcs.241356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Megan J Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Institute for Informatics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trent Stohrer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew E Hale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Priscila F Siesser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth J Weir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J Moorman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Chang JWC, Shih CL, Wang CL, Luo JD, Wang CW, Hsieh JJ, Yu CJ, Chiou CC. Transcriptomic Analysis in Liquid Biopsy Identifies Circulating PCTAIRE-1 mRNA as a Biomarker in NSCLC. Cancer Genomics Proteomics 2020; 17:91-100. [PMID: 31882554 DOI: 10.21873/cgp.20170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Circulating mRNA can be a useful source of cancer biomarkers. We took advantage of direct transcriptomic analysis in plasma RNA to identify novel mRNA markers for non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Plasma RNA from NSCLC patients and healthy individuals was profiled with cDNA-mediated annealing, selection, extension and ligation (DASL) microarrays. The microarray results were further validated in plasma RNA. RESULTS Through RNA profiling and online database mining, four gene transcripts were filtered as candidate markers of NSCLC. After validation, the PCTAIRE-1 transcript was identified as a circulating mRNA marker. The diagnostic potential of PCTAIRE-1 was evaluated by receiver operating characteristic curve analysis, which gave a sensitivity and specificity of 60% and 85%, respectively. In addition, high plasma PCTK1 levels were also correlated with poor progression-free survival (p=0.008). CONCLUSION Circulating mRNA can be profiled with the DASL assay. From the profile, PCTAIRE-1 RNA in the plasma we discovered as a novel diagnostic/prognostic biomarker and an indicator of poor survival in NSCLC patients.
Collapse
Affiliation(s)
- John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chun-Liang Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chih-Liang Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Ji-Dung Luo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Bioinformatics Resource Center, The Rockefeller University, New York, NY, U.S.A
| | - Chih-Wei Wang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Jia-Juan Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Chiuan-Chian Chiou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C. .,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| |
Collapse
|
20
|
Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med 2019; 51:1-17. [PMID: 30992425 PMCID: PMC6467995 DOI: 10.1038/s12276-019-0242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets. Studying the activity of proteins that work together to control cell division is revealing several that might be suitable targets for new drugs to fight cancer. Researchers led by Josep Clotet and Mariana Ribeiro at the International University of Catalonia, Barcelona, Spain, investigated the activities of the complex formed between two proteins, CDK16 and CCNY. CDK16 is an enzyme that modifies other molecules by adding phosphate groups (PO4) to them. CCNY is a protein that controls the activity of CDK16 and other proteins. Previous research has suggested a role for the complex in the development of cancer, but the mechanism has been unclear. The researchers found that the CDK16/CCNY complex activates proteins that control the network of microtubules in cells known as the cytoskeleton. One of these proteins, PRC1, is essential for cell division.
Collapse
|
21
|
Wang N, Zhu F, Chen L, Chen K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci 2018; 212:194-202. [PMID: 30243649 DOI: 10.1016/j.lfs.2018.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
22
|
Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L. Funct Integr Genomics 2018; 18:425-437. [PMID: 29623522 PMCID: PMC6004361 DOI: 10.1007/s10142-018-0597-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 12/02/2022]
Abstract
Transgenic Yellow River carp is characterized by rapid growth rate and high feed-conversion efficiency and exhibits a great application prospect. However, there is still a significant separation of growth traits in the transgenic Yellow River carp family; as such, growth-related genotypes must be screened for molecular marker-assisted selection. In this study, 23 growth-related candidate genes containing 48 SNP markers were screened through bulked segregant analysis (BSA) among transgenic Yellow River carp family members showing significant separation of growth traits. Then, two growth-related genes (Nos. 17 and 14 genes) were identified through combined genome-wide association study (GWAS) of candidate genes and validation of the full-sibling family approach. Nos. 17 and 14 genes encode BR serine/threonine-protein kinase 2 (BRSK2) and eukaryotic translation-initiation factor 2-alpha kinase 3 (Eif2ak3), respectively. The average body weight of three subgroups carrying the genotypes 17GG, 17GG + 14CC, and 17GG + 14TT of these two genes increased by 27.96, 38.28, and 33.72%, respectively, compared with the controls. The proportion of individuals with body weight > 500 g in these subgroups increased by 19.22, 26.82, and 30.92%, respectively. The results showed that appropriate genotype carriers can be selected from the progeny population through BSA sequencing combined with simplified GWAS analysis. Hence, basic population for breeding can be constructed and transgenic Yellow River carp strains with stable production performance and uniform phenotypic properties can be bred.
