1
|
Trist BG, Wright CJ, Rangel A, Cottle L, Prasad A, Jensen NM, Gram H, Dzamko N, Jensen PH, Kirik D. Novel tools to quantify total, phospho-Ser129 and aggregated alpha-synuclein in the mouse brain. NPJ Parkinsons Dis 2024; 10:217. [PMID: 39516469 PMCID: PMC11549080 DOI: 10.1038/s41531-024-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Assays for quantifying aggregated and phosphorylated (S129) human α-synuclein protein are widely used to evaluate pathological burden in patients suffering from synucleinopathy disorders. Many of these assays, however, do not cross-react with mouse α-synuclein or exhibit poor sensitivity for this target, which is problematic considering the preponderance of mouse models at the forefront of pre-clinical α-synuclein research. In this project, we addressed this unmet need by reformulating two existing AlphaLISA® SureFire® Ultra™ total and pS129 α-synuclein assay kits to yield robust and ultrasensitive (LLoQ ≤ 0.5 pg/mL) quantification of mouse and human wild-type and pS129 α-synuclein protein. We then employed these assays, together with the BioLegend α-synuclein aggregate ELISA, to assess α-synuclein S129 phosphorylation and aggregation in different mouse brain tissue preparations. Overall, we highlight the compatibility of these new immunoassays with rodent models and demonstrate their potential to advance knowledge surrounding α-synuclein phosphorylation and aggregation in synucleinopathies.
Collapse
Affiliation(s)
- Benjamin Guy Trist
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Courtney Jade Wright
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandra Rangel
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
| | - Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Asheeta Prasad
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Nanna Møller Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Nicolas Dzamko
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Poul Henning Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Deniz Kirik
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Sabaei M, Rahimian S, Haj Mohamad Ebrahim Ketabforoush A, Rasoolijazi H, Zamani B, Hajiakhoundi F, Soleimani M, Shahidi G, Faramarzi M. Salivary levels of disease-related biomarkers in the early stages of Parkinson's and Alzheimer's disease: A cross-sectional study. IBRO Neurosci Rep 2023; 14:285-292. [PMID: 36942319 PMCID: PMC10023984 DOI: 10.1016/j.ibneur.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Finding a non-invasive and repeatable tool has been recommended to make an accurate diagnosis of Alzheimer's disease (AD) and Parkinson's disease (PD). Methods 70 volunteers participated in three groups: 24 with mild dementia of AD, 24 in the first and second stages of PD, and 22 healthy controls. After valuing the scores of cognitive tests, the salivary levels of phosphorylated tau (p-tau), total alpha-synuclein (α-syn), and beta-amyloid 1-42 (Aβ) proteins have been evaluated. Finally, the cutoff points, receiver operating characteristic (ROC), sensitivity, and specificity have been calculated to find accurate and detectable biomarkers. Results Findings showed that the salivary level of Aβ was higher in both PD (p < 0.01) and AD (p < 0.001) patients than in controls. Moreover, the level of α-syn in both PD and AD patients was similarly lower than in controls (p < 0.05). However, the level of p-tau was only higher in the AD group than in the control (p < 0.01). Salivary Aβ 1-42 level at a 60.3 pg/ml cutoff point revealed an excellent performance for diagnosing AD (AUC: 0.81). Conclusion Evaluation of p-tau, α-syn, and Aβ 1-42 levels in the saliva of AD and PD patients could help the early diagnosis. The p-tau level might be valuable for differentiation between AD and PD. Therefore, these hopeful investigations could be done to reduce the usage of invasive diagnostic methods, which alone is a success in alleviating the suffering of AD and PD patients. Moreover, introducing accurate salivary biomarkers according to the pathophysiology of AD and PD should be encouraged.
Collapse
Key Words
- AD, Alzheimer's disease
- Alzheimer's disease
- Aβ, Beta-amyloid 1–42
- BDRS, Blessed Dementia Rating Scale
- Beta-amyloid
- CSF, Cerebrospinal fluid
- CT scan, Computed tomography scan
- ELISA, Enzyme-linked immunosorbent assay
- MDS-UPDRS, MDS-Unified Parkinson’s Disease Rating Scale
- MMSE, MCI (mild cognitive impairment mini-mental state examination
- MRI, Magnetic resonance imaging
- MoCA, Montreal Cognitive Assessment
- NFTs, Neurofibrillary Tangles
- NIA-AA, National Institute on Aging-Alzheimer’s Association
- PD, Parkinson's disease
- Parkinson's disease
- Phosphorylated tau
- ROC, Receiver operating characteristic
- Total alpha-synuclein
- p-tau, Phosphorylated tau
- α-syn, Total alpha-synuclein
Collapse
Affiliation(s)
- Masoomeh Sabaei
- Anatomy Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Rahimian
- Dentistry School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Homa Rasoolijazi
- Anatomy Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Zamani
- Neurology Department, Rasool Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahime Hajiakhoundi
- Neurology Department, Rasool Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mansoureh Soleimani
- Anatomy Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamali Shahidi
- Neurology Department, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmood Faramarzi
- Research center of pediatric infectious diseases, institute of immunology and infectious diseases, Rasool Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
3
|
TR-FRET-Based Immunoassay to Measure Ataxin-2 as a Target Engagement Marker in Spinocerebellar Ataxia Type 2. Mol Neurobiol 2023; 60:3553-3567. [PMID: 36894829 PMCID: PMC10122633 DOI: 10.1007/s12035-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.
Collapse
|
4
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
5
|
Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126517. [PMID: 34204581 PMCID: PMC8234932 DOI: 10.3390/ijms22126517] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.
Collapse
|
6
|
Can Plasma α-Synuclein Help Us to Differentiate Parkinson's Disease from Essential Tremor? Tremor Other Hyperkinet Mov (N Y) 2021; 11:20. [PMID: 34113478 PMCID: PMC8162285 DOI: 10.5334/tohm.600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Studies have revealed controversial results regarding the diagnostic accuracy of plasma α-synuclein levels in patients with Parkinson's disease (PD). This study was aimed to analyze the diagnostic accuracy of plasma α-synuclein in PD versus healthy controls and patients with essential tremor (ET). Methods In this cross-sectional study, we included de novo (n = 19) and advanced PD patients [OFF (n = 33), and On (n = 35) states], patients with ET (n = 19), and controls (n = 35). The total plasma α-synuclein levels were determined using an ELISA sandwich method. We performed adjusted multivariate regression analysis to estimate the association of α-synuclein levels with group conditions [controls, ET, and de novo, OFF and ON-PD]. We studied the diagnostic accuracy of plasma α-synuclein using the area under the curve (AUC). Results The plasma α-synuclein levels were higher in controls compared to PD and ET (p < 0.0001), discriminating de novo PD from controls (AUC = 0.74, 95% CI 0.60-0.89), with a trend towards in advanced PD (OFF state) from ET (AUC = 0.69, 95% CI 0.53-0.84). Conclusions This is the first study examining and comparing plasma α-synuclein levels in ET vs. PD and controls. Preliminary findings suggest that plasma α-synuclein levels might help to discriminate de novo and advanced PD from controls and ET.
