1
|
Qu M, Guo X, Ando T, Yang Q. Functional role of carbohydrate-binding modules in multi-modular chitinase OfChtII. J Biol Chem 2024; 300:107622. [PMID: 39098522 PMCID: PMC11402056 DOI: 10.1016/j.jbc.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.
Collapse
Affiliation(s)
- Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Xiaoxi Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Minguet-Lobato M, Cervantes FV, Míguez N, Plou FJ, Fernández-Lobato M. Chitinous material bioconversion by three new chitinases from the yeast Mestchnikowia pulcherrima. Microb Cell Fact 2024; 23:31. [PMID: 38245740 PMCID: PMC10799394 DOI: 10.1186/s12934-024-02300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported. RESULTS Three new chitinases from M. pulcherrima, MpChit35, MpChit38 and MpChit41, were molecularly characterized and extracellularly expressed in Pichia pastoris to about 91, 90 and 71 mU ml- 1, respectively. The three enzymes hydrolysed colloidal chitin with optimal activity at 45 ºC and pH 4.0-4.5, increased 2-times their activities using 1 mM of Mn2+ and hydrolysed different types of commercial chitosan. The partial separation and characterization of the complex COS mixtures produced from the hydrolysis of chitin and chitosan were achieved by a new anionic chromatography HPAEC-PAD method and mass spectrometry assays. An overview of the predicted structures of these proteins and their catalytic modes of action were also presented. Depicted their high sequence and structural homology, MpChit35 acted as an exo-chitinase producing di-acetyl-chitobiose from chitin while MpChit38 and MpChit41 both acted as endo-chitinases producing tri-acetyl-chitotriose as main final product. CONCLUSIONS Three new chitinases from the yeast M. pulcherrima were molecularly characterized and their enzymatic and structural characteristics analysed. These enzymes transformed chitinous materials to fully and partially acetylated COS through different modes of splitting, which make them interesting biocatalysts for deeper structural-function studies on the challenging enzymatic conversion of chitin.
Collapse
Affiliation(s)
- Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Fadia V Cervantes
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Noa Míguez
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain.
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
3
|
Ran L, Wang X, He X, Guo R, Wu Y, Zhang P, Zhang XH. Genomic analysis and chitinase characterization of Vibrio harveyi WXL538: insight into its adaptation to the marine environment. Front Microbiol 2023; 14:1121720. [PMID: 37465025 PMCID: PMC10350509 DOI: 10.3389/fmicb.2023.1121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023] Open
Abstract
Chitin, the most abundant bio-polymer in seawater, may be utilized by various microorganisms as a carbon source. Vibrios have been regarded as one of the main groups of chitin consumers in the marine carbon cycle and chitinase producers. The organisms are widely distributed in the aquatic environment. However, the co-working mechanism between their chitinases, and whether the chitinase's diversity contributes to their adaption to the environment, needs to be further elucidated. Here, we obtained a chitinolytic strain, Vibrio harveyi WXL538 with eight putative chitinase-coding genes. Five of the genes, i.e., Chi4733, Chi540, Chi4668, Chi5174, and Chi4963, were overexpressed and validated, in which Chi4668, Chi4733 and Chi540 were purified and characterized. The result of Chi4668 was described in our previous study. Endo-chitinase Chi4733 degraded colloidal chitin to produce (GlcNAc)2 and minor (GlcNAc)3. The enzymatic activity of Chi4733 was 175.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi4733 had its maximum activity at 50°C and pH 4-6, activated by Sr2+, Co2+, Ca2+, and Mg2+ and inhibited by Al3+, Zn2+, Cu2+, Ni2+, and SDS. Exo-chitinase Chi540 degraded colloidal chitin to (GlcNAc)2. The enzymatic activity of Chi540 was 134.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi540 had its maximum activity at 60°C and pH 6-8, was activated by Sr2+, Ca2+, and Mg2+ but inhibited by K+, Ba2+, Zn2+, Cu2+, Ni2+, SDS and urea. Whole genome analysis of V. harveyi WXL538 and characterization of its chitinase can provide a better understanding of its adaptability to the changing marine environment.
Collapse
Affiliation(s)
- Lingman Ran
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruihong Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanhong Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Zhang Q, Zhang X, He Y, Li Y. The synergistic action of two chitinases from Vibrio harveyi on chitin degradation. Carbohydr Polym 2023; 307:120640. [PMID: 36781282 DOI: 10.1016/j.carbpol.2023.120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In this study, two chitinases (VhChit2 and VhChit6) from Vibrio harveyi possessed specific activity of 36.5 and 20.8 U/mg, respectively. Structure analysis indicates that their amino acid composition of active sites is similar, but the substrate binding cleft of VhChit2 is deeper than that of VhChit6. They were shown to have a synergistic effect on chitin degradation, and the optimized degree of synergy and the degradation ratio of chitin reached 1.75 and 23.6 %, respectively. The saturated adsorption capacity of VhChit2 and VhChit6 adsorbed in 1 g of chitin was 48.5 and 33.4 mg. It was found that VhChit2 and VhChit6 had different adsorption sites on chitin, making more enzymes absorbed by chitin. Furthermore, the combined use of VhChit2 and VhChit6 increased their binding force of chitinases with the substrate. The synergistic action of VhChit2 and VhChit6 may be attributed to their different adsorption sites on chitin and the increased binding force with chitin.
Collapse
Affiliation(s)
- Qiao Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| | - Xueying Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanchang He
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| |
Collapse
|
5
|
The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases. Essays Biochem 2023; 67:551-559. [PMID: 36876880 DOI: 10.1042/ebc20220156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 03/07/2023]
Abstract
In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.