Collapse
|
23
|
Saiyin H, Na N, Han X, Fang Y, Wu Y, Lou W, Yang X. BRSK2 induced by nutrient deprivation promotes Akt activity in pancreatic cancer via downregulation of mTOR activity. Oncotarget 2018; 8:44669-44681. [PMID: 28591720 PMCID: PMC5546509 DOI: 10.18632/oncotarget.17965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Neoplastic cells in pancreatic ductual adenocarcinoma (PDAC) survive in an energy-deprived milieu, and hyper-activation of Akt is thought to contribute to the neoplastic cell survival in PDAC. Kras activating mutations, common in PDAC, was believed to be the major driver of Akt activation. However, the inhibitor to Kras was not therapeutic for PDAC patients. This implied that PDAC cells might harbor an intrinsic merit that strengthens Akt activity. Here we showed that BRSK2, a serine/threonine-protein kinase of AMPK family, was induced by nutrient deprivation in PDAC cells and suppressed mTORC1 activity via phosphorylation of tuberous sclerosis complex 2 (TSC2). The suppression of mTORC1 activity in PDAC results in a dominant loss of feedback inhibition on Akt activity by mTORC1, consequently enhancing cell survival. This finding indicates that the intrinsic molecular merit that BRSK2 provides is a survival advantage to PDAC cells and strengthens the invasiveness of these neoplastic cells in energy-deprived environments.
Collapse
Affiliation(s)
- Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Xu Han
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 20032, People's Republic of China
| | - Yuan Fang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 20032, People's Republic of China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Wenhui Lou
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 20032, People's Republic of China
| | - Xianmei Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
24
|
Zhang A, Li D, Liu Y, Li J, Zhang Y, Zhang CY. Islet β cell: An endocrine cell secreting miRNAs. Biochem Biophys Res Commun 2018; 495:1648-1654. [DOI: 10.1016/j.bbrc.2017.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
|
25
|
Xie J, Li Y, Jiang K, Hu K, Zhang S, Dong X, Dai X, Liu L, Zhang T, Yang K, Huang K, Chen J, Shi S, Zhang Y, Wu G, Xu S. CDK16 Phosphorylates and Degrades p53 to Promote Radioresistance and Predicts Prognosis in Lung Cancer. Am J Cancer Res 2018; 8:650-662. [PMID: 29344296 PMCID: PMC5771083 DOI: 10.7150/thno.21963] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
Rationale: Radioresistance is considered the main cause of local relapse in lung cancer. However, the molecular mechanisms of radioresistance remain poorly understood. This study investigates the role of CDK16 in radioresistance of human lung cancer cells. Methods: The expression levels of CDK16 were determined by immunohistochemistry in lung cancer tissues and adjacent normal lung tissues. Immunoprecipitation assay and GST pulldown were utilized to detect the protein-protein interaction. The phosphorylation of p53 was evaluated by in vitro kinase assay. Poly-ubiquitination of p53 was examined by in vivo ubiquitination assay. Cell growth and apoptosis, ROS levels and DNA damage response were measured for functional analyses. Results: We showed that CDK16 is frequently overexpressed in lung cancer cells and tissues, and high levels of CDK16 are correlated with lymph node stage and poor prognosis in lung cancer patients. Furthermore, we provided evidence that CDK16 binds to and phosphorylates p53 at Ser315 site to inhibit transcriptional activity of p53. Moreover, we uncovered that this phosphorylation modification accelerates p53 degradation via the ubiquitin/proteasome pathway. Importantly, we demonstrated that CDK16 promotes radioresistance by suppressing apoptosis and ROS production as well as inhibiting DNA damage response in lung cancer cells in a p53-dependent manner. Conclusion: Our findings suggest that CDK16 negatively modulates p53 signaling pathway to promote radioresistance, and therefore represents a promising therapeutic target for lung cancer radiotherapy.
