1
|
Maskey D, Granados Pineda J, Ortiz PA. Update on NKCC2 regulation in the thick ascending limb (TAL) by membrane trafficking, phosphorylation, and protein-protein interactions. Front Physiol 2024; 15:1508806. [PMID: 39717823 PMCID: PMC11663917 DOI: 10.3389/fphys.2024.1508806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose of review The thick ascending limb (TAL) of loop of Henle is essential for NaCl, calcium and magnesium homeostasis, pH balance and for urine concentration. NKCC2 is the main transporter for NaCl reabsorption in the TAL and its regulation is very complex. There have been recent advancements toward understanding how NKCC2 is regulated by protein trafficking, protein-protein interaction, and phosphorylation/dephosphorylation. Here, we update the latest molecular mechanisms and players that control NKCC2 function, which gives an increasingly complex picture of NKKC2 regulation in the apical membrane of the TAL. Recent Findings Protein-protein interactions are required as a regulatory mechanism in many cellular processes. A handful of proteins have been recently identified as an interacting partner of NKCC2, which play major roles in regulating NKCC2 trafficking and activity. New players in NKCC2 internalization and trafficking have been identified. NKCC2 activity is also regulated by kinases and phosphatases, and there have been developments in that area as well. Summary Here we review the current understanding of apical trafficking of NKCC2 in the thick ascending limb (TAL) which is tightly controlled by protein-protein interactions, protein turnover and by phosphorylation and dephosphorylation. We discuss new proteins and processes that regulate NKCC2 that have physiological and pathological significance.
Collapse
Affiliation(s)
- Dipak Maskey
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| | - Jessica Granados Pineda
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States
- Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Dapagliflozin Treatment Augments Bioactive Phosphatidylethanolamine Concentrations in Kidney Cortex Membrane Fractions of Hypertensive Diabetic db/db Mice and Alters the Density of Lipid Rafts in Mouse Proximal Tubule Cells. Int J Mol Sci 2023; 24:ijms24021408. [PMID: 36674924 PMCID: PMC9865226 DOI: 10.3390/ijms24021408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion, the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8) and performed mass spectrometry-based lipidomics to investigate changes in the concentrations of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine samples collected during the active phase and the inactive phase of the mice and then probed for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate lipid-mediated signal transduction in the diabetic kidney.
Collapse
|
4
|
Saenz-Pipaon G, Echeverria S, Orbe J, Roncal C. Urinary Extracellular Vesicles for Diabetic Kidney Disease Diagnosis. J Clin Med 2021; 10:jcm10102046. [PMID: 34064661 PMCID: PMC8151759 DOI: 10.3390/jcm10102046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Saioa Echeverria
- Endocrinology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
5
|
Extracellular Vesicle-Based Therapeutics for Heart Repair. NANOMATERIALS 2021; 11:nano11030570. [PMID: 33668836 PMCID: PMC7996323 DOI: 10.3390/nano11030570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy. Furthermore, the natural origin of EVs makes them exceptional vehicles for drug delivery. EVs may overcome many of the limitations associated with current drug delivery systems (DDS), as they can travel long distances in body fluids, cross biological barriers, and deliver their cargo to recipient cells, among others. Here, we provide an overview of the most recent discoveries regarding the therapeutic potential of EVs for addressing cardiac damage after MI. In addition, we review the use of bioengineered EVs for targeted cardiac delivery and present some recent advances for exploiting EVs as DDS. Finally, we also discuss some of the most crucial aspects that should be addressed before a widespread translation to the clinical arena.
Collapse
|
6
|
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Endocytic recycling of Na + -K + -Cl - cotransporter type 2: importance of exon 4. J Physiol 2019; 597:4263-4276. [PMID: 31216057 DOI: 10.1113/jp278024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 27-exon membrane protein that is expressed in the thick ascending limb (TAL) of Henle where it is involved in reabsorption of the ultrafiltered NaCl load. It comes as three splice variants that are identical to each other except for the residue composition of exon 4 and that differ in their transport characteristics, functional roles and distributions along the TAL. In this report, it is shown that the variants also differ in their trafficking properties and that two residues in exon 4 play a key role in this regard. One of these residues was also shown to sustain carrier internalization. Through these results, a novel function for the alternatively spliced exon of NKCC2 has been identified and a domain that is involved in carrier trafficking has been uncovered for the first time in a cation-Cl- cotransporter family member. ABSTRACT Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 12-transmembrane (TM) domain cell surface glycoprotein that is expressed in the thick ascending limb (TAL) of Henle and stimulated during cell shrinkage. It comes as three splice variants (A, B and F) that are identical to each other except for TM2 and the following connecting segment (CS2). Yet, these variants do not share the same localization, transport characteristics and physiological roles along the TAL. We have recently found that while cell shrinkage could exert its activating effect by increasing NKCC2 expression at the cell surface, the variants also responded differentially to this stimulus. In the current work, a mutagenic approach was exploited to determine whether CS2 could play a role in carrier trafficking and identify the residues potentially involved. We found that when the residue of position 238 in NKCC2A (F) and NKCC2B (Y) was replaced by the corresponding residue in NKCC2F (V), carrier activity increased by over 3-fold and endocytosis decreased concomitantly. We also found that when the residue of position 230 in NKCC2F (M) was replaced by the one in NKCC2B (T), carrier activity and affinity for ions both increased substantially whereas expression at the membrane decreased. Taken together, these results suggest that CS2 is involved in carrier trafficking and that two of its residues, those of positions 238 and 230, are part of an internalization motif. They also indicate that the divergent residue of position 230 plays the dual role of specifying ion affinity and sustaining carrier internalization.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Samira Slimani
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Laurence E Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6.,Cardiometabolic Research Group, Department of Kinesiology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada, H3T 1J4
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| |
Collapse
|
7
|