Collapse
|
6
|
Li P, Wang X, Zhang C, Xu D. Processive binding mechanism of Cel9G from Clostridium cellulovorans: molecular dynamics and free energy landscape investigations. Phys Chem Chem Phys 2023; 25:646-657. [DOI: 10.1039/d2cp04830b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processive binding mechanism of cellulose by Cel9G from C. cellulovorans was investigated by MD and metadynamics simulations.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| |
Collapse
|
7
|
Jiménez-Ortega E, Kidibule PE, Fernández-Lobato M, Sanz-Aparicio J. Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Comput Struct Biotechnol J 2021; 19:5466-5478. [PMID: 34712392 PMCID: PMC8515301 DOI: 10.1016/j.csbj.2021.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022] Open
Abstract
Chitinases degrade chitin into low molecular weight chitooligomers, which have a broad range of industrial, agricultural, and medical functions. Understanding the relationship between the diverse characteristics of chitinases and their functions is necessary for the improvement of functional enzymes that meet specific requirements. We report here a full crystallographic analysis of three complexes obtained from the chitinase Chit42 from Trichoderma harzianum, which represent different states along the enzymatic mechanism. The inactive double mutant D169A/E171A was submitted to soaking/crystallization experiments with hexa-N-acetyl-glucosamine (NAG6) or tetra-N-acetyl-glucosamine (NAG4), trapping the enzyme-substrate complex (Chit42-NAG6), the enzyme-products complex (Chit42-NAG4-NAG2) and a someway intermediate state. Structural comparison among the different complexes depicts the determinants defining the different subsites and revealed a previously unobserved dynamic on-off ligand binding process associated with a motion of its insertion domain, which might be accompanying the role or aromatics in processivity. An ensemble refinement performed to extract dynamic details from the diffraction data elucidates the implication of some highly flexible residues in the productive sliding of the substrate and the product release event. These positions were submitted to mutagenesis and the activity of the variants was investigated in the hydrolysis of NAG6, colloidal chitin and two chitosans with different polymerization and acetylation degree. All the changes affected the Chit42 hydrolytic activity therefore confirming the involvement of these positions in catalysis. Furthermore, we found the variants R295S and E316S improving the apparent catalytic efficiency of chitin and NAG6 and, together with E316A, enhancing the specific activity on chitosan. Therefore, our results provide novel insight into the molecular mechanisms underlying the hydrolysis of chitinous material by fungal chitinases, and suggest new targets to address engineering of these biotechnologically important enzymes.
Collapse
Affiliation(s)
- Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| | - Peter Elias Kidibule
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| |
Collapse
|
8
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
9
|
Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. Protein Sci 2021; 30:1493-1501. [PMID: 33934433 DOI: 10.1002/pro.4095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Malaria is a life-threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood-sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro-domain and chitin-binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form-specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission-blocking activity.
Collapse
Affiliation(s)
- Vysakh K Viswanath
- Tata Institute for Genetics and Society, Center at inStem, Bengaluru, India
| | - Suraj T Gore
- Aurigene Discovery Technologies Ltd, Bengaluru, India
| | | | | | | |
Collapse
|
10
|
Berezina OV, Rykov SV, Polyakova AK, Bozdaganyan ME, Sidochenko AV, Baudrexl M, Schwarz WH, Zverlov VV, Yarotsky SV. Strategic aromatic residues in the catalytic cleft of the xyloglucanase MtXgh74 modifying thermostability, mode of enzyme action, and viscosity reduction ability. Appl Microbiol Biotechnol 2021; 105:1461-1476. [PMID: 33521846 DOI: 10.1007/s00253-021-11106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.
Collapse
Affiliation(s)
- Oksana V Berezina
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545. .,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182.
| | - Sergey V Rykov
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545.,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| | - Angelina K Polyakova
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Marine E Bozdaganyan
- Biological Department, Moscow State University, Leninskie gory 1, Build. 12, Moscow, Russian Federation, 119234.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Str., Bld. 1, Moscow, Russian Federation, 119991.,Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Anna V Sidochenko
- Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Melanie Baudrexl
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Vladimir V Zverlov
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany. .,National Research Centre "Kurchatov Institute" - Institute of Molecular Genetics, Kurchatov Sq. 2, Moscow, Russian Federation, 123182.
| | - Sergey V Yarotsky
- National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| |
Collapse
|
11
|
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization. Molecules 2021; 26:molecules26030707. [PMID: 33572971 PMCID: PMC7866400 DOI: 10.3390/molecules26030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a “weak link” from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop “hot spots” for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure–stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions
Collapse
|
12
|
Rani TS, Madhuprakash J, Podile AR. Chitinase-E from Chitiniphilus shinanonensis generates chitobiose from chitin flakes. Int J Biol Macromol 2020; 163:1037-1043. [DOI: 10.1016/j.ijbiomac.2020.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
13
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
14
|
Mekasha S, Tuveng TR, Askarian F, Choudhary S, Schmidt-Dannert C, Niebisch A, Modregger J, Vaaje-Kolstad G, Eijsink VGH. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. J Biol Chem 2020; 295:9134-9146. [PMID: 32398257 PMCID: PMC7335802 DOI: 10.1074/jbc.ra120.013040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Findings from recent studies have indicated that enzymes containing more than one catalytic domain may be particularly powerful in the degradation of recalcitrant polysaccharides such as chitin and cellulose. Some known multicatalytic enzymes contain several glycoside hydrolase domains and one or more carbohydrate-binding modules (CBMs). Here, using bioinformatics and biochemical analyses, we identified an enzyme, Jd1381 from the actinobacterium Jonesia denitrificans, that uniquely combines two different polysaccharide-degrading activities. We found that Jd1381 contains an N-terminal family AA10 lytic polysaccharide monooxygenase (LPMO), a family 5 chitin-binding domain (CBM5), and a family 18 chitinase (Chi18) domain. The full-length enzyme, which seems to be the only chitinase produced by J. denitrificans, degraded both α- and β-chitin. Both the chitinase and the LPMO activities of Jd1381 were similar to those of other individual chitinases and LPMOs, and the overall efficiency of chitin degradation by full-length Jd1381 depended on its chitinase and LPMO activities. Of note, the chitin-degrading activity of Jd1381 was comparable with or exceeded the activities of combinations of well-known chitinases and an LPMO from Serratia marcescens Importantly, comparison of the chitinolytic efficiency of Jd1381 with the efficiencies of combinations of truncated variants-JdLPMO10 and JdCBM5-Chi18 or JdLPMO10-CBM5 and JdChi18-indicated that optimal Jd1381 activity requires close spatial proximity of the LPMO10 and the Chi18 domains. The demonstration of intramolecular synergy between LPMOs and hydrolytic enzymes reported here opens new avenues toward the development of efficient catalysts for biomass conversion.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Swati Choudhary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
15
|
Churklam W, Aunpad R. Enzymatic characterization and structure-function relationship of two chitinases, LmChiA and LmChiB, from Listeria monocytogenes. Heliyon 2020; 6:e04252. [PMID: 32642582 PMCID: PMC7334433 DOI: 10.1016/j.heliyon.2020.e04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
|
16
|
Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nat Commun 2020; 11:2450. [PMID: 32415073 PMCID: PMC7229062 DOI: 10.1038/s41467-020-16144-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes.