Collapse
|
26
|
Zeng L, Wang WH, Arrington J, Shao G, Geahlen RL, Hu CD, Tao WA. Identification of Upstream Kinases by Fluorescence Complementation Mass Spectrometry. ACS CENTRAL SCIENCE 2017; 3:1078-1085. [PMID: 29104924 PMCID: PMC5658758 DOI: 10.1021/acscentsci.7b00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 05/09/2023]
Abstract
Protein kinases and their substrates comprise extensive signaling networks that regulate many diverse cellular functions. However, methods and techniques to systematically identify kinases directly responsible for specific phosphorylation events have remained elusive. Here we describe a novel proteomic strategy termed fluorescence complementation mass spectrometry (FCMS) to identify kinase-substrate pairs in high throughput. The FCMS strategy employs a specific substrate and a kinase library, both of which are fused with fluorescence complemented protein fragments. Transient and weak kinase-substrate interactions in living cells are stabilized by the association of fluorescence protein fragments. These kinase-substrate pairs are then isolated with high specificity and are identified and quantified by LC-MS. FCMS was applied to the identification of both known and novel kinases of the transcription factor, cAMP response element-binding protein (CREB). Novel CREB kinases were validated by in vitro kinase assays, and the phosphorylation sites were unambiguously located. These results uncovered possible new roles for CREB in multiple important signaling pathways and demonstrated the great potential of this new proteomic strategy.
Collapse
Affiliation(s)
- Lingfei Zeng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wen-Horng Wang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justine Arrington
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gengbao Shao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert L. Geahlen
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chang-Deng Hu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W. Andy Tao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- E-mail:
| |
Collapse
|
27
|
Wang Y, Qin X, Guo T, Liu P, Wu P, Liu Z. Up-regulation of CDK16 by multiple mechanisms in hepatocellular carcinoma promotes tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:97. [PMID: 28716136 PMCID: PMC5514535 DOI: 10.1186/s13046-017-0569-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
Background Hepatocellular carcinoma (HCC) remains difficult to cure due to lack of effective treatment and the molecular mechanisms are complex and not completely understood. In this study, We investigated the role of CDK16 in tumor progression of HCC. Methods We interrogated the expression level of CDK16 by polymerase chain reaction and immunohistochemistry(IHC) and studied its clinical significance. The functional role of CDK16 on HCC was studied via gain and loss of function in vitro and in vivo. Luciferase reporter assay and Chromatin immunoprecipitation(ChIP) assay were performed to investigate the transcriptional and post-transcriptional mechanisms involved in the regulation of CDK16. Results CDK16 expression was significantly up-regulated in HCC and higher expression of CDK16 was positively correlated with aggressive clinicopathological phenotype and poorer survival rates. Functionally, knockdown of CDK16 suppressed proliferation in vitro and in vivo. Inactivation of CDK16 also induced apoptosis and cell cycle arrest. Most importantly, CDK16 promoted epithelial mesenchymal transition and tumor invasion by activating β-catenin signaling. In addition, We identified E2F1 as a positive transcriptional regulator of CDK16. Moreover, down regulation of miR-125b-5p enhanced CDK16 expression at post-transcriptional level. Conclusion We provided the first evidence that CDK16 is an bona fide oncogene in HCC, and multiple activating mechanisms at transcriptional and posttranscriptional levels together contributes to CDK16 up-regulation in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xian Qin
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tao Guo
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pengpeng Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ping Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
28
|
Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Biochem J 2017; 474:699-713. [PMID: 28057719 PMCID: PMC5317395 DOI: 10.1042/bcj20160941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts.