Haque MZ, Ortiz PA. Superoxide increases surface NKCC2 in the rat thick ascending limbs via PKC. Am J Physiol Renal Physiol 2019; 317:F99-F106. [PMID: 31091128 DOI: 10.1152/ajprenal.00232.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The apical Na+-K+-2Cl- cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The free radical superoxide ( O2- ) stimulates TAL NaCl absorption by enhancing NKCC2 activity. In contrast, nitric oxide (NO) scavenges O2- and inhibits NKCC2. NKCC2 activity depends on the number of NKCC2 transporters in the TAL apical membrane and its phosphorylation. We hypothesized that O2- stimulates NKCC2 activity by enhancing apical surface NKCC2 expression. We measured surface NKCC2 expression in rat TALs by surface biotinylation and Western blot analysis. Treatment of TALs with O2- produced by exogenous xanthine oxidase (1 mU/ml) and hypoxanthine (500 µM) stimulated surface NKCC2 expression by ~18 ± 5% (P < 0.05). O2- -stimulated surface NKCC2 expression was blocked by the O2- scavenger tempol (50 µM). Scavenging H2O2 with 100 U/ml catalase did not block the stimulatory effect of xanthine oxidase-hypoxanthine (22 ± 8% increase from control, P < 0.05). Inhibition of endogenous NO production with Nω-nitro-l-arginine methyl ester enhanced surface NKCC2 expression by 21 ± 6% and, when added together with xanthine oxidase-hypoxanthine, increased surface NKCC2 by 41 ± 10% (P < 0.05). Scavenging O2- with superoxide dismutase (300 U/ml) decreased this stimulatory effect by 60% (39 ± 4% to 15 ± 10%, P < 0.05). Protein kinase C inhibition with Gö-6976 (100 nM) blocked O2- -stimulated surface NKCC2 expression (P < 0.05). O2- did not affect NKCC2 phosphorylation at Thr96/101 or its upstream kinases STE20/SPS1-related proline/alanine-rich kinase-oxidative stress-responsive kinase 1. We conclude that O2- increases surface NKCC2 expression by stimulating protein kinase C and that this effect is blunted by endogenous NO. O2- -stimulated apical trafficking of NKCC2 may be involved in the enhanced surface NKCC2 expression observed in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Mohammed Ziaul Haque
- Department of Internal Medicine, Hypertension and Vascular Research, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Department of Internal Medicine, Hypertension and Vascular Research, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
8
|
Abstract
BACKGROUND The flaviviridae family comprises single-stranded RNA viruses that enter cells via clathrin-mediated pH-dependent endocytosis. Although the initial events of the virus entry have been already identified, data regarding intracellular virus trafficking and delivery to the replication site are limited. The purpose of this study was to map the transport route of Zika virus and to identify the fusion site within the endosomal compartment. METHODS Tracking of viral particles in the cell was carried out with confocal microscopy. Immunostaining of two structural proteins of Zika virus enabled precise mapping of the route of the ribonucleocapsid and the envelope and, consequently, mapping the fusion site in the endosomal compartment. The results were verified using RNAi silencing and chemical inhibitors. RESULTS After endocytic internalization, Zika virus is trafficked through the endosomal compartment to fuse in late endosomes. Inhibition of endosome acidification using bafilomycin A1 hampers the infection, as the fusion is inhibited; instead, the virus is transported to late compartments where it undergoes proteolytic degradation. The degradation products are ejected from the cell via slow recycling vesicles. Surprisingly, NH4Cl, which is also believed to block endosome acidification, shows a very different mode of action. In the presence of this basic compound, the endocytic hub is reprogrammed. Zika virus-containing vesicles never reach the late stage, but are rapidly trafficked to the plasma membrane via a fast recycling pathway after the clathrin-mediated endocytosis. Further, we also noted that, similarly as other members of the flaviviridae family, Zika virus undergoes furin- or furin-like-dependent activation during late steps of infection, while serine or cysteine proteases are not required for Zika virus maturation or entry. CONCLUSIONS Zika virus fusion occurs in late endosomes and is pH-dependent. These results broaden our understanding of Zika virus intracellular trafficking and may in future allow for development of novel treatment strategies. Further, we identified a novel mode of action for agents commonly used in studies of virus entry. Schematic representation of differences in ZIKV trafficking in the presence of Baf A1 and NH4Cl.
Collapse
|
9
|
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Regulation of Na +-K +-Cl - cotransporter type 2 by the with no lysine kinase-dependent signaling pathway. Am J Physiol Cell Physiol 2019; 317:C20-C30. [PMID: 30917032 DOI: 10.1152/ajpcell.00041.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Na+-K+-Cl- cotransporter type 2 (NKCC2) is confined to the apical membrane of the thick ascending limb of Henle, where it reabsorbs a substantial fraction of the ultrafiltered NaCl load. It is expressed along this nephron segment as three main splice variants (called NKCC2A, NKCC2B, and NKCC2F) that differ in residue composition along their second transmembrane domain and first intracellular cytosolic connecting segment (CS2). NKCC2 is known to be activated by cell shrinkage and intracellular [Cl-] reduction. Although the with no lysine (WNK) kinases could play a role in this response, the mechanisms involved are ill defined, and the possibility of variant-specific responses has not been tested thus far. In this study, we have used the Xenopus laevis oocyte expression system to gain further insight in these regards. We have found for the first time that cell shrinkage could stimulate NKCC2A- and NKCC2B-mediated ion transport by increasing carrier abundance at the cell surface and that this response was achieved (at least in part) by the enzymatic function of a WNK kinase. Interestingly, we have also found that the activity and cell surface abundance of NKCC2F were less affected by cell shrinkage compared with the other variants and that ion transport by certain variants could be stimulated through WNK kinase expression in the absence of carrier redistribution. Taken together, these results suggest that the WNK kinase-dependent pathway can affect both the trafficking as well as intrinsic activity of NKCC2 and that CS2 plays an important role in carrier regulation.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Samira Slimani
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Laurence E Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada.,Cardiometabolic Research Group, Department of Kinesiology, Faculty of Medicine, University of Montreal , Montreal, Quebec , Canada
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| |
Collapse
|
10
|