Collapse
|
17
|
Sørlie M, Horn SJ, Vaaje-Kolstad G, Eijsink VG. Using chitosan to understand chitinases and the role of processivity in the degradation of recalcitrant polysaccharides. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Bhuvanachandra B, Podile AR. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner. Int J Biol Macromol 2020; 145:1-10. [DOI: 10.1016/j.ijbiomac.2019.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022]
|
19
|
Hamre AG, Sørlie M. Kinetic relationships with processivity in Serratia marcescens family 18 glycoside hydrolases. Biochem Biophys Res Commun 2020; 521:120-124. [PMID: 31629467 DOI: 10.1016/j.bbrc.2019.10.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
In nature, recalcitrant polysaccharides such as chitin and cellulose are degraded by glycoside hydrolases (GH) that act synergistically through different modes of action including attack from reducing-end and nonreducing-end (exo-mode) and random (endo-mode) on single polysaccharide chains. Both modes can be combined with a processive mechanism where the GH remain bound to the polysaccharide to perform multiple catalytic steps before dissociation into the solution. In this work, we have determined association rate constants and their activation paramaters for three co-evolved GHs from Serratia marcescens (SmChiA, SmChiB, and SmChiC) with an oligomeric substrate. Interestingly, we observe a positive correlation between the association rate constants and processive ability for the GHs. Previously, a positive correlation has been observed between substrate binding affinity and processive ability. SmChiA with highest processive ability of the three GHs bind with a kon of 11.5 ± 0.2 μM-1s-1, which is five-fold and 130-fold faster than SmChiB (less processive) and SmChiC (nonprocessive), respectively.
Collapse
Affiliation(s)
- Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway.
| |
Collapse
|
20
|
Controlling and co-ordinating chitinase secretion in a Serratia marcescens population. Microbiology (Reading) 2019; 165:1233-1244. [DOI: 10.1099/mic.0.000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Wang YJ, Jiang WX, Zhang YS, Cao HY, Zhang Y, Chen XL, Li CY, Wang P, Zhang YZ, Song XY, Li PY. Structural Insight Into Chitin Degradation and Thermostability of a Novel Endochitinase From the Glycoside Hydrolase Family 18. Front Microbiol 2019; 10:2457. [PMID: 31736903 PMCID: PMC6831621 DOI: 10.3389/fmicb.2019.02457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial endochitinases play important roles in environmental chitin degradation and have good applications. Although the structures of some endochitinases, most belonging to the glycoside hydrolase (GH) family 18 and thermostable, have been reported, the structural basis of these enzymes for chitin degradation still remain unclear due to the lack of functional confirmation, and the molecular mechanism for their thermostability is also unknown. Here, we characterized a GH18 endochitinase, Chi23, from marine bacterium Pseudoalteromonas aurantia DSM6057, and solved its structure. Chi23 is a thermostable enzyme that can non-processively hydrolyze crystalline and colloidal chitin. Chi23 contains only a catalytic domain that adopts a classical (β/α)8 TIM-barrel fold. Compared to other GH18 bacterial endochitinases, Chi23 lacks the chitin-binding domain and the β-hairpin subdomain, indicating that Chi23 has a novel structure. Based on structural analysis of Chi23 docked with (GlcNAc)5 and mutational analysis, the key catalytic residue (Glu117) and seven substrate-binding residues (Asn9, Gln157, Tyr189, Asn190, Asp229, Trp260, and Gln261) are revealed. Among these identified residues, Asn9, Asp229 and Gln261 are unique to Chi23, and their cumulative roles contribute to the activity of Chi23 against both crystalline and soluble chitin. Five substrate-binding residues (Tyr189, Asn190, Asp229, Trp260, and Gln261) are found to play important roles in maintaining the thermostability of Chi23. In particular, hydrogen bond networks involving Asp229 and Gln261 are formed to stabilize the protein structure of Chi23. Phylogenetic analysis indicated that Chi23 and its homologs represent a new group of GH18 endochitinases, which are widely distributed in bacteria. This study sheds light on the molecular mechanism of a GH18 endochitinase for chitin degradation.
Collapse
Affiliation(s)
- Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
23
|
Jana S, Hamre AG, Eijsink VGH, Sørlie M, Payne CM. Polar residues lining the binding cleft of a Serratia marcescens family 18 chitinase position the substrate for attack and stabilize associative interactions. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1657600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
24
|
Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, Zacharias C, Forman A, Nitz M, Codée JDC, Usón I, Sheppard DC, Howell PL. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. J Biol Chem 2019; 294:13833-13849. [PMID: 31416836 DOI: 10.1074/jbc.ra119.009910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (β/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.