Collapse
|
7
|
Yin Z, Cheng X, Wang G, Chen J, Jin Y, Tu Q, Xiang J. SPR immunosensor combined with Ti 4+@TiP nanoparticles for the evaluation of phosphorylated alpha-synuclein level. Mikrochim Acta 2020; 187:509. [PMID: 32833087 DOI: 10.1007/s00604-020-04507-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
A highly sensitive and specific surface plasmon resonance (SPR) method using one anti-alpha-synuclein antibody (anti-αS) and titanium phosphate nanoparticles (Ti4+@TiP) was developed for quantitative evaluation of phosphorylated αS level which was defined by the ratio of p-αS to total alpha-synuclein (t-αS) (p-αS/t-αS). The close affinities of anti-αS to αS (0.975 pM-1) and p-αS (0.938 pM-1) were obtained. Based on this fact , both αS forms were simultaneously captured and the t-αS was quantified using the anti-αS immobilized Au chip. With the selective recognition of Ti4+@TiP nanoparticles, the p-αS was quantified. The dynamic ranges of our method were 1.0~20.0 pg mL-1 for the detection of t-αS and 0.1~10.0 pg mL-1 for that of p-αS. The analysis of αS- and p-αS-spiked artificial cerebrospinal fluid samples revealed the high accuracy of the method. Furthermore, the concentrations of αS and p-αS in clinical CSF samples collected from three healthy donors were determined and displayed a high correlation with the results from a commercial ELISA kit, confirming the viability and of the proposed method. The method is convenient, economical, and practical for the evaluation of phosphorylated αS level with high sensitivity and selectivity. It is of great significance for the early diagnosis of PD and the evaluation of PD progression.Graphical abstract.
Collapse
Affiliation(s)
- Zhenzhen Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaoli Cheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Gan Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yan Jin
- Operation Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qiuyun Tu
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
8
|
Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med Chem 2020; 12:1155-1179. [PMID: 32431173 PMCID: PMC7333641 DOI: 10.4155/fmc-2020-0073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted protein degradation by small-molecule degraders represents an emerging mode of action in drug discovery. Proteolysis targeting chimeras (PROTACs) are small molecules that can recruit an E3 ligase and a protein of interest (POI) into proximity, leading to induced ubiquitination and degradation of the POI by the proteasome system. To date, the design and optimization of PROTACs remain empirical due to the complicated mechanism of induced protein degradation. Nevertheless, it is increasingly appreciated that profiling step-by-step along the ubiquitin-proteasome degradation pathway using biochemical and biophysical assays are essential in understanding the structure-activity relationship and facilitating the rational design of PROTACs. This review aims to summarize these assays and to discuss the potential of expanding the toolbox with other new techniques.
Collapse
Affiliation(s)
- Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Bourdenx M, Nioche A, Dovero S, Arotcarena ML, Camus S, Porras G, Thiolat ML, Rougier NP, Prigent A, Aubert P, Bohic S, Sandt C, Laferrière F, Doudnikoff E, Kruse N, Mollenhauer B, Novello S, Morari M, Leste-Lasserre T, Trigo-Damas I, Goillandeau M, Perier C, Estrada C, Garcia-Carrillo N, Recasens A, Vaikath NN, El-Agnaf OMA, Herrero MT, Derkinderen P, Vila M, Obeso JA, Dehay B, Bezard E. Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz9165. [PMID: 32426502 PMCID: PMC7220339 DOI: 10.1126/sciadv.aaz9165] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)-rich protein aggregates [termed "Lewy bodies" (LBs)], is a well-established characteristic of Parkinson's disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning-based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- M. Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - A. Nioche
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Institut Jean Nicod, Département d’études cognitives, ENS, EHESS, PSL Research University, 75005 Paris, France
- Institut Jean Nicod, Département d’études cognitives, CNRS, UMR 8129, Paris, France
| | - S. Dovero
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - M.-L. Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - S. Camus
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - G. Porras
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - M.-L. Thiolat
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - N. P. Rougier
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- INRIA Bordeaux Sud-Ouest, 33405 Talence, France
| | - A. Prigent
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - P. Aubert
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - S. Bohic
- EA-7442 Rayonnement Synchrotron et Recherche Medicale, RSRM, University of Grenoble Alpes, 38000 Grenoble, France
| | - C. Sandt
- SMIS beamline, Synchrotron SOLEIL, l’orme des merisiers, 91192 Gif sur Yvette, France
| | - F. Laferrière
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - E. Doudnikoff
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - N. Kruse
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - B. Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - S. Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
- Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - M. Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
- Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - T. Leste-Lasserre
- INSERM, Neurocentre Magendie, U1215, Physiopathologie de la Plasticité Neuronale, F-33000 Bordeaux, France
| | - I. Trigo-Damas
- HM CINAC, HM Puerta del Sur and CEU–San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - M. Goillandeau
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - C. Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - C. Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - N. Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - A. Recasens
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - N. N. Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - O. M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - M. T. Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - P. Derkinderen
- INSERM, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - M. Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)–Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - J. A. Obeso
- HM CINAC, HM Puerta del Sur and CEU–San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - B. Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - E. Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
10
|
Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, Thiolat ML, Tasselli M, Aubert P, Kruse N, Mollenhauer B, Trigo Damas I, Estrada C, Garcia-Carrillo N, Vaikath NN, El-Agnaf OMA, Herrero MT, Vila M, Obeso JA, Derkinderen P, Dehay B, Bezard E. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 2020; 143:1462-1475. [PMID: 32380543 DOI: 10.1093/brain/awaa096] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandra Dovero
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Alice Prigent
- Inserm, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Mathieu Bourdenx
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandrine Camus
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Gregory Porras
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Thiolat
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Maddalena Tasselli
- Inserm, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Philippe Aubert
- Inserm, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Niels Kruse
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Ines Trigo Damas
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), University of Murcia, Murcia, Spain
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Obeso
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Pascal Derkinderen
- Inserm, U1235, Nantes F-44035, France
- Nantes University, Nantes F-44035, France
- CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Benjamin Dehay
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
- CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
11
|
Manne S, Kondru N, Hepker M, Jin H, Anantharam V, Lewis M, Huang X, Kanthasamy A, Kanthasamy AG. Ultrasensitive Detection of Aggregated α-Synuclein in Glial Cells, Human Cerebrospinal Fluid, and Brain Tissue Using the RT-QuIC Assay: New High-Throughput Neuroimmune Biomarker Assay for Parkinsonian Disorders. J Neuroimmune Pharmacol 2019; 14:423-435. [PMID: 30706414 PMCID: PMC6669119 DOI: 10.1007/s11481-019-09835-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Adult-onset neurodegenerative disorders, like Parkinson's disease (PD) and dementia with Lewy bodies (DLB), that share the accumulation of aggregated α-synuclein (αSynagg) as their hallmark molecular pathology are collectively known as α-synucleinopathies. Diagnosing α-synucleinopathies requires the post-mortem detection of αSynagg in various brain regions. Recent efforts to measure αSynagg in living patients include quantifying αSynagg in different biofluids as a biomarker for PD. We adopted the real-time quaking-induced conversion (RT-QuIC) assay to detect very low levels of αSynagg. We first optimized RT-QuIC for sensitivity, specificity, and reproducibility by using monomeric recombinant human wild-type αSyn as a substrate and αSynagg as the seed. Next, we exposed mouse microglia to αSyn pre-formed fibrils (αSynPFF) for 24 h. RT-QuIC assay revealed that the αSynPFF is taken up rapidly by mouse microglia, within 30 min, and cleared within 24 h. We then evaluated the αSyn RT-QuIC assay for detecting αSynagg in human PD, DLB, and Alzheimer's disease (AD) post-mortem brain homogenates (BH) along with PD and progressive supranuclear palsy (PSP) cerebrospinal fluid (CSF) samples and then determined protein aggregation rate (PAR) for αSynagg. The PD and DLB BH samples not only showed significantly higher αSynagg PAR compared to age-matched healthy controls and AD, but RT-QuIC was also highly reproducible with 94% sensitivity and 100% specificity. Similarly, PD CSF samples demonstrated significantly higher αSynagg PAR compared to age-matched healthy controls, with 100% sensitivity and specificity. Overall, the RT-QuIC assay accurately detects αSynagg seeding activity, offering a potential tool for antemortem diagnosis of α-synucleinopathies and other protein-misfolding disorders. Graphical Abstract A schematic representation of αSyn RT-QuIC assay.