Ares GR. cGMP induces degradation of NKCC2 in the thick ascending limb via the ubiquitin-proteasomal system. Am J Physiol Renal Physiol 2019; 316:F838-F846. [PMID: 30810355 DOI: 10.1152/ajprenal.00287.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The thick ascending limb of Henle's loop (TAL) reabsorbs NaCl via the apical Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is regulated by surface NKCC2 levels. The second messenger cGMP decreases NKCC2 activity by decreasing surface NKCC2 levels. We found that surface NKCC2 undergoes constitutive degradation. Therefore, we hypothesized that cGMP decreases NKCC2 levels by increasing NKCC2 ubiquitination and proteasomal degradation. We measured surface NKCC2 levels by biotinylation of surface proteins, immunoprecipitation of NKCC2, and ubiquitin in TALs. First, we found that inhibition of proteasomal degradation blunts the cGMP-dependent decrease in surface NKCC2 levels [vehicle: 100%, db-cGMP (500 µM): 70.3 ± 9.8%, MG132 (20 µM): 97.7 ± 5.0%, and db-cGMP + MG132: 103.3 ± 3.4%, n = 5, P < 0.05]. We then found that cGMP decreased the internalized NKCC2 pool and that this effect was prevented by inhibition of the proteasome but not the lysosome. Finally, we found that NKCC2 is constitutively ubiquitinated in TALs and that cGMP enhances the rate of NKCC2 ubiquitination [vehicle: 59 ± 14% and db-cGMP (500 µM): 111 ± 25%, n = 5, P < 0.05]. We conclude that NKCC2 is constitutively ubiquitinated and that cGMP stimulates NKCC2 ubiquitination and proteasomal degradation. Our data suggest that the cGMP-induced NKCC2 ubiquitination and degradation may contribute to the cGMP-induced decrease of the NKCC2-dependent NaCl reabsorption in TALs.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
11
|
Ares GR, Kassem KM, Ortiz PA. Fructose acutely stimulates NKCC2 activity in rat thick ascending limbs by increasing surface NKCC2 expression. Am J Physiol Renal Physiol 2018; 316:F550-F557. [PMID: 30516424 DOI: 10.1152/ajprenal.00136.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb (TAL) reabsorbs 25% of the filtered NaCl through the Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is directly related to surface NKCC2 expression and phosphorylation. Higher NaCl reabsorption by TALs is linked to salt-sensitive hypertension, which is linked to consumption of fructose in the diet. However, little is known about the effects of fructose on renal NaCl reabsorption. We hypothesized that fructose, but not glucose, acutely enhances TAL-dependent NaCl reabsorption by increasing NKCC2 activity via stimulation of surface NKCC2 levels and phosphorylation at Thr96/101. We found that fructose (5 mM) increased transport-related O2 consumption in TALs by 11.1 ± 3.2% ( P < 0.05). The effect of fructose on O2 consumption was blocked by furosemide. To study the effect of fructose on NKCC2 activity, we measured the initial rate of NKCC2-dependent thallium influx. We found that 20 min of treatment with fructose (5 mM) increased NKCC2 activity by 58.5 ± 16.9% ( P < 0.05). We then used surface biotinylation to measure surface NKCC2 levels in rat TALs. Fructose increased surface NKCC2 expression in a concentration-dependent manner (22 ± 5, 49 ± 10, and 101 ± 59% of baseline with 1, 5, and 10 mM fructose, respectively, P < 0.05), whereas glucose or a glucose metabolite did not. Fructose did not change NKCC2 phosphorylation at Thre96/101 or total NKCC2 expression. We concluded that acute fructose treatment increases NKCC2 activity by enhancing surface NKCC2 expression, rather than NKCC2 phosphorylation. Our data suggest that fructose consumption could contribute to salt-sensitive hypertension by stimulating NKCC2-dependent NaCl reabsorption in TALs.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Kamal M Kassem
- Department of Internal Medicine, University of Cincinnati Medical Center , Cincinnati, Ohio
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University , Detroit, Michigan
| |
Collapse
|
12
|
Jaykumar AB, Caceres PS, King-Medina KN, Liao TD, Datta I, Maskey D, Naggert JK, Mendez M, Beierwaltes WH, Ortiz PA. Role of Alström syndrome 1 in the regulation of blood pressure and renal function. JCI Insight 2018; 3:95076. [PMID: 30385718 DOI: 10.1172/jci.insight.95076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Elevated blood pressure (BP) and renal dysfunction are complex traits representing major global health problems. Single nucleotide polymorphisms identified by genome-wide association studies have identified the Alström syndrome 1 (ALMS1) gene locus to render susceptibility for renal dysfunction, hypertension, and chronic kidney disease (CKD). Mutations in the ALMS1 gene in humans causes Alström syndrome, characterized by progressive metabolic alterations including hypertension and CKD. Despite compelling genetic evidence, the underlying biological mechanism by which mutations in the ALMS1 gene lead to the above-mentioned pathophysiology is not understood. We modeled this effect in a KO rat model and showed that ALMS1 genetic deletion leads to hypertension. We demonstrate that the link between ALMS1 and hypertension involves the activation of the renal Na+/K+/2Cl- cotransporter NKCC2, mediated by regulation of its endocytosis. Our findings establish a link between the genetic susceptibility to hypertension, CKD, and the expression of ALMS1 through its role in a salt-reabsorbing tubular segment of the kidney. These data point to ALMS1 as a potentially novel gene involved in BP and renal function regulation.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Keyona N King-Medina
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indrani Datta
- Department of Public Health Sciences and.,Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, USA
| | - Dipak Maskey
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Mariela Mendez
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - William H Beierwaltes
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
13
|
Szczepanski A, Owczarek K, Milewska A, Baster Z, Rajfur Z, Mitchell JA, Pyrc K. Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Vet Res 2018; 49:55. [PMID: 29970183 PMCID: PMC6029178 DOI: 10.1186/s13567-018-0551-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization.
Collapse
Affiliation(s)
- Artur Szczepanski
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Owczarek
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Judy A Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Krzysztof Pyrc
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland. .,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
14
|
Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep 2018; 8:7124. [PMID: 29740099 PMCID: PMC5940804 DOI: 10.1038/s41598-018-25640-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
The Coronaviridae family clusters a number of large RNA viruses, which share several structural and functional features. However, members of this family recognize different cellular receptors and exploit different entry routes, what affects their species specificity and virulence. The aim of this study was to determine how human coronavirus OC43 enters the susceptible cell. Using confocal microscopy and molecular biology tools we visualized early events during infection. We found that the virus employs caveolin-1 dependent endocytosis for the entry and the scission of virus-containing vesicles from the cell surface is dynamin-dependent. Furthermore, the vesicle internalization process requires actin cytoskeleton rearrangements. With our research we strove to broaden the understanding of the infection process, which in future may be beneficial for the development of a potential therapeutics.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Aleksandra Milewska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Michal Sarna
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland.