Collapse
Affiliation(s)
- Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adithya S Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Caitlin Zacharias
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adam Forman
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, E-08003 Barcelona, Spain
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada .,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
25
|
Kundu S. Insights into the mechanism(s) of digestion of crystalline cellulose by plant class C GH9 endoglucanases. J Mol Model 2019; 25:240. [PMID: 31338614 PMCID: PMC7385011 DOI: 10.1007/s00894-019-4133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/11/2019] [Indexed: 02/03/2023]
Abstract
Biofuels such as γ-valerolactone, bioethanol, and biodiesel are derived from potentially fermentable cellulose and vegetable oils. Plant class C GH9 endoglucanases are CBM49-encompassing hydrolases that cleave the β (1 → 4) glycosidic linkage of contiguous D-glucopyranose residues of crystalline cellulose. Here, I analyse 3D-homology models of characterised and putative class C enzymes to glean insights into the contribution of the GH9, linker, and CBM49 to the mechanism(s) of crystalline cellulose digestion. Crystalline cellulose may be accommodated in a surface groove which is imperfectly bounded by the GH9_CBM49, GH9_linker, and linker_CBM49 surfaces and thence digested in a solvent accessible subsurface cavity. The physical dimensions and distortions thereof, of the groove, are mediated in part by the bulky side chains of aromatic amino acids that comprise it and may also result in a strained geometry of the bound cellulose polymer. These data along with an almost complete absence of measurable cavities, along with poorly conserved, hydrophobic, and heterogeneous amino acid composition, increased atomic motion of the CBM49_linker junction, and docking experiements with ligands of lower degrees of polymerization suggests a modulatory rather than direct role for CBM49 in catalysis. Crystalline cellulose is the de facto substrate for CBM-containing plant and non-plant GH9 enzymes, a finding supported by exceptional sequence- and structural-homology. However, despite the implied similarity in general acid-base catalysis of crystalline cellulose, this study also highlights qualitative differences in substrate binding and glycosidic bond cleavage amongst class C members. Results presented may aid the development of novel plant-based GH9 endoglucanases that could extract and utilise potential fermentable carbohydrates from biomass. Crystalline cellulose digestion by plant class C GH9 endoglucanases - an in silico assessment of function. ![]()
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Army College of Medical Sciences, Brar Square, Delhi Cantt., New Delhi, 110010, India.
| |
Collapse
|
26
|
Le Mauff F, Bamford NC, Alnabelseya N, Zhang Y, Baker P, Robinson H, Codée JDC, Howell PL, Sheppard DC. Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. J Biol Chem 2019; 294:10760-10772. [PMID: 31167793 DOI: 10.1074/jbc.ra119.008511] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
During infection, the fungal pathogen Aspergillus fumigatus forms biofilms that enhance its resistance to antimicrobials and host defenses. An integral component of the biofilm matrix is galactosaminogalactan (GAG), a cationic polymer of α-1,4-linked galactose and partially deacetylated N-acetylgalactosamine (GalNAc). Recent studies have shown that recombinant hydrolase domains from Sph3, an A. fumigatus glycoside hydrolase involved in GAG synthesis, and PelA, a multifunctional protein from Pseudomonas aeruginosa involved in Pel polysaccharide biosynthesis, can degrade GAG, disrupt A. fumigatus biofilms, and attenuate fungal virulence in a mouse model of invasive aspergillosis. The molecular mechanisms by which these enzymes disrupt biofilms have not been defined. We hypothesized that the hydrolase domains of Sph3 and PelA (Sph3h and PelAh, respectively) share structural and functional similarities given their ability to degrade GAG and disrupt A. fumigatus biofilms. MALDI-TOF enzymatic fingerprinting and NMR experiments revealed that both proteins are retaining endo-α-1,4-N-acetylgalactosaminidases with a minimal substrate size of seven residues. The crystal structure of PelAh was solved to 1.54 Å and structure alignment to Sph3h revealed that the enzymes share similar catalytic site residues. However, differences in the substrate-binding clefts result in distinct enzyme-substrate interactions. PelAh hydrolyzed partially deacetylated substrates better than Sph3h, a finding that agrees well with PelAh's highly electronegative binding cleft versus the neutral surface present in Sph3h Our insight into PelAh's structure and function necessitate the creation of a new glycoside hydrolase family, GH166, whose structural and mechanistic features, along with those of GH135 (Sph3), are reported here.
Collapse
Affiliation(s)
- François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, H3A 2B4 Quebec, Canada,; Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, H4A 3J1 Quebec, Canada,; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, H3A 1Y2 Quebec, Canada
| | - Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Noor Alnabelseya
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands, and
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada
| | - Howard Robinson
- Photon Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands, and
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada,; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Ontario, Canada,.
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, H3A 2B4 Quebec, Canada,; Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, H4A 3J1 Quebec, Canada,; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, H3A 1Y2 Quebec, Canada,.