Collapse
|
29
|
Sacco F, Humphrey SJ, Cox J, Mischnik M, Schulte A, Klabunde T, Schäfer M, Mann M. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 2016; 7:13250. [PMID: 27841257 PMCID: PMC5114537 DOI: 10.1038/ncomms13250] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Insulin-secreting beta cells play an essential role in maintaining physiological blood glucose levels, and their dysfunction leads to the development of diabetes. To elucidate the signalling events regulating insulin secretion, we applied a recently developed phosphoproteomics workflow. We quantified the time-resolved phosphoproteome of murine pancreatic cells following their exposure to glucose and in combination with small molecule compounds that promote insulin secretion. The quantitative phosphoproteome of 30,000 sites clustered into three main groups in concordance with the modulation of the three key kinases: PKA, PKC and CK2A. A high-resolution time course revealed key novel regulatory sites, revealing the importance of methyltransferase DNMT3A phosphorylation in the glucose response. Remarkably a significant proportion of these novel regulatory sites is significantly downregulated in diabetic islets. Control of insulin secretion is embedded in an unexpectedly broad and complex range of cellular functions, which are perturbed by drugs in multiple ways. Dysfunction in insulin secretion is a main driver of type 2 diabetes development. Here the authors monitor phosphoproteome modulation in cells stimulated with glucose and treated with drugs affecting glucose-mediated insulin secretion to reveal phosphorylation sites implicated in insulin secretion control and gene expression regulation.
Collapse
Affiliation(s)
- Francesca Sacco
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Marcel Mischnik
- Sanofi Aventis Deutschland GmbH, R&D, LGCR, SDI, Bioinformatics, Frankfurt 65926, Germany
| | - Anke Schulte
- Sanofi Aventis Deutschland GmbH, Global Diabetes Division, R&TM, Islet Biology, Frankfurt 65926, Germany
| | - Thomas Klabunde
- Sanofi Aventis Deutschland GmbH, R&D, LGCR, SDI, Bioinformatics, Frankfurt 65926, Germany
| | - Matthias Schäfer
- Sanofi Aventis Deutschland GmbH, Global Diabetes Division, R&TM, Islet Biology, Frankfurt 65926, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
30
|
Giuliani C, Sazzini M, Bacalini MG, Pirazzini C, Marasco E, Fontanesi E, Franceschi C, Luiselli D, Garagnani P. Epigenetic Variability across Human Populations: A Focus on DNA Methylation Profiles of the KRTCAP3, MAD1L1 and BRSK2 Genes. Genome Biol Evol 2016; 8:2760-73. [PMID: 27503294 PMCID: PMC5630933 DOI: 10.1093/gbe/evw186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural epigenetic diversity has been suggested as a key mechanism in microevolutionary processes due to its capability to create phenotypic variability within individuals and populations. It constitutes an important reservoir of variation potentially useful for rapid adaptation in response to environmental stimuli. The analysis of population epigenetic structure represents a possible tool to study human adaptation and to identify external factors that are able to naturally shape human DNA methylation variability. The aim of this study is to investigate the dynamics that create epigenetic diversity between and within different human groups. To this end, we first used publicly available epigenome-wide data to explore population-specific DNA methylation changes that occur at macro-geographic scales. Results from this analysis suggest that nutrients, UVA exposure and pathogens load might represent the main environmental factors able to shape DNA methylation profiles. Then, we evaluated DNA methylation of candidate genes (KRTCAP3, MAD1L1, and BRSK2), emerged from the previous analysis, in individuals belonging to different populations from Morocco, Nigeria, Philippines, China, and Italy, but living in the same Italian city. DNA methylation of the BRSK2 gene is significantly different between Moroccans and Nigerians (pairwise t-test: CpG 6 P-value = 5.2*10 (-) (3); CpG 9 P-value = 2.6*10 (-) (3); CpG 10 P-value = 3.1*10 (-) (3); CpG 11 P-value = 2.8*10 (-) (3)). Comprehensively, these results suggest that DNA methylation diversity is a source of variability in human groups at macro and microgeographical scales and that population demographic and adaptive histories, as well as the individual ancestry, actually influence DNA methylation profiles.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Marco Sazzini
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy
| | - Elisa Fontanesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Donata Luiselli
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology & Centre for Genome Biology, University of Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy Interdepartmental Center "L. Galvani" (C.I.G.), University of Bologna, Italy Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
31
|