| |
Collapse
|
15
|
Trafficking and regulation of the NKCC2 cotransporter in the thick ascending limb. Curr Opin Nephrol Hypertens 2018; 26:392-397. [PMID: 28614115 DOI: 10.1097/mnh.0000000000000351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The kidney Na-K-2Cl cotransporter (NKCC2) is essential for urinary concentration and renal electrolyte handling. Loss of function mutations in the NKCC2 gene cause urinary salt and potassium wasting, whereas excessive NKCC2 function has been linked to high blood pressure. Loop diuretics, targeting the transporter, are instrumental for relieving edema or hypertension. This review focuses on intrinsic mechanisms regulating NKCC2 activity at the posttranslational level, namely its trafficking and phosphorylation. RECENT FINDINGS Protein networks mediating cellular turnover of NKCC2 have recently received major attention. Several key components of its apical trafficking were identified, including respective chaperones, SNARE protein family members and raft-associated proteins. NKCC2 internalization has been characterized qualitatively and quantitatively. Kinase and phosphatase pathways regulating NKCC2 activity have been clarified and links between NKCC2 phosphorylation and trafficking proposed. Constitutive and inducible NKCC2 trafficking and phosphorylation mechanisms have been specified with focus on endocrine control of thick ascending limb (TAL) function by vasopressin. SUMMARY Proper NKCC2 trafficking and phosphorylation are critical to the TAL function in the physiological context of urinary concentration and extracellular volume regulation. Clarification of the underlying mechanisms and respective protein networks may open new therapeutic perspectives for better management of renal electrolyte disorders and blood pressure control.
Collapse
|
16
|
Abstract
Moesin is expressed in several types of cells including epithelial and endothelial cells. Several groups reported that moesin plays important roles in the regulation of the cellular motility, and the process of internalization of membrane proteins. However, the physiological roles of moesin in the kidney still remain unclear. Herein, we examined the physiological function of moesin in the kidney using moesin knockout (Msn -/y ) mice. There was no obvious abnormality in the renal morphology of Msn -/y mice. However, we found that Msn -/y mice exhibited mild hyperchloremia, and reduced glomerular filtration rate compared to wild type (WT) mice. Absolute electrolytes excretions of NaCl in Msn -/y mice were not significantly changed compared to WT mice. In the renal medulla, moesin was detected in thick ascending limb of Henle (TALH) as previously reported. To determine the physiological function of moesin in TALH, we examined the expression and subcellular localization of NKCC2 in Msn -/y mice. Interestingly, apical surface expression level, but not total expression of NKCC2 was increased in Msn -/y mice. Subcellular fractionation of renal medulla lysate and internalization assay using tubular suspension showed that the process of NKCC2 endocytosis is impaired. Since the distribution of NKCC2 in lipid raft fractions was decreased in Msn -/y mice, moesin may regulate the NKCC2 distribution to microdomain. These results suggest that moesin regulates the internalization of NKCC2. Furthermore, euhydration by water loading caused hyponatremina in Msn -/y mice, suggesting that dysfunction of moesin is associated with the nephrogenic syndrome of inappropriate antidiuresis (NSIAD).
Collapse
|
17
|
Zhang X, Ren J, Wang J, Li S, Zou Q, Gao N. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property. J Cell Physiol 2018; 233:5908-5919. [PMID: 29243828 DOI: 10.1002/jcp.26400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Shixie Li
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
18
|
Robertson MJ, Horatscheck A, Sauer S, von Kleist L, Baker JR, Stahlschmidt W, Nazaré M, Whiting A, Chau N, Robinson PJ, Haucke V, McCluskey A. 5-Aryl-2-(naphtha-1-yl)sulfonamido-thiazol-4(5H)-ones as clathrin inhibitors. Org Biomol Chem 2016; 14:11266-11278. [PMID: 27853797 DOI: 10.1039/c6ob02308h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a (Z)-5-((6,8-dichloro-4-oxo-4H-chromen-3-yl)methylene)-2-thioxothiazolidin-4-one (2), rhodanine-based lead that led to the Pitstop® 2 family of clathrin inhibitors is described herein. Head group substitution and bioisosteric replacement of the rhodanine core with a 2-aminothiazol-4(5H)-one scaffold eliminated off target dynamin activity. A series of N-substituents gave first phenylglycine (20, IC50 ∼ 20 μM) then phenyl (25, IC50 ∼ 7.1 μM) and 1-napthyl sulfonamide (26, Pitstop® 2 compound, IC50 ∼ 1.9 μM) analogues with good activity, validating this approach. A final library exploring the head group resulted in three analogues displaying either slight improvements or comparable activity (33, 38, and 29 with IC50 ∼ 1.4, 1.6 and 1.8 μM respectively) and nine others with IC50 < 10 μM. These results were rationalized using in silico docking studies. Docking studies predicted enhanced Pitstop® 2 family binding, not a loss of binding, within the Pistop® groove of the reported clathrin mutant invalidating recent assumptions of poor selectivity for this family of clathrin inhibitors.
Collapse
Affiliation(s)
- Mark J Robertson
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - André Horatscheck
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Samantha Sauer
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jennifer R Baker
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adam McCluskey
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Vázquez-Carretero MD, Carvajal AE, Serrano-Morales JM, García-Miranda P, Ilundain AA, Peral MJ. The Synaptojanins in the murine small and large intestine. J Bioenerg Biomembr 2016; 48:569-579. [DOI: 10.1007/s10863-016-9689-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023]
|
20
|
Caceres PS, Mendez M, Haque MZ, Ortiz PA. Vesicle-associated Membrane Protein 3 (VAMP3) Mediates Constitutive Trafficking of the Renal Co-transporter NKCC2 in Thick Ascending Limbs: ROLE IN RENAL FUNCTION AND BLOOD PRESSURE. J Biol Chem 2016; 291:22063-22073. [PMID: 27551042 PMCID: PMC5063989 DOI: 10.1074/jbc.m116.735167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 02/04/2023] Open
Abstract
Renal cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na+/K+/2Cl- co-transporter NKCC2. Trafficking of NKCC2 to the apical surface regulates NKCC2-mediated NaCl absorption and blood pressure. The molecular mechanisms by which NKCC2 reaches the apical surface and their role in renal function and maintenance of blood pressure are poorly characterized. Here we report that NKCC2 interacts with the vesicle fusion protein VAMP3, and they co-localize at the TAL apical surface. We observed that silencing VAMP3 in vivo blocks constitutive NKCC2 exocytic delivery, decreasing the amount of NKCC2 at the TAL apical surface. VAMP3 is not required for cAMP-stimulated NKCC2 exocytic delivery. Additionally, genetic deletion of VAMP3 in mice decreased total expression of NKCC2 in the TAL and lowered blood pressure. Consistent with these results, urinary excretion of water and electrolytes was higher in VAMP3 knock-out mice, which produced more diluted urine. We conclude that VAMP3 interacts with NKCC2 and mediates its constitutive exocytic delivery to the apical surface. Additionally, VAMP3 is required for normal NKCC2 expression, renal function, and blood pressure.