Collapse
Affiliation(s)
- Sireesha Manne
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Naveen Kondru
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Monica Hepker
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Mechelle Lewis
- Departments of Neurology and Pharmacology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033
- Neurosurgery, Radiology, and Kinesiology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011
| |
Collapse
|
12
|
Cariulo C, Martufi P, Verani M, Azzollini L, Bruni G, Weiss A, Deguire SM, Lashuel HA, Scaricamazza E, Sancesario GM, Schirinzi T, Mercuri NB, Sancesario G, Caricasole A, Petricca L. Phospho-S129 Alpha-Synuclein Is Present in Human Plasma but Not in Cerebrospinal Fluid as Determined by an Ultrasensitive Immunoassay. Front Neurosci 2019; 13:889. [PMID: 31507364 PMCID: PMC6714598 DOI: 10.3389/fnins.2019.00889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation and aggregation of misfolded alpha-synuclein is believed to be a cause of Parkinson’s disease (PD). Phosphorylation of alpha-synuclein at S129 is known to be associated with the pathological misfolding process, but efforts to investigate the relevance of this post-translational modification for pathology have been frustrated by difficulties in detecting and quantifying it in relevant samples. We report novel, ultrasensitive immunoassays based on single-molecule counting technology, useful for detecting alpha-synuclein and its S129 phosphorylated form in clinical samples in the low pg/ml range. Using human CSF and plasma samples, we find levels of alpha-synuclein comparable to those previously reported. However, while alpha-synuclein phosphorylated on S129 could easily be detected in human plasma, where its detection is extremely sensitive to protein phosphatases, its levels in CSF were undetectable, with a possible influence of a matrix effect. In plasma samples from a small test cohort comprising 5 PD individuals and five age-matched control individuals we find that pS129 alpha-synuclein levels are increased in PD plasma samples, in line with previous reports. We conclude that pS129 alpha-synuclein is not detectable in CSF and recommend the addition of phosphatase inhibitors to plasma samples at the time of collection. Moreover, the findings obtained on the small cohort of clinical plasma samples point to plasma pS129 alpha-synuclein levels as a candidate diagnostic biomarker in PD.
Collapse
Affiliation(s)
| | - Paola Martufi
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| | | | | | | | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eugenia Scaricamazza
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Lara Petricca
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| |
Collapse
|
13
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
15
|
Napp A, Houbart V, Demelenne A, Merville MP, Crommen J, Dumoulin M, Garraux G, Servais AC, Fillet M. Separation and determination of alpha-synuclein monomeric and oligomeric species using two electrophoretic approaches. Electrophoresis 2018; 39:3022-3031. [PMID: 30157293 DOI: 10.1002/elps.201800224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a frequent degenerative disorder that is diagnosed based on clinical symptoms. When the first symptoms appear, more than 70% of the dopaminergic cells are already lost. Therefore, it is of utmost importance to have reliable biomarkers to diagnose much earlier PD. In this context, alpha-synuclein (aSyn) is a protein of high interest because of its tendency to form oligomers and amyloid fibrils. The oligomeric forms seem to play a critical pathological role in PD. To date, most of studies aiming at detecting and quantifying aSyn oligomers were performed by immunoassays, mainly by ELISA using specific antibodies. In this study a capillary gel electrophoresis (CGE) coupled with fluorescence detection method was developed to detect and quantify the oligomeric forms of aSyn formed in vitro. All the results obtained were supported by SDS-PAGE analysis, a widely used and well-known technique but exhibiting a main drawback since it is not an automated technique. The repeatability and the intermediate precision of the method were evaluated, as well as the stability of the labeled and non-labeled aSyn samples. After careful screening and optimization of various labeling reagents, 4-fluoro-7-nitrobenzofurazan (NBD-F) was selected and used to establish a calibration curve with monomeric fluorescently-labeled aSyn. Finally, the method was used to study the effect of doxycycline on the oligomerization process. Altogether, our results show that CGE is a very promising automated technique to analyze aSyn monomers, as well as small oligomers.