| |
Collapse
|
27
|
Sun X, Li Y, Tian Z, Qian Y, Zhang H, Wang L. A novel thermostable chitinolytic machinery of Streptomyces sp. F-3 consisting of chitinases with different action modes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:136. [PMID: 31171937 PMCID: PMC6545677 DOI: 10.1186/s13068-019-1472-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The biodegradation of chitin is an important part of the carbon and nitrogen cycles in nature. Speeding up the biotransformation of chitin substrates can not only reduce pollution, but also produce high value-added products. However, this process is strictly regulated by the catalytic efficiency of the chitinolytic machinery. Therefore, it is necessary to study the mode of action and compound mechanisms of different chitin-degrading enzymes in depth to improve the catalytic efficiency of the chitinolytic machinery. RESULTS The thermophilic bacterium Streptomyces sp. F-3 showed comparatively high chitin degradation activities. To elucidate the mechanism underlying chitin hydrolysis, six chitin degradation-related enzymes were identified in the extracellular proteome of Streptomyces sp. F-3, including three chitinases (SsChi18A, SsChi18B, and SsChi18C) from the GH18 family, one GH19 chitinase (SsChi19A), one GH20 β-N-acetylhexosaminidase (SsGH20A), and one lytic polysaccharide monooxygenase (SsLPMO10A) from the AA10 family. All were upregulated by chitin. The heterologously expressed hydrolases could withstand temperatures up to 70 °C and were stable at pH values of 4 to 11. Biochemical analyses displayed that these chitin degradation-related enzymes had different functions and thus showed synergistic effects during chitin degradation. Furthermore, based on structural bioinformatics data, we speculated that the different action modes among the three GH18 chitinases may be caused by loop differences in their active site architectures. Among them, SsChi18A is probably processive and mainly acts on polysaccharides, while SsChi18B and SsChi18C are likely endo-non-processive and displayed higher activity on the degradation of chitin oligosaccharides. In addition, proteomic data and synergy experiments also indicated the importance of SsLPMO10A, which could promote the activities of the hydrolases and increase the monosaccharide content in the reaction system, respectively. CONCLUSIONS In this article, the chitinolytic machinery of a thermophilic Streptomyces species was studied to explore the structural basis for the synergistic actions of chitinases from different GH18 subfamilies. The elucidation of the degradation mechanisms of these thermophilic chitinases will lay a theoretical foundation for the efficient industrialized transformation of natural chitin.
Collapse
Affiliation(s)
- Xiaomeng Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Zhennan Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Yuanchao Qian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People’s Republic of China
| |
Collapse
|
28
|
Alsina C, Faijes M, Planas A. Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr Res 2019; 478:1-9. [PMID: 31005672 DOI: 10.1016/j.carres.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
Chitooligosaccharides (COS), the depolymerization products of chitin, have many potential applications in agriculture and medicine since they induce immunostimulating effects and disease protective responses. Most of their biological activities require degrees of polymerization (DP) larger than the tetrasaccharide, but structurally well-defined COS with DP larger than six are difficult to produce due to their high insolubility and complex isolation from chitin hydrolysates. Enzymatic synthesis by exploiting the transglycosylation activity of chitinases offers a potential strategy for the assembly of oligomers in the range of bioactive DPs. We here explore the glycosynthase-like activity of six GH18 chitinases from bacterial and archaeal origin by mutating the catalytic assisting residue in the substrate-assisted mechanism of this enzyme family. The alanine mutants at the assisting residue have a significant, but not essential, effect on the hydrolase activity. We studied the ability of the alanine mutants at the assisting residue to catalyze the polymerization of an oxazoline derivative as donor substrate, selecting the oxazoline of pentaacetylchitopentaose (DP5ox) with the aim of obtaining larger oligomers/polymers that, being insoluble, might be resistant to further reactions by the hydrolytically compromised mutant enzymes. For all the enzymes, insoluble polymeric material was obtained, with DP10 as major component, but other COS with different DPs were also obtained, limiting the practical application to produce oligomers/polymers with a defined DP. The balance between the residual hydrolase activity of the mutant enzymes and the solubility/precipitation kinetics still lead to hydrolysis and/or transglycosylation reactions on the newly formed products. From the selected enzymes, the Thermococcus kodakaraensis ChiA D1022A mutant gave the best results, with the formation of insoluble polymers in 45% yield (w/w) and containing about 55% of the target DP10 product.
Collapse
Affiliation(s)
- Cristina Alsina
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390, 08017, Barcelona, Spain
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390, 08017, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
29
|
Madhuprakash J, Dalhus B, Vaaje-Kolstad G, Sakuda S, Podile AR, Eijsink VGH, Sørlie M. Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of Serratia proteamaculans. J Phys Chem B 2019; 123:2270-2279. [PMID: 30789732 DOI: 10.1021/acs.jpcb.8b11448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gram-negative bacteria Serratia marcescens and Serratia proteamaculans have efficient chitinolytic machineries that degrade chitin into N-acetylglucosamine (GlcNAc), which is used as a carbon and energy source. The enzymatic degradation of chitin in these bacteria occurs through the synergistic action of glycoside hydrolases (GHs) that have complementary activities; an endo-acting GH (ChiC) making random scissions on the polysaccharide chains and two exo-acting GHs mainly targeting single reducing (ChiA) and nonreducing (ChiB) chain ends. Both bacteria produce low amounts of a fourth GH18 (ChiD) with an unclear role in chitin degradation. Here, we have determined the thermodynamic signatures for binding of (GlcNAc)6 and the inhibitor allosamidin to SpChiD as well as the crystal structure of SpChiD in complex with allosamidin. The binding free energies for the two ligands are similar (Δ Gr° = -8.9 ± 0.1 and -8.4 ± 0.1 kcal/mol, respectively) with clear enthalpic penalties (Δ Hr° = 3.2 ± 0.1 and 1.8 ± 0.1 kcal/mol, respectively). Binding of (GlcNAc)6 is dominated by solvation entropy change (- TΔ Ssolv° = -17.4 ± 0.4 kcal/mol) and the conformational entropy change dominates for allosamidin binding (- TΔ Sconf° = -9.0 ± 0.2 kcal/mol). These signatures as well as the interactions with allosamidin are very similar to those of SmChiB suggesting that both enzymes are nonreducing end-specific.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway.,Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Gachibowli, 500046 Hyderabad , India
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine , University of Oslo , P.O. Box 4950, Nydalen, N-0424 Oslo , Norway.,Department of Microbiology, Clinic for Laboratory Medicine , Oslo University Hospital, Rikshospitalet , P.O. Box 4950, Nydalen, N-0424 Oslo , Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Shohei Sakuda
- Department of Applied Biological Chemistry , University of Tokyo , Bunkyo-Ku, 113 Tokyo , Japan
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Gachibowli, 500046 Hyderabad , India
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| |
Collapse
|
30
|
Gesteira TF, Coulson-Thomas VJ. Structural basis of oligosaccharide processing by glycosaminoglycan sulfotransferases. Glycobiology 2019; 28:885-897. [PMID: 29878110 DOI: 10.1093/glycob/cwy055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Heparan sulfate (HS) is a sulfated polysaccharide that plays a key role in morphogenesis, physiology and pathogenesis. The biosynthesis of HS takes place in the Golgi apparatus by a group of enzymes that polymerize, epimerize and sulfate the sugar chain. This biosynthetic process introduces varying degrees of sulfate substitution, which are tightly regulated and directly dictate binding specificity to different cytokines, morphogens and growth factors. Here, we report the use of molecular dynamics simulations to investigate the dynamics of substrate recognition of two glycosaminoglycan (GAG) sulfotransferases, N-deacetylase-N-sulfotransferase and 2-O-sulfotransferase to the HS chain during the biosynthetic process. We performed multiple simulations of the binding of the sulfotransferase domains to both the HS oligosaccharide substrate and sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate. Analysis of extended simulations provide detailed and useful insights into the atomic interactions that are at work during oligosaccharide processing. The fast information matching method was used to detect the enzyme global dynamics and to predict the pairwise contact of residues responsible for GAG-enzyme binding and unbinding. The correlation between HS displacement and the location of the modified GAG chain were calculated, indicating a possible route for HS and heparin during sulfotransferase processing. Our data also show sulfotransferases contain a conserved interspaced positively charged amino acid residues that form a patch which controls the protein-GAG binding equilibrium. Together, our findings provide further understanding on the fine-tuned complex mechanism of GAG biosynthesis. Our findings can also be extrapolated to other systems for calculating rates of protein-GAG binding.