Collapse
Affiliation(s)
- Paulo S Caceres
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Department of Physiology, Wayne State University, Detroit, Michigan 48202, and
| | - Mariela Mendez
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| | - Mohammed Z Haque
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, 16060 Doha, Qatar
| | - Pablo A Ortiz
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Department of Physiology, Wayne State University, Detroit, Michigan 48202, and
| |
Collapse
|
21
|
He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Control Release 2016; 229:80-92. [DOI: 10.1016/j.jconrel.2016.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
|
22
|
Abstract
PURPOSE OF REVIEW The proximal tubule plays a critical role in the reabsorption of ions, solutes and low molecular weight proteins from the glomerular filtrate. Although the proximal tubule has long been known to acutely modulate ion reabsorption in response to changes in flow rates of the glomerular filtrate, it has only recently been discovered that proximal tubule cells can similarly adjust endocytic capacity in response to flow. This review synthesizes our current understanding of mechanosensitive regulation of endocytic capacity in proximal tubule epithelia and highlights areas of opportunity for future investigations. RECENT FINDINGS Recent studies have reported that the endocytic capacity of proximal tubule cells is dramatically increased upon exposure to flow and the accompanying fluid shear stress. Modulation of this pathway is dependent on increases in intracellular calcium initiated by bending of the primary cilium, and also requires purinergic receptor activation that is mediated by release of extracellular ATP. This article summarizes what is currently known about the signaling cascade that transduces changes in flow into alterations in endocytosis. We discuss the implications of this newly described regulatory pathway with respect to our understanding of protein retrieval by the kidney under normal conditions, and in diseases that present with low molecular weight proteinuria. SUMMARY Primary cilia act as mechanotransducers that modulate apical endocytic capacity in proximal tubule cells in response to changes in fluid shear stress.
Collapse
|
23
|
Holla P, Ahmad I, Ahmed Z, Jameel S. Hepatitis E virus enters liver cells through a dynamin-2, clathrin and membrane cholesterol-dependent pathway. Traffic 2015; 16:398-416. [PMID: 25615268 DOI: 10.1111/tra.12260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The hepatitis E virus (HEV) causes large outbreaks and sporadic cases of acute viral hepatitis in developing countries. In the developed world, HEV occurrence has increased as a result of zoonotic transmission from swine. The cellular aspects of HEV infection, especially the determinants of entry, are poorly understood. In the absence of a robust in vitro culture system for HEV, it is not possible to produce high titre infectious virus that can be labeled for tracking its internalization. We have therefore used an Escherichia coli expressed HEV-like particle (HEV-LP) to study HEV entry. Following internalization, the HEV-LP initially trafficks to Rab5-positive compartments en route to acidic lysosomal compartments where it is degraded. Using pharmacological inhibitors, dominant negative and constitutively active mutants, and siRNA-mediated perturbations, we show that HEV entry requires dynamin-2, clathrin, membrane cholesterol and actin, but is independent of factors associated with macropinocytosis. The HEV-LP results were further validated through infection of liver cells with virus from the stool of an infected patient. The comparative analysis also showed involvement of the phosphatidylinositol-3-kinase/Akt pathway in an early post-entry step of viral replication. This report provides a detailed description of endocytic processes associated with HEV infection.
Collapse
Affiliation(s)
- Prasida Holla
- Virology Group, International Centre for Genetic Engineering Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
24
|
Xue H, Tang X. Effect of vasopressin on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) and the signaling mechanisms on the murine late distal colon. Eur J Pharmacol 2015; 771:241-6. [PMID: 26656758 DOI: 10.1016/j.ejphar.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/15/2022]
Abstract
It has been demonstrated that the antidiuretic hormone vasopressin is able to regulate the expression of Na-K-Cl cotransporters (NKCC1 and NKCC2) in the kidney. The present study investigated the effects of long- and short-term administration of vasopressin on NKCC and the possible signaling mechanism of vasopressin in the mouse distal colon using the siRNA, real-time PCR, western blotting and Ussing chambers method. The results showed the presence of NKCC2 expression in the colon, which was verified with a siRNA technique. The mRNA and protein expression level of NKCC2 significantly increased by about 40% and 90% respectively in response to restricting water intake to 1ml/day/20g for 7 days. In contrast, the NKCC1 expression level was unchanged in the colon. To determine the short-term activation of NKCC2 by vasopressin in vitro, we found that the administration of vasopressin caused a 3-fold increase in mouse colon NKCC2 phosphorylation, which was detected with phosphospecific antibody R5. In addition, the Ussing chamber results showed that NKCC2, cAMP and Ca(2+) signaling pathway may be involved in the vasopressin-induced response. Further, adenylate cyclase inhibitor MDL-12330A and PKA inhibitor H89 and Ca(2+) chelator BAPTA-AM reversed the vasopressin induced NKCC2 phosphorylation level increase by about 35%, 28% and 42% respectively suggesting vasopressin stimulate NKCC2 phosphorylation increase mediated by cAMP-PKA and Ca(2+) signaling in the colon. Collectively, these data suggest that the expression and phosphorylation of NKCC2 are increased in the colon by vasopressin stimulation, in association with enhanced activity of the vasopressin/cAMP and Ca(2+) pathways.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of spleen and stomach diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xudong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of spleen and stomach diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Jaykumar AB, Caceres PS, Sablaban I, Tannous BA, Ortiz PA. Real-time monitoring of NKCC2 endocytosis by total internal reflection fluorescence (TIRF) microscopy. Am J Physiol Renal Physiol 2015; 310:F183-91. [PMID: 26538436 DOI: 10.1152/ajprenal.00104.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