Collapse
Affiliation(s)
- Aurore Napp
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Virginie Houbart
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Marie-Paule Merville
- Department of Clinical Chemistry, CIRM, University Hospital Center, University of Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Gaëtan Garraux
- Department of Neurology, University Hospital Center, Liège, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Zhao H, Zhao J, Hou J, Wang S, Ding Y, Lu B, Wang J. AlphaLISA detection of alpha-synuclein in the cerebrospinal fluid and its potential application in Parkinson's disease diagnosis. Protein Cell 2018; 8:696-700. [PMID: 28555377 PMCID: PMC5563284 DOI: 10.1007/s13238-017-0424-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hongli Zhao
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Jue Zhao
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Jiapeng Hou
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Siqing Wang
- Changzhou Furuite Biological Technology Co. Ltd., Changzhou, 213145, China
| | - Yu Ding
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Jian Wang
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
17
|
Paciotti S, Bellomo G, Gatticchi L, Parnetti L. Are We Ready for Detecting α-Synuclein Prone to Aggregation in Patients? The Case of "Protein-Misfolding Cyclic Amplification" and "Real-Time Quaking-Induced Conversion" as Diagnostic Tools. Front Neurol 2018; 9:415. [PMID: 29928254 PMCID: PMC5997809 DOI: 10.3389/fneur.2018.00415] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
The accumulation and deposition of α-synuclein aggregates in brain tissue is the main event in the pathogenesis of different neurodegenerative disorders grouped under the term of synucleinopathies. They include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. To date, the diagnosis of any of these disorders mainly relies on the recognition of clinical symptoms, when the neurodegeneration is already in an advanced phase. In the last years, several efforts have been carried out to develop new diagnostic tools for early diagnosis of synucleinopathies, with special interest to Parkinson's disease. The Protein-Misfolding Cyclic Amplification (PMCA) and the Real-Time Quaking-Induced Conversion (RT-QuIC) are ultrasensitive protein amplification assays for the detection of misfolded protein aggregates. Starting from the successful application in the diagnosis of human prion diseases, these techniques were recently tested for the detection of misfolded α-synuclein in brain homogenates and cerebrospinal fluid samples of patients affected by synucleinopathies. So far, only a few studies on a limited number of samples have been performed to test PMCA and RT-QuIC diagnostic reliability. Neverthless, these assays have shown very high sensitivity and specificity in detecting synucleinopathies even at the pre-clinical stage. Despite the application of PMCA and RT-QuIC for α-synuclein detection in biological fluids is very recent, these techniques seem to have the potential for identifying subjects that will be likely to develop synucleinopathies.
Collapse
Affiliation(s)
- Silvia Paciotti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Khodadadian A, Hemmati-Dinarvand M, Kalantary-Charvadeh A, Ghobadi A, Mazaheri M. Candidate biomarkers for Parkinson's disease. Biomed Pharmacother 2018; 104:699-704. [PMID: 29803930 DOI: 10.1016/j.biopha.2018.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common diseases associated with neurodegenerative disorders. It affects 3% to 4% of the population over the age of 65 years. The neuropathological dominant symptoms of PD include the destruction of neurons in the substantia nigra, thus causing striatal dopamine deficiency and the presence of intracellular inclusions that contain aggregates of α‑synuclein. The premature form of PD is familial and is known as early onset PD (EOPD). It involves a small portion of patients with PD, displaying symptoms before the age of 60 years. Although individuals who are suffering from the EOPD may have genetic changes, the molecular mechanisms that differentiate between EOPD and late onset PD (LOPD) remain unclear. Owing to the complexity of discriminating between the different forms, treatment, and management of PD, the identification of biomarkers for early diagnosis seems necessary. For this purpose, many studies have been undertaken for the introduction of several biological molecules through various techniques as potential biomarkers. The main focus of these studies was on α-synuclein. However, there are other molecules that are potential biomarkers, such as microRNAs and peptoids. In this article, we tried to review some of these studies.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ghobadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Farotti L, Paciotti S, Tasegian A, Eusebi P, Parnetti L. Discovery, validation and optimization of cerebrospinal fluid biomarkers for use in Parkinson's disease. Expert Rev Mol Diagn 2017; 17:771-780. [PMID: 28604235 DOI: 10.1080/14737159.2017.1341312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex and phenotypically heterogeneous neurodegenerative disease, for which the diagnosis is mainly based on clinical parameters (even if neuroimaging plays a role in diagnostic assessment); as a consequence, misdiagnosis is common, especially in early stages. Thus, there is an urgent need of having available biomarkers in order to achieve an early and accurate diagnosis. Since molecular changes in the brain are reliably and timely reflected in cerebrospinal fluid (CSF), CSF represents an ideal source for biomarkers of different pathophysiological processes characterizing the disease since its early phases. Areas covered: The aim of this review is to provide an update on the role, development and validation of most studied CSF biomarkers showing a role in the diagnosis and/or prognosis of PD. Oligomeric alpha-synuclein, DJ-1, lysosomal enzymes (namely, glucocerebrosidase) show consistent evidence as potential diagnostic biomarkers of PD. Neurofilament light chain may also have a significant role in differentiating PD from other parkinsonisms. Amyloid beta peptide 1-42 has consistently shown a prognostic value in terms of development of cognitive impairment and dementia in PD patients. Expert commentary: CSF biomarkers represent a very promising approach to early and differential diagnosis of PD. The biomarkers available so far need preanalytical and analytical validation in order to have these CSF biomarkers ready for clinical use.
Collapse
Affiliation(s)
- Lucia Farotti
- a Clinica Neurologica, Laboratorio di Neurochimica Clinica , Universita degli Studi di Perugia , Perugia , Italy
| | - Silvia Paciotti
- a Clinica Neurologica, Laboratorio di Neurochimica Clinica , Universita degli Studi di Perugia , Perugia , Italy
| | - Anna Tasegian
- a Clinica Neurologica, Laboratorio di Neurochimica Clinica , Universita degli Studi di Perugia , Perugia , Italy
| | - Paolo Eusebi
- a Clinica Neurologica, Laboratorio di Neurochimica Clinica , Universita degli Studi di Perugia , Perugia , Italy
| | - Lucilla Parnetti
- a Clinica Neurologica, Laboratorio di Neurochimica Clinica , Universita degli Studi di Perugia , Perugia , Italy
| |
Collapse
|
20
|
Validation of electrochemiluminescence assays for highly sensitive and reproducible quantification of α-synuclein in cerebrospinal fluid. Bioanalysis 2017; 9:621-630. [PMID: 28504552 DOI: 10.4155/bio-2017-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM α-Synuclein (aSyn), a putative cerebrospinal fluid biomarker, may support the diagnosis of neurodegenerative diseases. Previous studies led to conflicting results due to different preanalytical and analytical procedures. Standardized assays are required to allow for comparison of results from different laboratories. MATERIALS & METHODS We performed a side-by-side validation of a commercially available (MSD, MD, USA) and a 'homebrew' assay for quantification of aSyn according to published guidelines. RESULTS The data showed high sensitivity and reproducibility for both assays. Preanalytical and analytical parameters did not affect the outcome of measurements. CONCLUSION We conclude that both assays are very close in performance and suitable for research application of cerebrospinal fluid aSyn.
Collapse
|
21
|
Yang L, Stewart T, Shi M, Pottiez G, Dator R, Wu R, Aro P, Schuster RJ, Ginghina C, Pan C, Gao Y, Qian W, Zabetian CP, Hu SC, Quinn JF, Zhang J. An alpha-synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression. Proteomics Clin Appl 2017; 11. [PMID: 28319654 DOI: 10.1002/prca.201700045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
AIM The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson's disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, the authors developed a highly sensitive MRM method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. RESULTS Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1 ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. CONCLUSIONS An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.