Collapse
Affiliation(s)
- Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Rd, Houston, TX, USA.,Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio,100 - 6o andar, 04044-020 São Paulo, SP, Brazil
| | | |
Collapse
|
31
|
Juárez-Hernández EO, Casados-Vázquez LE, Brieba LG, Torres-Larios A, Jimenez-Sandoval P, Barboza-Corona JE. The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci Rep 2019; 9:2591. [PMID: 30796308 PMCID: PMC6385353 DOI: 10.1038/s41598-019-39464-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
There is no structural information about any chitinase synthesized by Bacillus thuringiensis, the most successful microbial insect larvicide used worldwide. In this study, we solved the 3D structure of the chitinase ChiA74 at 2.26 Å. The crystal structure shows that ChiA74 is composed of a modular arrangement formed by (i) a catalytic region (CD), (ii) a chitinase insertion domain (CID), (iii) a fibronectin type III domain (FnIII), and (iv) a chitin binding domain (CBD). The location of the CBD with respect to the CD has no structural similarity to other chitinases with known structures. The activity of a ChiA74 lacking its secretion signal peptide (ChiA74Δsp) and a truncated version lacking its CBD/FnIII domains (ChiA74Δsp-50) did not have statistical differences in activity against colloidal chitin. However, ChiA74Δsp exhibits 4.5 and 2.0 higher activity than versions lacking the CBD (ChiA74Δsp-60) and CBD/FnIII domains (ChiA74Δsp-50), respectively, when crystalline chitin was used as substrate. Our data suggest that the CBD might plays a significant role in crystalline chitin hydrolysis. We also demonstrated the importance of the catalytic E211 in the CD, as mutants ChiA74ΔspE211N and ChiA74ΔspD207N, E211N were inactive against colloidal and crystalline chitins, chitosan and 4-MU-GlcNAc3. ChiA74 has a processive activity producing oligosaccharides with degree of polymerization (DP) of 1 (GlcNAc) and 2 (GlcNAc2).
Collapse
Affiliation(s)
- Estefania O Juárez-Hernández
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico
| | - Luz E Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico.,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Ciudad de México, 04510, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico.
| | - José E Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico. .,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico.
| |
Collapse
|
32
|
Itoh T, Kimoto H. Bacterial Chitinase System as a Model of Chitin Biodegradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:131-151. [PMID: 31102245 DOI: 10.1007/978-981-13-7318-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chitin, a structural polysaccharide of β-1,4-linked N-acetyl-D-glucosamine residues, is the second most abundant natural biopolymer after cellulose. The metabolism of chitin affects the global carbon and nitrogen cycles, which are maintained by marine and soil-dwelling bacteria. The degradation products of chitin metabolism serve as important nutrient sources for the chitinolytic bacteria. Chitinolytic bacteria have elaborate enzymatic systems for the degradation of the recalcitrant chitin biopolymer. This chapter introduces chitin degradation and utilization systems of the chitinolytic bacteria. These bacteria secrete many chitin-degrading enzymes, including processive chitinases, endo-acting non-processive chitinases, lytic polysaccharide monooxygenases, and N-acetyl-hexosaminidases. Bacterial chitinases play a fundamental role in the degradation of chitin. Enzymatic properties, catalytic mechanisms, and three-dimensional structures of chitinases have been extensively studied by many scientists. These enzymes can be exploited to produce a range of chitin-derived products, e.g., biocontrol agents against many plant pathogenic fungi and insects. We introduce bacterial chitinases in terms of their reaction modes and structural features.