The apical Na-K-2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The amount of NKCC2 at the apical membrane of TAL cells is determined by exocytic delivery, recycling, and endocytosis. Surface biotinylation allows measurement of NKCC2 endocytosis, but it has low time resolution and does not allow imaging of the dynamic process of endocytosis. We hypothesized that total internal reflection fluorescence (TIRF) microscopy imaging of labeled NKCC2 would allow monitoring of NKCC2 endocytosis in polarized Madin-Darby canine kidney (MDCK) and TAL cells. Thus we generated a NKCC2 construct containing a biotin acceptor domain (BAD) sequence between the transmembrane domains 5 and 6. Once expressed in polarized MDCK or TAL cells, surface NKCC2 was specifically biotinylated by exogenous biotin ligase (BirA). We also demonstrate that expression of a secretory form of BirA in TAL cells induces metabolic biotinylation of NKCC2. Labeling biotinylated surface NKCC2 with fluorescent streptavidin showed that most apical NKCC2 was located within small discrete domains or clusters referred to as "puncta" on the TIRF field. NKCC2 puncta were observed to disappear from the TIRF field, indicating an endocytic event which led to a decrease in the number of surface puncta at a rate of 1.18 ± 0.16%/min in MDCK cells, and a rate 1.09 ± 0.08%/min in TAL cells (n = 5). Treating cells with a cholesterol-chelating agent (methyl-β-cyclodextrin) completely blocked NKCC2 endocytosis. We conclude that TIRF microscopy of labeled NKCC2 allows the dynamic imaging of individual endocytic events at the apical membrane of TAL cells.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; Department of Physiology, Wayne State University, Detroit, Michigan; and
| | - Paulo S Caceres
- Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; Department of Physiology, Wayne State University, Detroit, Michigan; and
| | - Ibrahim Sablaban
- Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pablo A Ortiz
- Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; Department of Physiology, Wayne State University, Detroit, Michigan; and
| |
Collapse
|
26
|
Saha SS, Singh D, Raymond EL, Ganesan R, Caviness G, Grimaldi C, Woska JR, Mennerich D, Brown SE, Mbow ML, Kao CC. Signal Transduction and Intracellular Trafficking by the Interleukin 36 Receptor. J Biol Chem 2015; 290:23997-4006. [PMID: 26269592 DOI: 10.1074/jbc.m115.653378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 01/30/2023] Open
Abstract
Improper signaling of the IL-36 receptor (IL-36R), a member of the IL-1 receptor family, has been associated with various inflammation-associated diseases. However, the requirements for IL-36R signal transduction remain poorly characterized. This work seeks to define the requirements for IL-36R signaling and intracellular trafficking. In the absence of cognate agonists, IL-36R was endocytosed and recycled to the plasma membrane. In the presence of IL-36, IL-36R increased accumulation in LAMP1+ lysosomes. Endocytosis predominantly used a clathrin-mediated pathway, and the accumulation of the IL-36R in lysosomes did not result in increased receptor turnover. The ubiquitin-binding Tollip protein contributed to IL-36R signaling and increased the accumulation of both subunits of the IL-36R.
Collapse
Affiliation(s)
- Siddhartha S Saha
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401 and
| | - Divyendu Singh
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401 and
| | - Ernest L Raymond
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - Gary Caviness
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | | | - Joseph R Woska
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - Detlev Mennerich
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - Su-Ellen Brown
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - M Lamine Mbow
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877
| | - C Cheng Kao
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401 and
| |
Collapse
|
27
|
Delalande A, Leduc C, Midoux P, Postema M, Pichon C. Efficient Gene Delivery by Sonoporation Is Associated with Microbubble Entry into Cells and the Clathrin-Dependent Endocytosis Pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1913-1926. [PMID: 25929996 DOI: 10.1016/j.ultrasmedbio.2015.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Microbubble oscillation at specific ultrasound settings leads to permeabilization of surrounding cells. This phenomenon, referred to as sonoporation, allows for the in vitro and in vivo delivery of extracellular molecules, including plasmid DNA. To date, the biological and physical mechanisms underlying this phenomenon are not fully understood. The aim of this study was to investigate the interactions between microbubbles and cells, as well as the intracellular routing of plasmid DNA and microbubbles, during and after sonoporation. High-speed imaging and fluorescence confocal microscopy of HeLa cells stably expressing enhanced green fluorescent protein fused with markers of cellular compartments were used for this investigation. Soft-shelled microbubbles were observed to enter cells during sonoporation using experimental parameters that led to optimal gene transfer. They interacted with the plasma membrane in a specific area stained with fluorescent cholera subunit B, a marker of lipid rafts. This process was not observed with hard-shelled microbubbles, which were not efficient in gene delivery under our conditions. The plasmid DNA was delivered to late endosomes after 3 h post-sonoporation, and a few were found in the nucleus after 6 h. Gene transfer efficacy was greatly inhibited when cells were treated with chlorpromazine, an inhibitor of the clathrin-dependent endocytosis pathway. In contrast, no significant alteration was observed when cells were treated with filipin III or genistein, both inhibitors of the caveolin-dependent pathway. This study emphasizes that microbubble-cell interactions do not occur randomly during sonoporation; microbubble penetration inside cells affects the efficacy of gene transfer at specific ultrasound settings; and plasmid DNA uptake is an active mechanism that involves the clathrin-dependent pathway.