Collapse
Affiliation(s)
- Li Yang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Min Shi
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Gwenael Pottiez
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Romel Dator
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Rui Wu
- Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Pathology, No. 3 Hospital of Beijing University, Beijing, China
| | - Patrick Aro
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Carmen Ginghina
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Weijun Qian
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cyrus P Zabetian
- Parkinson's Disease Research and Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Shu-Ching Hu
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing, 100083, China
| |
Collapse
|
22
|
Schlossmacher MG, Tomlinson JJ, Santos G, Shutinoski B, Brown EG, Manuel D, Mestre T. Modelling idiopathic Parkinson disease as a complex illness can inform incidence rate in healthy adults: the P R EDIGT score. Eur J Neurosci 2017; 45:175-191. [PMID: 27859866 PMCID: PMC5324667 DOI: 10.1111/ejn.13476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/16/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
Fifty-five years after the concept of dopamine replacement therapy was introduced, Parkinson disease (PD) remains an incurable neurological disorder. To date, no disease-modifying therapeutic has been approved. The inability to predict PD incidence risk in healthy adults is seen as a limitation in drug development, because by the time of clinical diagnosis ≥ 60% of dopamine neurons have been lost. We have designed an incidence prediction model founded on the concept that the pathogenesis of PD is similar to that of many disorders observed in ageing humans, i.e. a complex, multifactorial disease. Our model considers five factors to determine cumulative incidence rates for PD in healthy adults: (i) DNA variants that alter susceptibility (D), e.g. carrying a LRRK2 or GBA risk allele; (ii) Exposure history to select environmental factors including xenobiotics (E); (iii) Gene-environment interactions that initiate pathological tissue responses (I), e.g. a rise in ROS levels, misprocessing of amyloidogenic proteins (foremost, α-synuclein) and dysregulated inflammation; (iv) sex (or gender; G); and importantly, (v) time (T) encompassing ageing-related changes, latency of illness and propagation of disease. We propose that cumulative incidence rates for PD (PR ) can be calculated in healthy adults, using the formula: PR (%) = (E + D + I) × G × T. Here, we demonstrate six case scenarios leading to young-onset parkinsonism (n = 3) and late-onset PD (n = 3). Further development and validation of this prediction model and its scoring system promise to improve subject recruitment in future intervention trials. Such efforts will be aimed at disease prevention through targeted selection of healthy individuals with a higher prediction score for developing PD in the future and at disease modification in subjects that already manifest prodromal signs.
Collapse
Affiliation(s)
- Michael G. Schlossmacher
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Division of NeurologyDepartment of MedicineThe Ottawa HospitalOttawaCanada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
- Faculty of MedicineUniversity of OttawaOttawaCanada
| | - Julianna J. Tomlinson
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
| | | | - Bojan Shutinoski
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
| | - Earl G. Brown
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Douglas Manuel
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Tiago Mestre
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Division of NeurologyDepartment of MedicineThe Ottawa HospitalOttawaCanada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaCanada
| |
Collapse
|
23
|
Detection and Quantification of the Fragile X Mental Retardation Protein 1 (FMRP). Genes (Basel) 2016; 7:genes7120121. [PMID: 27941672 PMCID: PMC5192497 DOI: 10.3390/genes7120121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023] Open
Abstract
The final product of FMR1 gene transcription, Fragile X Mental Retardation Protein 1 (FMRP), is an RNA binding protein that acts as a repressor of translation. FMRP is expressed in several tissues and plays important roles in neurogenesis, synaptic plasticity, and ovarian functions and has been implicated in a number of neuropsychological disorders. The loss of FMRP causes Fragile X Syndrome (FXS). In most cases, FXS is due to large expansions of a CGG repeat in FMR1—normally containing 6–54 repeats—to over 200 CGGs and identified as full mutation (FM). Hypermethylation of the repeat induces FMR1 silencing and lack of FMRP expression in FM male. Mosaic FM males express low levels of FMRP and present a less severe phenotype that inversely correlates with FMRP levels. Carriers of pre-mutations (55–200 CGG) show increased mRNA, and normal to reduced FMRP levels. Alternative splicing of FMR1 mRNA results in 24 FMRP predicted isoforms whose expression are tissues and developmentally regulated. Here, we summarize the approaches used by several laboratories including our own to (a) detect and estimate the amount of FMRP in different tissues, developmental stages and various pathologies; and (b) to accurately quantifying FMRP for a direct diagnosis of FXS in adults and newborns.
Collapse
|
24
|
Landeck N, Hall H, Ardah MT, Majbour NK, El-Agnaf OMA, Halliday G, Kirik D. A novel multiplex assay for simultaneous quantification of total and S129 phosphorylated human alpha-synuclein. Mol Neurodegener 2016; 11:61. [PMID: 27549140 PMCID: PMC4994244 DOI: 10.1186/s13024-016-0125-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/04/2016] [Indexed: 12/01/2022] Open
Abstract
Background Alpha-synuclein (asyn) has been shown to play an important role in the neuropathology of Parkinson’s disease (PD). In the diseased brain, classic intraneuronal inclusions called Lewy bodies contain abnormal formations of asyn protein which is mostly phosphorylated at serine 129 (pS129 asyn). This suggests that post-translational modifications may play a role in the pathogenic process. To date, several uniplex assays have been developed in order to quantify asyn not only in the brain but also in cerebrospinal fluid and blood samples in order to correlate asyn levels to disease severity and progression. Notably, only four assays have been established to measure pS129 asyn specifically and none provide simultaneous readout of the total and pS129 species. Therefore, we developed a sensitive high-throughput duplex assay quantifying total and pS129 human asyn (h-asyn) in the same well hence improving accuracy as well as saving time, consumables and samples. Results Using our newly established duplex assay we measured total and pS129 h-asyn in vitro showing that polo-like kinase 2 (PLK2) can phosphorylate asyn up to 41 % in HEK293 cells and in vivo the same kinase phosphorylated h-asyn up to 17 % in rat ventral midbrain neurons. Interestingly, no increase in phosphorylation was observed when PLK2 and h-asyn were co-expressed in rat striatal neurons. Furthermore, using this assay we investigated h-asyn levels in brain tissue samples from patients with PD as well as PD dementia and found significant differences in pS129 h-asyn levels not only between disease tissue and healthy control samples but also between the two distinct disease states especially in hippocampal tissue samples. Conclusions These results demonstrate that our duplex assay for simultaneous quantification is a useful tool to study h-asyn phosphorylation events in biospecimens and will be helpful in studies investigating the precise causative link between post-translational modification of h-asyn and PD pathology. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0125-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalie Landeck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184, Lund, Sweden.