Collapse
Affiliation(s)
- Takafumi Itoh
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| | - Hisashi Kimoto
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| |
Collapse
|
33
|
Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep 2018; 38:BSR2018032300. [PMID: 30042170 PMCID: PMC6131217 DOI: 10.1042/bsr20180323] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
Collapse
Affiliation(s)
- Ayokunmi Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
34
|
Nakamura A, Tasaki T, Okuni Y, Song C, Murata K, Kozai T, Hara M, Sugimoto H, Suzuki K, Watanabe T, Uchihashi T, Noji H, Iino R. Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis. Phys Chem Chem Phys 2018; 20:3010-3018. [PMID: 29090301 DOI: 10.1039/c7cp04606e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Serratia marcescens chitinase A is a linear molecular motor that hydrolyses crystalline chitin in a processive manner. Here, we quantitatively determined the rate constants of elementary reaction steps, including binding (kon), translational movement (ktr), and dissociation (koff) with single-molecule fluorescence imaging. The kon for a single chitin microfibril was 2.1 × 109 M-1 μm-1 s-1. The koff showed two components, k (3.2 s-1, 78%) and k (0.38 s-1, 22%), corresponding to bindings to different crystal surfaces. From the kon, k, k and ratio of fast and slow dissociations, dissociation constants for low and high affinity sites were estimated as 2.0 × 10-9 M μm and 8.1 × 10-10 M μm, respectively. The ktr was 52.5 nm s-1, and processivity was estimated as 60.4. The apparent inconsistency between high turnover (52.5 s-1) calculated from ktr and biochemically determined low kcat (2.6 s-1) is explained by a low ratio (4.8%) of productive enzymes on the chitin surface (52.5 s-1 × 0.048 = 2.5 s-1). Our results highlight the importance of single-molecule analysis in understanding the mechanism of enzymes acting on a solid-liquid interface.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes. Int J Mol Sci 2018; 19:ijms19020362. [PMID: 29370114 PMCID: PMC5855584 DOI: 10.3390/ijms19020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023] Open
Abstract
Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.
Collapse
|
36
|
Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, Gardner JG. Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. J Biol Chem 2018; 293:3849-3859. [PMID: 29367339 DOI: 10.1074/jbc.ra117.000849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the strategies used by bacteria to degrade polysaccharides constitutes an invaluable tool for biotechnological applications. Bacteria are major mediators of polysaccharide degradation in nature; however, the complex mechanisms used to detect, degrade, and consume these substrates are not well-understood, especially for recalcitrant polysaccharides such as chitin. It has been previously shown that the model bacterial saprophyte Cellvibrio japonicus is able to catabolize chitin, but little is known about the enzymatic machinery underlying this capability. Previous analyses of the C. japonicus genome and proteome indicated the presence of four glycoside hydrolase family 18 (GH18) enzymes, and studies of the proteome indicated that all are involved in chitin utilization. Using a combination of in vitro and in vivo approaches, we have studied the roles of these four chitinases in chitin bioconversion. Genetic analyses showed that only the chi18D gene product is essential for the degradation of chitin substrates. Biochemical characterization of the four enzymes showed functional differences and synergistic effects during chitin degradation, indicating non-redundant roles in the cell. Transcriptomic studies revealed complex regulation of the chitin degradation machinery of C. japonicus and confirmed the importance of CjChi18D and CjLPMO10A, a previously characterized chitin-active enzyme. With this systems biology approach, we deciphered the physiological relevance of the glycoside hydrolase family 18 enzymes for chitin degradation in C. japonicus, and the combination of in vitro and in vivo approaches provided a comprehensive understanding of the initial stages of chitin degradation by this bacterium.
Collapse
Affiliation(s)
- Estela C Monge
- From the Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250 and
| | - Tina R Tuveng
- the Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Gustav Vaaje-Kolstad
- the Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Vincent G H Eijsink
- the Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Jeffrey G Gardner
- From the Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250 and
| |
Collapse
|
37
|
Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by Serratia marcescens. Biochem J 2018; 475:415-428. [PMID: 29229757 PMCID: PMC5778951 DOI: 10.1042/bcj20170633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
The Gram-negative bacterium Serratia marcescens secretes many proteins that are involved in extracellular chitin degradation. This so-called chitinolytic machinery includes three types of chitinase enzymes and a lytic polysaccharide monooxygenase. An operon has been identified in S. marcescens, chiWXYZ, that is thought to be involved in the secretion of the chitinolytic machinery. Genetic evidence points to the ChiX protein being a key player in the secretion mechanism, since deletion of the chiX gene in S. marcescens led to a mutant strain blocked for secretion of all members of the chitinolytic machinery. In this work, a detailed structural and biochemical characterisation of ChiX is presented. The high-resolution crystal structure of ChiX reveals the protein to be a member of the LAS family of peptidases. ChiX is shown to be a zinc-containing metalloenzyme, and in vitro assays demonstrate that ChiX is an l-Ala d-Glu endopeptidase that cleaves the cross-links in bacterial peptidoglycan. This catalytic activity is shown to be intimately linked with the secretion of the chitinolytic machinery, since substitution of the ChiX Asp-120 residue results in a variant protein that is both unable to digest peptidoglycan and cannot rescue the phenoytype of a chiX mutant strain.
Collapse
|
38
|
Chen W, Qu M, Zhou Y, Yang Q. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 2018; 293:2652-2660. [PMID: 29317504 PMCID: PMC5827449 DOI: 10.1074/jbc.ra117.000119] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Chitin is a linear homopolymer of N-acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of OfChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of OfChtII, OfChtII-C1 and OfChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that OfChtII-C1 and OfChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. OfChtII exhibited structural characteristics within the substrate-binding cleft similar to those in OfChi-h and OfChtI. However, OfChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in OfChi-h. Nevertheless, the numerous domains in OfChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules (OfChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of OfChi-h and OfChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
39
|
ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Liu T, Zhu W, Wang J, Zhou Y, Duan Y, Qu M, Yang Q. The deduced role of a chitinase containing two nonsynergistic catalytic domains. Acta Crystallogr D Struct Biol 2018; 74:30-40. [PMID: 29372897 PMCID: PMC5786006 DOI: 10.1107/s2059798317018289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023] Open
Abstract
The glycoside hydrolase family 18 chitinases degrade or alter chitin. Multiple catalytic domains in a glycoside hydrolase family 18 chitinase function synergistically during chitin degradation. Here, an insect group III chitinase from the agricultural pest Ostrinia furnacalis (OfChtIII) is revealed to be an arthropod-conserved chitinase that contains two nonsynergistic GH18 domains according to its catalytic properties. Both GH18 domains are active towards single-chained chitin substrates, but are inactive towards insoluble chitin substrates. The crystal structures of each unbound GH18 domain, as well as of GH18 domains complexed with hexa-N-acetyl-chitohexaose or penta-N-acetyl-chitopentaose, suggest that the two GH18 domains possess endo-specific activities. Physiological data indicated that the developmental stage-dependent gene-expression pattern of OfChtIII was the same as that of the chitin synthase OfChsA but significantly different from that of the chitinase OfChtI, which is indispensable for cuticular chitin degradation. Additionally, immunological staining indicated that OfChtIII was co-localized with OfChsA. Thus, OfChtIII is most likely to be involved in the chitin-synthesis pathway.