Collapse
Affiliation(s)
| | - Chloé Leduc
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Michiel Postema
- Department of Physics and Technology, University of Bergen, Bergen, Norway; Department of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| |
Collapse
|
28
|
Hannan FM, Howles SA, Rogers A, Cranston T, Gorvin CM, Babinsky VN, Reed AA, Thakker CE, Bockenhauer D, Brown RS, Connell JM, Cook J, Darzy K, Ehtisham S, Graham U, Hulse T, Hunter SJ, Izatt L, Kumar D, McKenna MJ, McKnight JA, Morrison PJ, Mughal MZ, O'Halloran D, Pearce SH, Porteous ME, Rahman M, Richardson T, Robinson R, Scheers I, Siddique H, Van't Hoff WG, Wang T, Whyte MP, Nesbit MA, Thakker RV. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects. Hum Mol Genet 2015; 24:5079-92. [PMID: 26082470 PMCID: PMC4550820 DOI: 10.1093/hmg/ddv226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/05/2022] Open
Abstract
The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca2+o) homeostasis. To elucidate the role of AP2σ2 in Ca2+o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype–phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype–phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah A Howles
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Treena Cranston
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford, UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Valerie N Babinsky
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita A Reed
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Clare E Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Detlef Bockenhauer
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and UCL Institute of Child Health, London, UK
| | - Rosalind S Brown
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - John M Connell
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Jacqueline Cook
- Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Ken Darzy
- Queen Elizabeth II Hospital, Welwyn Garden City, UK
| | - Sarah Ehtisham
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Una Graham
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Tony Hulse
- Department of Paediatrics, Evelina London Children's Hospital, St. Thomas' Hospital, London, UK
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Louise Izatt
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Dhavendra Kumar
- Institute of Cancer and Genetics, University Hospital of Wales, Cardiff, UK
| | - Malachi J McKenna
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
| | - John A McKnight
- Metabolic Unit, Western General Hospital, NHS Lothian and University of Edinburgh, Edinburgh, UK
| | - Patrick J Morrison
- Centre for Cancer Research and Cell Biology, Queens University of Belfast, Belfast, UK, Department of Genetic Medicine, Belfast HSC Trust, Belfast, UK
| | - M Zulf Mughal
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | | | - Simon H Pearce
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mary E Porteous
- SE Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | - Mushtaqur Rahman
- Department of Endocrinology, Northwick Park Hospital, London, UK
| | - Tristan Richardson
- Diabetes and Endocrine Centre, Royal Bournemouth Hospital, Bournemouth, UK
| | - Robert Robinson
- Department of Endocrinology, Chesterfield Royal Hospital NHS Foundation Trust, Derbyshire, UK
| | - Isabelle Scheers
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Haroon Siddique
- Department of Endocrinology, Russells Hall Hospital, Dudley, UK
| | - William G Van't Hoff
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and UCL Institute of Child Health, London, UK
| | - Timothy Wang
- Department of Clinical Biochemistry, Frimley Park Hospital, Surrey, UK and
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, Missouri, USA
| | - M Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK,
| |
Collapse
|
29
|
Studzian M, Bartosz G, Pulaski L. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1759-71. [PMID: 25918011 DOI: 10.1016/j.bbamcr.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.
Collapse
Affiliation(s)
- Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
30
|
Ghosh M, Subramani J, Rahman MM, Shapiro LH. CD13 restricts TLR4 endocytic signal transduction in inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4466-76. [PMID: 25801433 DOI: 10.4049/jimmunol.1403133] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/19/2015] [Indexed: 01/09/2023]
Abstract
Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5(+) early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13(KO) dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13(KO) mice showed significantly enhanced IFNβ-mediated signal transduction via JAK-STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
31
|
Cozzi RRF, Robertson GN, Spieker M, Claus LN, Zaparilla GMM, Garrow KL, Marshall WS. Paracellular pathway remodeling enhances sodium secretion by teleost fish in hypersaline environments. ACTA ACUST UNITED AC 2015; 218:1259-69. [PMID: 25750413 DOI: 10.1242/jeb.117317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 μmol l(-1)) and filipin (1.5 μmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.
Collapse
Affiliation(s)
- Regina R F Cozzi
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - George N Robertson
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Melanie Spieker
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Lauren N Claus
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Gabriella M M Zaparilla
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Kelly L Garrow
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - William S Marshall
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| |
Collapse
|
32
|
Nadithe V, Liu R, Killinger BA, Movassaghian S, Kim NH, Moszczynska AB, Masters KS, Gellman SH, Merkel OM. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery. Mol Pharm 2014; 12:362-74. [PMID: 25437915 PMCID: PMC4319696 DOI: 10.1021/mp5004724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Amphiphilic nucleic acid carriers
have attracted strong interest.
Three groups of nylon-3 copolymers (poly-β-peptides) possessing
different cationic/hydrophobic content were evaluated as siRNA delivery
agents in this study. Their ability to condense siRNA was determined
in SYBR Gold assays. Their cytotoxicity was tested by MTT assays,
their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly
in the presence and absence of uptake inhibitors was assessed by flow
cytometry, and their transfection efficacies were studied by luciferase
knockdown in a cell line stably expressing luciferase (H1299/Luc).
Endosomal release was determined by confocal laser scanning microscopy
and colocalization with lysotracker. All polymers efficiently condensed
siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected
in hydrodynamic diameters smaller than that at N/P 1. Although several
formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes
yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry.
Luciferase knockdown (20–65%) was observed after transfection
with polyplexes made of the high molecular weight polymers that were
the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA
intracellularly even at negative zeta potential implies that they
mediate transport across cell membranes based on their amphiphilicity.
The cellular uptake route was determined to strongly depend on the
presence of cholesterol in the cell membrane. These polymers are,
therefore, very promising for siRNA delivery at reduced surface charge
and toxicity. Our study identified nylon-3 formulations at low N/P
ratios for effective gene knockdown, indicating that nylon-3 polymers
are a new, promising type of gene delivery agent.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Caceres PS, Mendez M, Ortiz PA. Vesicle-associated membrane protein 2 (VAMP2) but Not VAMP3 mediates cAMP-stimulated trafficking of the renal Na+-K+-2Cl- co-transporter NKCC2 in thick ascending limbs. J Biol Chem 2014; 289:23951-62. [PMID: 25008321 PMCID: PMC4156046 DOI: 10.1074/jbc.m114.589333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the kidney, epithelial cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na+/K+/2Cl− co-transporter NKCC2. Steady-state surface NKCC2 levels in the apical membrane are maintained by a balance between exocytic delivery, endocytosis, and recycling. cAMP is the second messenger of hormones that enhance NaCl absorption. cAMP stimulates NKCC2 exocytic delivery via protein kinase A (PKA), increasing steady-state surface NKCC2. However, the molecular mechanism involved has not been studied. We found that several members of the SNARE family of membrane fusion proteins are expressed in TALs. Here we report that NKCC2 co-immunoprecipitates with VAMP2 in rat TALs, and they co-localize in discrete domains at the apical surface. cAMP stimulation enhanced VAMP2 exocytic delivery to the plasma membrane of renal cells, and stimulation of PKA enhanced VAMP2-NKCC2 co-immunoprecipitation in TALs. In vivo silencing of VAMP2 but not VAMP3 in TALs blunted cAMP-stimulated steady-state surface NKCC2 expression and completely blocked cAMP-stimulated NKCC2 exocytic delivery. VAMP2 was not involved in constitutive NKCC2 delivery. We concluded that VAMP2 but not VAMP3 selectively mediates cAMP-stimulated NKCC2 exocytic delivery and surface expression in TALs. We also demonstrated that cAMP stimulation enhances VAMP2 exocytosis and promotes VAMP2 interaction with NKCC2.