Tian F, Wei H, Tian H, Qiu Y, Xu J. miR-33a is downregulated in melanoma cells and modulates cell proliferation by targeting PCTAIRE1. Oncol Lett 2016; 11:2741-2746. [PMID: 27073545 PMCID: PMC4812543 DOI: 10.3892/ol.2016.4321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-33a (miR-33a) was previously identified as a lipid regulator that controls the cellular balance between cholesterol and fatty acid metabolism. However, its role in tumor progression is largely unknown. The present study identified that miR-33a acts as a tumor suppressor in melanoma cells. The present study revealed that miR-33a was downregulated in melanoma cells compared with melanocytes. Overexpression of miR-33a suppressed the colony formation of human melanoma SK-MEL-1 and WM-115 cells. Furthermore, a bromodeoxyuridine incorporation assay and anaphase analysis revealed that miR-33a inhibits melanoma cell proliferation. miR-33a overexpression inhibited p27 phosphorylation and upregulated p27 expression. Additionally, the present study demonstrated that PCTAIRE1 was a direct target of miR-33a; miR-33a overexpression suppressed the luciferase activity of a reporter construct containing a 3′-untranslated region of PCTAIRE1 and downregulated PCTAIRE1 in melanoma cells. An overexpression of PCTAIRE1 reversed the miR-33a-induced p27 accumulation and tumor suppressive effects. In summary, the present findings offer novel mechanistic insights into miR-33a and its downstream target in melanoma cells.
Collapse
Affiliation(s)
- Fangzhen Tian
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Hongtu Wei
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Hua Tian
- Department of Public Health, Jining Beihu Hospital, Jining, Shandong 272067, P.R. China
| | - Ying Qiu
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Jian Xu
- Department of Public Health, Center for Disease Control and Prevention of Jining City, Jining, Shandong 272113, P.R. China
| |
Collapse
|
32
|
Li J, Li Q, Tang J, Xia F, Wu J, Zeng R. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion. J Proteome Res 2015; 14:4635-46. [PMID: 26437020 DOI: 10.1021/acs.jproteome.5b00507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field.
Collapse
Affiliation(s)
- Jiaming Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Jiashu Tang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Fangying Xia
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China.,Department of Life Sciences, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China.,Shanghai Institutes for Advanced Study, Chinese Academy of Sciences , 99 Haike Road, Shanghai 201210, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China.,Department of Life Sciences, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China.,Shanghai Institutes for Advanced Study, Chinese Academy of Sciences , 99 Haike Road, Shanghai 201210, China
| |
Collapse
|
33
|
Fu A, Robitaille K, Faubert B, Reeks C, Dai XQ, Hardy AB, Sankar KS, Ogrel S, Al-Dirbashi OY, Rocheleau JV, Wheeler MB, MacDonald PE, Jones R, Screaton RA. LKB1 couples glucose metabolism to insulin secretion in mice. Diabetologia 2015; 58:1513-22. [PMID: 25874445 DOI: 10.1007/s00125-015-3579-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/13/2015] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Precise regulation of insulin secretion by the pancreatic beta cell is essential for the maintenance of glucose homeostasis. Insulin secretory activity is initiated by the stepwise breakdown of ambient glucose to increase cellular ATP via glycolysis and mitochondrial respiration. Knockout of Lkb1, the gene encoding liver kinase B1 (LKB1) from the beta cell in mice enhances insulin secretory activity by an undefined mechanism. Here, we sought to determine the molecular basis for how deletion of Lkb1 promotes insulin secretion. METHODS To explore the role of LKB1 on individual steps in the insulin secretion pathway, we used mitochondrial functional analyses, electrophysiology and metabolic tracing coupled with by gas chromatography and mass spectrometry. RESULTS Beta cells lacking LKB1 surprisingly display impaired mitochondrial metabolism and lower ATP levels following glucose stimulation, yet compensate for this by upregulating both uptake and synthesis of glutamine, leading to increased production of citrate. Furthermore, under low glucose conditions, Lkb1(-/-) beta cells fail to inhibit acetyl-CoA carboxylase 1 (ACC1), the rate-limiting enzyme in lipid synthesis, and consequently accumulate NEFA and display increased membrane excitability. CONCLUSIONS/INTERPRETATION Taken together, our data show that LKB1 plays a critical role in coupling glucose metabolism to insulin secretion, and factors in addition to ATP act as coupling intermediates between feeding cues and secretion. Our data suggest that beta cells lacking LKB1 could be used as a system to identify additional molecular events that connect metabolism to cellular excitation in the insulin secretion pathway.