| | - Hélène Hall
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184, Lund, Sweden.,Current address: Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar.,College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Glenda Halliday
- Faculty of Medicine, University of New South Wales and Neuroscience Research Australia, 2052, Sydney, Australia
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184, Lund, Sweden
| |
Collapse
|
25
|
Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ, Aarsland D, Svenningsson P, Farotti L, Verbeek MM, Schlossmacher MG. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:290-317. [DOI: 10.1111/jnc.13390] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik; Kassel Germany
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Irena Rektorova
- Applied Neuroscience Group; CEITEC MU; Masaryk University; Brno Czech Republic
| | - Milica G. Kramberger
- Department of Neurology; University Medical Center Ljubljana; Ljubljana Slovenia
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Maria Pikkarainen
- Institute of Clinical Medicine / Neurology; University of Eastern Finland; Kuopio Finland
| | - Walter J. Schulz-Schaeffer
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Dag Aarsland
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Per Svenningsson
- Department for Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Lucia Farotti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Marcel M. Verbeek
- Department of Neurology; Department of Laboratory Medicine; Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Michael G. Schlossmacher
- Program in Neuroscience and Division of Neurology; The Ottawa Hospital; University of Ottawa Brain & Mind Research Institute; Ottawa Ontario Canada
| |
Collapse
|
26
|
Alpha-Synuclein as a Diagnostic Biomarker for Parkinson’s Disease. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3560-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Simonsen AH, Kuiperij B, El-Agnaf OMA, Engelborghs S, Herukka SK, Parnetti L, Rektorova I, Vanmechelen E, Kapaki E, Verbeek M, Mollenhauer B. The utility of α-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature. Biomark Med 2016; 10:19-34. [DOI: 10.2217/bmm.14.105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The discovery of α-synuclein (α-syn) as a major component of Lewy bodies, neuropathological hallmark of Parkinson's disease (PD), dementia with Lewy bodies and of glial inclusions in multiple system atrophy initiated the investigation of α-syn as a biomarker in cerebrospinal fluid (CSF). Due to the involvement of the periphery in PD the quantification of α-syn in peripheral fluids such as serum, plasma and saliva has been investigated as well. We review how the development of multiple assays for the quantification of α-syn has yielded novel insights into the variety of α-syn species present in the different fluids; the optimal preanalytical conditions required for robust quantification and the potential clinical value of α-syn as biomarker. We also suggest future approaches to use of CSF α-syn in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anja Hviid Simonsen
- Memory Disorders Research Group, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bea Kuiperij
- Department of Neurology, Department of Laboratory Medicine, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Omar Mukhtar Ali El-Agnaf
- College of Science and Engineering, Hamid Bin Khalifa University, Qatar Foundation, Education City, PO Box 5825 Doha, Qatar
| | - Sebastian Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp & Department of Neurology & Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine – Neurology University of Eastern Finland School of Medicine, Kuopio, Finland
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer, Clinica Neurologica, Università di Perugia, Italy
| | - Irena Rektorova
- Applied Neuroscience Research Group, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Eugeen Vanmechelen
- ADx NeuroSciences, VIB-Bioincubator, Technologiepark Zwijnaarde 4, 9052 Ghent, Belgium
| | - Elisabeth Kapaki
- National & Kapodistrian University of Athens, School of Medicine, 1st Department of Neurology, Eginition Hospital, Athens, Greece
| | - Marcel Verbeek
- Department of Neurology, Department of Laboratory Medicine, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel & University Medical Center (Departments of Neuropathology & Neurosurgery), Georg-August University Goettingen, Germany
| |
Collapse
|
28
|
Parnetti L, Cicognola C, Eusebi P, Chiasserini D. Value of cerebrospinal fluid α-synuclein species as biomarker in Parkinson's diagnosis and prognosis. Biomark Med 2015; 10:35-49. [PMID: 26643452 DOI: 10.2217/bmm.15.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Since diagnosis of Parkinson's disease (PD) is mostly based on clinical criteria, it is almost impossible to formulate an early diagnosis, as well as a timely differential diagnosis versus other parkinsonisms. A great effort in searching reliable biomarkers both for early diagnosis and prognosis in PD is currently ongoing. Cerebrospinal fluid has been widely investigated as potential source for such biomarkers, with particular emphasis on α-synuclein (α-syn) species. We reviewed all the clinical studies carried out so far on cerebrospinal fluid quantification of α-syn species in PD. Current evidence supports the value of total and oligomeric α-syn in PD diagnosis and in the differential diagnosis of PD and other parkinsonisms. Conversely, the role of α-syn species in PD prognosis remains unsatisfactory.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Section of Neurology, Department of Medicine, Center for Memory Disturbances, University of Perugia, Sant' Andrea delle Fratte, 06132 Perugia, Italy
| | - Claudia Cicognola
- Clinical Neurochemistry Laboratory, Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Paolo Eusebi
- Health Planning Service, Regional Health Authority of Umbria, Department of Epidemiology, Perugia, Italy
| | - Davide Chiasserini
- Section of Neurology, Department of Medicine, Center for Memory Disturbances, University of Perugia, Sant' Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
29
|
Macchi F, Deleersnijder A, Van den Haute C, Munck S, Pottel H, Michiels A, Debyser Z, Gerard M, Baekelandt V. High-content analysis of α-synuclein aggregation and cell death in a cellular model of Parkinson's disease. J Neurosci Methods 2015; 261:117-27. [PMID: 26620202 DOI: 10.1016/j.jneumeth.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SYN) aggregates represent a key feature of Parkinson's disease, but the exact relationship between α-SYN aggregation and neurodegeneration remains incompletely understood. Therefore, the availability of a cellular assay that allows medium-throughput analysis of α-SYN-linked pathology will be of great value for studying the aggregation process and for advancing α-SYN-based therapies. NEW METHOD Here we describe a high-content neuronal cell assay that simultaneously measures oxidative stress-induced α-SYN aggregation and apoptosis. RESULTS We optimized an automated and reproducible assay to quantify both α-SYN aggregation and cell death in human SH-SY5Y neuroblastoma cells. COMPARISON WITH EXISTING METHODS Quantification of α-SYN aggregates in cells has typically relied on manual imaging and counting or cell-free assays, which are time consuming and do not allow a concurrent analysis of cell viability. Our high-content analysis method for quantification of α-SYN aggregation allows simultaneous measurements of multiple cell parameters at a single-cell level in a fast, objective and automated manner. CONCLUSIONS The presented analysis approach offers a rapid, objective and multiparametric approach for the screening of compounds and genes that might alter α-SYN aggregation and/or toxicity.