Collapse
Affiliation(s)
- Paulo S Caceres
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202 and the Department of Physiology, Wayne State University, Detroit, Michigan 48202
| | - Mariela Mendez
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202 and
| | - Pablo A Ortiz
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202 and the Department of Physiology, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
34
|
Robertson MJ, Deane FM, Stahlschmidt W, von Kleist L, Haucke V, Robinson PJ, McCluskey A. Synthesis of the Pitstop family of clathrin inhibitors. Nat Protoc 2014; 9:1592-606. [PMID: 24922269 DOI: 10.1038/nprot.2014.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1-series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2-series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3-4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.
Collapse
Affiliation(s)
- Mark J Robertson
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Fiona M Deane
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam McCluskey
- Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
35
|
Xue H, Zhang ZJ, Li XS, Sun HM, Kang Q, Wu B, Wang YX, Zou WJ, Zhou DS. Localization and vasopressin regulation of the Na +-K +-2Cl - cotransporter in the distal colonic epithelium. World J Gastroenterol 2014; 20:4692-4701. [PMID: 24782621 PMCID: PMC4000505 DOI: 10.3748/wjg.v20.i16.4692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/09/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether Na+-K+-2Cl- cotransporter (NKCC2) is expressed in the mouse distal colonic epithelia and whether it is regulated by vasopressin in the colon.
METHODS: The mRNA expression of NKCC2 in the mouse colonic mucosa was examined by reverse transcription-polymerase chain reaction. NKCC trafficking in the colon stimulated by 1-D-amino(8-D-arginine)-vasopressin (dDAVP) infusion (10 ng/mouse, intraperitoneal injection ) within 15 min, 30 min and 1h was investigated by laser confocal scanning microscopy. Total and membrane NKCC2 expression in the colonic mucosa from control and dDAVP-treated mice was detected by Western blotting. Short circuit current method was performed to determine regulation of NKCC2 by vasopressin in the colon.
RESULTS: NKCC2 was predominantly located in the apical region of the surface of the distal colonic epithelia; by comparison, a large amount of NKCC1 was distributed in the basolateral membrane of the lower crypt epithelia of the mouse distal colon. Short-term treatment with dDAVP, a V2-type receptor-specific vasopressin analog, induced NKCC2 re-distribution, i.e., NKCC2 traffics to the apical membrane after dDAVP stimulation. In contrast, no obvious NKCC1 membrane translocation was observed. Western blotting results confirmed that membrane NKCC2 had significantly higher abundance in the dDAVP-treated mouse colonic mucosa relative to that in the untreated control, which is consistent with our immunostaining data. Moreover, the short-circuit current method combined with a NKCC2 inhibitor demonstrated that NKCC2 was also activated by serosal vasopressin in isolated distal colonic mucosa.
CONCLUSION: Our results provide direct evidence that vasopressin also plays an important role in the colonic epithelia by stimulating NKCC2 trafficking to the apical membrane and inducing NKCC2-mediated ion transport.
Collapse
|
36
|
Rosenbaek LL, Kortenoeven MLA, Aroankins TS, Fenton RA. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. J Biol Chem 2014; 289:13347-61. [PMID: 24668812 DOI: 10.1074/jbc.m113.543710] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.
Collapse
Affiliation(s)
- Lena L Rosenbaek
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus DK-8000, Denmark
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Aquaporin-2 (AQP2) water channels in principal cells of the kidney collecting duct are essential for urine concentration. Due to application of modern technologies, progress in our understanding of AQP2 has accelerated in recent years. In this article, we highlight some of the new insights into AQP2 function that have developed recently, with particular focus on the cell biological aspects of AQP2 regulation. RECENT FINDINGS AQP2 is subjected to a number of regulated modifications, including phosphorylation and ubiquitination, which are important for AQP2 function, cellular localization and degradation. AQP2 is likely internalized via clathrin and non-clathrin-mediated endocytosis. Regulation of AQP2 endocytosis, in addition to exocytosis, is a vital mechanism in determining overall AQP2 membrane abundance. AQP2 is associated with regulated membrane microdomains. Studies using membrane cholesterol depleting reagents, for example statins, have supported the role of membrane rafts in regulation of AQP2 trafficking. Noncanonical roles for AQP2, for example in epithelial cell migration, are emerging. SUMMARY AQP2 function and thus urine concentration is dependent on a variety of cell signalling mechanisms, posttranslational modification and interplay between AQP2 and its lipid environment. This complexity of regulation allows fine-tuning of AQP2 function and thus body water homeostasis.
Collapse
|
38
|
Dathe C, Daigeler AL, Seifert W, Jankowski V, Mrowka R, Kalis R, Wanker E, Mutig K, Bachmann S, Paliege A. Annexin A2 mediates apical trafficking of renal Na⁺-K⁺-2Cl⁻ cotransporter. J Biol Chem 2014; 289:9983-97. [PMID: 24526686 DOI: 10.1074/jbc.m113.540948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The furosemide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca(2+)-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.
Collapse
Affiliation(s)
- Christin Dathe
- From the Department of Anatomy, Charité-Universitätsmedizin Berlin, 10115 Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Luz-Madrigal A, Asanov A, Camacho-Zarco AR, Sampieri A, Vaca L. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells. J Virol 2013; 87:11894-907. [PMID: 23986592 PMCID: PMC3807332 DOI: 10.1128/jvi.01356-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023] Open
Abstract
Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.
Collapse
Affiliation(s)
- Agustin Luz-Madrigal
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
- Department of Zoology, Miami University, Oxford, Ohio, USA
| | | | - Aldo R. Camacho-Zarco
- Max Planck Institute for Biophysical Chemistry, Protein Structure Determination, Göttingen, Germany
| | - Alicia Sampieri
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Distrito Federal, Mexico
| | - Luis Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Distrito Federal, Mexico
| |
Collapse
|