Collapse
Affiliation(s)
- Accalia Fu
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, K1H 8L1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PCTAIRE-1 [also known as cyclin-dependent kinase 16 (CDK16)] is implicated in various physiological processes such as neurite outgrowth and vesicle trafficking; however, its molecular regulation and downstream targets are largely unknown. Cyclin Y has recently been identified as a key interacting/activating cyclin for PCTAIRE-1; however, the molecular mechanism by which it activates PCTAIRE-1 is undefined. In the present study, we initially performed protein sequence analysis and identified two candidate phosphorylation sites (Ser(12) and Ser(336)) on cyclin Y that might be catalysed by PCTAIRE-1. Although in vitro peptide analysis favoured Ser(12) as the candidate phosphorylation site, immunoblot analysis of cell lysates that had been transfected with wild-type (WT) or kinase-inactive (KI) PCTAIRE-1 together with WT or phospho-deficient mutants of cyclin Y suggested Ser(336), but not Ser(12), as a PCTAIRE-1-dependent phosphorylation site. Monitoring phosphorylation of Ser(336) may provide a useful read-out to assess cellular activity of PCTAIRE-1 in vivo; however, a phospho-deficient S336A mutant displayed normal interaction with PCTAIRE-1. Unbiased mass spectrometry and targeted mutagenesis analysis of cyclin Y identified key phosphorylation sites (Ser(100) and Ser(326)) required for 14-3-3 binding. Recombinant WT cyclin Y, but not a S100A/S326A mutant, prepared in COS-1 cells co-purified with 14-3-3 and was able to activate bacterially expressed recombinant PCTAIRE-1 in cell-free assays. Finally, we observed that recently identified PCTAIRE-1 variants found in patients with intellectual disability were unable to interact with cyclin Y, and were inactive enzymes. Collectively, the present work has revealed a new mechanistic insight into activation of PCTAIRE-1, which is mediated through interaction with the phosphorylated form of cyclin Y in complex with 14-3-3.
Collapse
|
35
|
Wang H, Liu XB, Chen JH, Wang QQ, Chen JP, Xu JF, Sheng CY, Ni QC. Decreased expression and prognostic role of cytoplasmic BRSK1 in human breast carcinoma: correlation with Jab1 stability and PI3K/Akt pathway. Exp Mol Pathol 2014; 97:191-201. [PMID: 25036402 DOI: 10.1016/j.yexmp.2014.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Jun activation domain-binding protein 1 (Jab1) was overexpressed in breast cancer, which was involved in degradation of the cyclin-dependent kinase inhibitor p27(Kip1). The objective of this study was to examine the effect of brain specific kinase 1 (BRSK1) expression on Jab1 over-expression and related signaling pathway in breast cancer. METHODS Immunohistochemical analysis was performed in 95 human breast carcinoma samples and the data were correlated with clinicopathologic features. Furthermore, Western blot analysis was performed for BRSK1 and Jab1 in breast carcinoma samples and cell lines to evaluate their protein levels and molecular interaction. RESULTS We found that the cytoplasmic BRSK1 expression was inversely associated with Jab1 expression (P<0.01) and correlated significantly with histologic grade (P=0.006), however nuclear BRSK1 expression couldn't obtain similar results. Kaplan-Meier analysis revealed that survival curves of low versus high expressers of cytoplasmic BRSK1 and Jab1 showed a highly significant separation in breast cancer (P<0.01). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of Jab1, phosphor-Akt (p-Akt) was up-regulated, whereas BRSK1 and p27(Kip1) were decreased. Treatment of phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 could diminish Jab1 expression but increase BRSK1 expression. In addition, we employed siRNA technique to knock down Jab1 and/or BRSK1 expression and observed their effects on MDA-MB-231 cell growth. CONCLUSIONS BRSK1 is a novel tumor suppressor in breast cancer which inversely correlated with Jab1 expression, may involve in the restoring Jab1-induced suppression of p27(Kip1) and may regulate cell cycle through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hua Wang
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Xiao-Bing Liu
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jia-Hui Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Qing-Qing Wang
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jin-Peng Chen
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jun-Fei Xu
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Chen-Yi Sheng
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Qi-Chao Ni
- Department of General Surgery, the Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong 226001, Jiangsu, PR China.