Collapse
Affiliation(s)
- Francesca Macchi
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Angélique Deleersnijder
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Sebastian Munck
- KU Leuven, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Hans Pottel
- KU Leuven Campus Kulak Kortrijk, Public Health and Primary Care, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Melanie Gerard
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; KU Leuven campus Kulak Kortrijk, Laboratory of Biochemistry, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium.
| |
Collapse
|
30
|
Verma M, Vats A, Taneja V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 2015; 18:138-45. [PMID: 26019408 PMCID: PMC4445186 DOI: 10.4103/0972-2327.144284] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/05/2014] [Accepted: 09/21/2014] [Indexed: 11/04/2022] Open
Abstract
Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described.
Collapse
Affiliation(s)
- Meenakshi Verma
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrated Biology, Sir Ganga Ram Hospital, New Delhi, India
| | - Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India ; Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
31
|
Pacheco CR, Morales CN, Ramírez AE, Muñoz FJ, Gallegos SS, Caviedes PA, Aguayo LG, Opazo CM. Extracellular α-synuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. J Neurochem 2015; 132:731-41. [PMID: 25669123 DOI: 10.1111/jnc.13060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
It has been postulated that the accumulation of extracellular α-synuclein (α-syn) might alter the neuronal membrane by formation of 'pore-like structures' that will lead to alterations in ionic homeostasis. However, this has never been demonstrated to occur in brain neuronal plasma membranes. In this study, we show that α-syn oligomers rapidly associate with hippocampal membranes in a punctate fashion, resulting in increased membrane conductance (5 fold over control) and the influx of both calcium and a fluorescent glucose analogue. The enhancement in intracellular calcium (1.7 fold over control) caused a large increase in the frequency of synaptic transmission (2.5 fold over control), calcium transients (3 fold over control), and synaptic vesicle release. Both primary hippocampal and dissociated nigral neurons showed rapid increases in membrane conductance by α-syn oligomers. In addition, we show here that α-syn caused synaptotoxic failure associated with a decrease in SV2, a membrane protein of synaptic vesicles associated with neurotransmitter release. In conclusion, extracellular α-syn oligomers facilitate the perforation of the neuronal plasma membrane, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation. We propose that α-synuclein (α-syn) oligomers form pore-like structures in the plasma membrane of neurons from central nervous system (CNS). We believe that extracellular α-syn oligomers facilitate the formation of α-syn membrane pore-like structures, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation. We think that alterations in ionic homeostasis and synaptic vesicular depletion are key steps that lead to synaptotoxicity promoted by α -syn membrane pore-like structures.
Collapse
Affiliation(s)
- Carla R Pacheco
- Department of Physiology, University of Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brännström K, Lindhagen-Persson M, Gharibyan AL, Iakovleva I, Vestling M, Sellin ME, Brännström T, Morozova-Roche L, Forsgren L, Olofsson A. A generic method for design of oligomer-specific antibodies. PLoS One 2014; 9:e90857. [PMID: 24618582 PMCID: PMC3949727 DOI: 10.1371/journal.pone.0090857] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/06/2014] [Indexed: 01/07/2023] Open
Abstract
Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies. The method takes a two-step approach where discrimination between oligomers and fibrils is first accomplished through identification of cryptic epitopes exclusively buried within the structure of the fibrillar form. The second step discriminates between monomers and oligomers based on differences in avidity. We show here that a simple divalent mode of interaction, as within e.g. the IgG isotype, can increase the binding strength of the antibody up to 1500 times compared to its monovalent counterpart. We expose how the ability to bind oligomers is affected by the monovalent affinity and the turnover rate of the binding and, importantly, also how oligomer specificity is only valid within a specific concentration range. We provide an example of the method by creating and characterising a spectrum of different monoclonal antibodies against both the Aβ peptide and α-synuclein that are associated with Alzheimer's and Parkinson's diseases, respectively. The approach is however generic, does not require identification of oligomer-specific architectures, and is, in essence, applicable to all polypeptides that form oligomeric and fibrillar assemblies.
Collapse
Affiliation(s)
| | | | - Anna L. Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Irina Iakovleva
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Monika Vestling
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | | | | | - Lars Forsgren
- Department of Clinical Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
33
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|
34
|
Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TNM, Peet E, Drolet RE, Perez RG. Non-motor parkinsonian pathology in aging A53T α-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 2013; 128:536-46. [PMID: 24117685 PMCID: PMC4283050 DOI: 10.1111/jnc.12481] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
Abstract
Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α–synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α–synuclein for behavior and α–synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α–synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD.
Collapse
Affiliation(s)
- Kaitlin F Farrell
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmid AW, Fauvet B, Moniatte M, Lashuel HA. Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics 2013; 12:3543-58. [PMID: 23966418 DOI: 10.1074/mcp.r113.032730] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of novel therapies against neurodegenerative disorders requires the ability to detect their early, presymptomatic manifestations in order to enable treatment before irreversible cellular damage occurs. Precocious signs indicative of neurodegeneration include characteristic changes in certain protein levels, which can be used as diagnostic biomarkers when they can be detected in fluids such as blood plasma or cerebrospinal fluid. In the case of synucleinopathies, cerebrospinal alpha-synuclein (α-syn) has attracted great interest as a potential biomarker; however, there is ongoing debate regarding the association between cerebrospinal α-syn levels and neurodegeneration in Parkinson disease and synucleinopathies. Post-translational modifications (PTMs) have emerged as important determinants of α-syn's physiological and pathological functions. Several PTMs are enriched within Lewy bodies and exist at higher levels in α-synucleinopathy brains, suggesting that certain modified forms of α-syn might be more relevant biomarkers than the total α-syn levels. However, the quantification of PTMs in bodily fluids poses several challenges. This review describes the limitations of current immunoassay-based α-syn quantification methods and highlights how these limitations can be overcome using novel mass-spectrometry-based assays. In addition, we describe how advances in chemical synthesis, which have enabled the preparation of α-syn proteins that are site-specifically modified at single or multiple residues, can facilitate the development of more accurate assays for detecting and quantifying α-syn PTMs in health and disease.
Collapse
Affiliation(s)
- Adrien W Schmid
- Proteomics Core Facility, School of Life Sciences, Station 19, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
36
|
Biomarkers in Parkinson's disease (recent update). Neurochem Int 2013; 63:201-29. [PMID: 23791710 DOI: 10.1016/j.neuint.2013.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [(18)F]-DOPA for estimating dopaminergic neurotransmission, [(18)F]dG for mitochondrial bioenergetics, [(18)F]BMS for mitochondrial complex-1, [(11)C](R)-PK11195 for microglial activation, SPECT imaging with (123)Iflupane and βCIT for dopamine transporter, and urinary salsolinol and 8-hydroxy, 2-deoxyguanosine for neuronal loss. This brief review describes the merits and limitations of recently discovered biomarkers and proposes coenzyme Q10, mitochondrial ubiquinone-NADH oxidoreductase, melatonin, α-synculein index, Charnoly body, and metallothioneins as novel biomarkers to confirm PD diagnosis for early and effective treatment of PD.