| |
Collapse
|
36
|
Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp Mol Med 2013; 45:e37. [PMID: 23969997 PMCID: PMC3789261 DOI: 10.1038/emm.2013.73] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.
Collapse
|
37
|
Wang Y, Wan B, Zhou J, Li R, Yu L. BRSK2 is a valosin-containing protein (VCP)-interacting protein that affects VCP functioning in endoplasmic reticulum-associated degradation. Biotechnol Lett 2013; 35:1983-9. [PMID: 23907667 DOI: 10.1007/s10529-013-1295-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/01/2013] [Indexed: 11/29/2022]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) removes improperly-folded proteins from the ER membrane into the cytosol where they undergo proteasomal degradation. Valosin-containing protein (VCP)/p97 mediates in the extraction of ERAD substrates from the ER. BRSK2 (also known as SAD-A), a serine/threonine kinase of the AMP-activated protein kinase family affected VCP/p97 activity in ERAD. In addition, BRSK2 interacted with VCP/p97 via three of the four functional domains of VCP/p97. Immunofluorescence demonstrated that BRSK2 and VCP/p97 were co-localized and also that knockdown of endogenous BRSK2 induced increased levels of CD3δ, a substrate in ERAD for VCP/p97. Thus, BRSK2 might affect the activity of VCP/p97 in ERAD.
Collapse
Affiliation(s)
- Yingli Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China,
| | | | | | | | | |
Collapse
|
38
|
SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39-53. [PMID: 23790753 DOI: 10.1016/j.neuron.2013.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.
Collapse
|
39
|
APC/C(Cdh1) targets brain-specific kinase 2 (BRSK2) for degradation via the ubiquitin-proteasome pathway. PLoS One 2012; 7:e45932. [PMID: 23029325 PMCID: PMC3448725 DOI: 10.1371/journal.pone.0045932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Studies of brain-specific kinase 2 (BRSK2), an AMP-activated protein kinase (AMPK)-related kinase, and its homologs suggest that they are multifunctional regulators of cell-cycle progression. BRSK2, which contains a ubiquitin-associated (UBA) domain, is polyubiquitinated in cells. However, the regulatory mechanisms and exact biological function of BRSK2 remain unclear. Herein, we show that BRSK2 co-localizes with the centrosomes during mitosis. We also demonstrate that BRSK2 protein levels fluctuate during the cell cycle, peaking during mitosis and declining in G1 phase. Furthermore, Cdh1, rather than Cdc20, promotes the degradation of BRSK2 in vivo. Consistent with this finding, knock-down of endogenous Cdh1 blocks BRSK2 degradation during the G1 phase. The conserved KEN box of BRSK2 is required for anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1)-dependent degradation. Additionally, overexpression of either BRSK2(WT) or BRSK2(ΔKEN) increases the percentage of cells in G2/M. Thus, our results provide the first evidence that BRSK2 regulates cell-cycle progression controlled by APC/CCdh1 through the ubiquitin-proteasome pathway.
Collapse
|