Collapse
|
37
|
van Dijk KD, Bidinosti M, Weiss A, Raijmakers P, Berendse HW, van de Berg WDJ. Reduced α-synuclein levels in cerebrospinal fluid in Parkinson's disease are unrelated to clinical and imaging measures of disease severity. Eur J Neurol 2013; 21:388-94. [PMID: 23631635 DOI: 10.1111/ene.12176] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The cerebrospinal fluid (CSF) concentration of α-synuclein may reflect the aggregation of α-synuclein in brain tissue that neuropathologically characterizes Parkinson's disease (PD). Although most studies in large cohorts report reduced CSF α-synuclein levels in PD, the available data to date are not consistent due to variation in group sizes, pre-analytical confounding factors and assay characteristics. Furthermore, it remains unclear whether CSF α-synuclein concentrations correlate with measures of disease severity. Acknowledging the methodological issues that emerged from previous studies, we evaluated whether CSF α-synuclein levels differ between patients with PD and controls, and relate to disease duration or severity. METHODS α-Synuclein levels were measured in CSF samples of 53 well-characterized patients with PD and 50 healthy controls employing a recently developed time-resolved Förster's resonance energy transfer assay. In addition, we studied the relationship of CSF α-synuclein levels with disease duration, clinical measures of disease severity and the striatal dopaminergic deficit as measured by dopamine transporter binding and single photon emission computed tomography. RESULTS In patients with PD, we observed a decrease in mean CSF α-synuclein levels that was unrelated to disease duration or measures of disease severity. Using total protein normalized α-synuclein, a sensitivity and specificity of 70% and 74% could be reached for distinguishing between patients with PD and controls. CONCLUSION CSF α-synuclein levels are reduced in patients with PD compared with healthy controls. However, sensitivity and specificity indicate that α-synuclein will not suffice as a single biomarker. CSF α-synuclein levels do not correlate with measures of disease severity, including striatal dopaminergic deficit.
Collapse
Affiliation(s)
- K D van Dijk
- Department of Anatomy and Neurosciences, Section of Functional Neuroanatomy, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Nguyen HP, Hübener J, Weber JJ, Grueninger S, Riess O, Weiss A. Cerebellar soluble mutant ataxin-3 level decreases during disease progression in Spinocerebellar Ataxia Type 3 mice. PLoS One 2013; 8:e62043. [PMID: 23626768 PMCID: PMC3633920 DOI: 10.1371/journal.pone.0062043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/17/2013] [Indexed: 02/02/2023] Open
Abstract
Spinocerebellar Ataxia Type 3 (SCA3), also known as Machado-Joseph disease, is an autosomal dominantly inherited neurodegenerative disease caused by an expanded polyglutamine stretch in the ataxin-3 protein. A pathological hallmark of the disease is cerebellar and brainstem atrophy, which correlates with the formation of intranuclear aggregates in a specific subset of neurons. Several studies have demonstrated that the formation of aggregates depends on the generation of aggregation-prone and toxic intracellular ataxin-3 fragments after proteolytic cleavage of the full-length protein. Despite this observed increase in aggregated mutant ataxin-3, information on soluble mutant ataxin-3 levels in brain tissue is lacking. A quantitative method to analyze soluble levels will be a useful tool to characterize disease progression or to screen and identify therapeutic compounds modulating the level of toxic soluble ataxin-3. In the present study we describe the development and application of a quantitative and easily applicable immunoassay for quantification of soluble mutant ataxin-3 in human cell lines and brain samples of transgenic SCA3 mice. Consistent with observations in Huntington disease, transgenic SCA3 mice reveal a tendency for decrease of soluble mutant ataxin-3 during disease progression in fractions of the cerebellum, which is inversely correlated with aggregate formation and phenotypic aggravation. Our analyses demonstrate that the time-resolved Förster resonance energy transfer immunoassay is a highly sensitive and easy method to measure the level of soluble mutant ataxin-3 in biological samples. Of interest, we observed a tendency for decrease of soluble mutant ataxin-3 only in the cerebellum of transgenic SCA3 mice, one of the most affected brain regions in Spinocerebellar Ataxia Type 3 but not in whole brain tissue, indicative of a brain region selective change in mutant ataxin-3 protein homeostasis.
Collapse
Affiliation(s)
- Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jeannette Hübener
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Stephan Grueninger
- Neuroscience Discovery, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Andreas Weiss
- Neuroscience Discovery, Novartis Institute for BioMedical Research, Basel, Switzerland
- IRBM Promidis, Pomezia, Italy
| |
Collapse
|
39
|
Sherwood LJ, Hayhurst A. Ebolavirus nucleoprotein C-termini potently attract single domain antibodies enabling monoclonal affinity reagent sandwich assay (MARSA) formulation. PLoS One 2013; 8:e61232. [PMID: 23577211 PMCID: PMC3618483 DOI: 10.1371/journal.pone.0061232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. METHODS AND FINDINGS In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. CONCLUSIONS The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
40
|
Schutzius G, Bleckmann D, Kapps-Fouthier S, di Giorgio F, Gerhartz B, Weiss A. A quantitative homogeneous assay for fragile X mental retardation 1 protein. J Neurodev Disord 2013; 5:8. [PMID: 23548045 PMCID: PMC3635944 DOI: 10.1186/1866-1955-5-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Hypermethylation of the fragile X mental retardation 1 gene FMR1 results in decreased expression of FMR1 protein FMRP, which is the underlying cause of Fragile X syndrome – an incurable neurological disorder characterized by mental retardation, anxiety, epileptic episodes and autism. Disease-modifying therapies for Fragile X syndrome are thus aimed at treatments that increase the FMRP expression levels in the brain. We describe the development and characterization of two assays for simple and quantitative detection of FMRP protein. Method Antibodies coupled to fluorophores that can be employed for time-resolved Förster’s resonance energy transfer were used for the development of homogeneous, one-step immunodetection. Purified recombinant human FMRP and patient cells were used as control samples for assay development. Results The assays require small sample amounts, display high stability and reproducibility and can be used to quantify endogenous FMRP in human fibroblasts and peripheral blood mononuclear cells. Application of the assays to FXS patient cells showed that the methods can be used both for the characterization of clinical FXS patient samples as well as primary readouts in drug-discovery screens aimed at increasing endogenous FMRP levels in human cells. Conclusion This study provides novel quantitative detection methods for FMRP in FXS patient cells. Importantly, due to the simplicity of the assay protocol, the method is suited to be used in screening applications to identify compounds or genetic interventions that result in increased FMRP levels in human cells.
Collapse
Affiliation(s)
- Gabi Schutzius
- Neuroscience Discovery, Novartis Pharma AG, Novartis Institutes for Biomedical Research, Postfach, Basel, CH-4002, Switzerland.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|