Collapse
Affiliation(s)
- Tian Liu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Weixing Zhu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Yong Zhou
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Yanwei Duan
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
41
|
Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 2017; 7:5113. [PMID: 28698589 PMCID: PMC5505975 DOI: 10.1038/s41598-017-05140-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Humans have exploited natural resources for a variety of applications. Chitin and its derivative chitin oligosaccharides (CHOS) have potential biomedical and agricultural applications. Availability of CHOS with the desired length has been a major limitation in the optimum use of such natural resources. Here, we report a single domain hyper-transglycosylating chitinase, which generates longer CHOS, from Enterobacter cloacae subsp. cloacae 13047 (EcChi1). EcChi1 was optimally active at pH 5.0 and 40 °C with a Km of 15.2 mg ml−1, and kcat/Km of 0.011× 102 mg−1 ml min−1 on colloidal chitin. The profile of the hydrolytic products, major product being chitobiose, released from CHOS indicated that EcChi1 was an endo-acting enzyme. Transglycosylation (TG) by EcChi1 on trimeric to hexameric CHOS resulted in the formation of longer CHOS for a prolonged duration. EcChi1 showed both chitobiase and TG activities, in addition to hydrolytic activity. The TG by EcChi1 was dependent, to some extent, on the length of the CHOS substrate and concentration of the enzyme. Homology modeling and docking with CHOS suggested that EcChi1 has a deep substrate-binding groove lined with aromatic amino acids, which is a characteristic feature of a processive enzyme.
Collapse
|
42
|
Hamre AG, Frøberg EE, Eijsink VGH, Sørlie M. Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase. Arch Biochem Biophys 2017; 620:35-42. [PMID: 28359644 DOI: 10.1016/j.abb.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Glycoside hydrolases (GHs) catalyze the hydrolysis of glycosidic bonds and are key enzymes in carbohydrate metabolism. Efficient degradation of recalcitrant polysaccharides such as chitin and cellulose is accomplished due to synergistic enzyme cocktails consisting of accessory enzymes and mixtures of GHs with different modes of action and active site topologies. The substrate binding sites of chitinases and cellulases often have surface exposed aromatic amino acids and a tunnel or cleft topology. The active site of the exo-processive chitinase B (ChiB) from Serratia marcescens is partially closed, creating a tunnel-like catalytic cleft. To gain insight in the fundamental principles of substrate binding in this enzyme, we have studied the contribution of five key residues involved in substrate binding and tunnel formation to the thermodynamics of substrate binding. Mutation of Trp97, Phe190, Trp220 and Glu221, which are all part of the tunnel walls, resulted in significant less favorable conformational entropy change (ΔS°conf) upon binding (-TΔΔS°conf = ∼5 kcal/mol). This suggest that these residues are important for the structural rigidity and pre-shaping of the tunnel prior to binding. Mutation of Asp316, which, by forming a hydrogen bond to Trp97 is crucial in the active-site tunnel roof, resulted in a more favorable ΔS°conf relative to the wild type (-TΔΔS°conf = -2.2 kcal/mol). This shows that closing the tunnel-roof comes with an entropy cost, as previously suggested based on the crystal structures of GHs with tunnel topologies in complex with their substrates.
Collapse
Affiliation(s)
- Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Emil Ebbestad Frøberg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway.
| |
Collapse
|
43
|
Thimoteo SS, Glogauer A, Faoro H, de Souza EM, Huergo LF, Moerschbacher BM, Pedrosa FO. A broad pH range and processive chitinase from a metagenome library. ACTA ACUST UNITED AC 2017; 50:e5658. [PMID: 28076454 PMCID: PMC5264535 DOI: 10.1590/1414-431x20165658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 01/14/2023]
Abstract
Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine
linked β(1-4) present in the exoskeleton of crustaceans, insects, nematodes and
fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil
was functionally screened for chitinase activity leading to the isolation and
identification of a chitinase gene named metachi18A. The
metachi18A gene was subcloned and overexpressed in
Escherichia coli BL21 and the MetaChi18A chitinase was purified
by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is
a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family
18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C.
Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to
9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as
the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis
showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin
and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low
concentrations of colloidal chitin, indicating a possible conformational change to
lead the chitin chain from the chitin-binding to the catalytic domain. The observed
stability and activity of MetaChi18A over a wide range of conditions suggest that
this chitinase, now characterized, may be suitable for application in the industrial
processing of chitin.
Collapse
Affiliation(s)
- S S Thimoteo
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - A Glogauer
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil.,Agência de Inovação, Instituto de Tecnologia do Paraná - Tecpar, Curitiba, PR, Brasil
| | - H Faoro
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil.,Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brasil
| | - E M de Souza
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L F Huergo
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - B M Moerschbacher
- Institute for Biology and Biotechnology of Plants, WWU Münster University, Münster, Germany
| | - F O Pedrosa
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
44
|
Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. Structure, Catalysis, and Inhibition of OfChi-h, the Lepidoptera-exclusive Insect Chitinase. J Biol Chem 2017; 292:2080-2088. [PMID: 28053084 DOI: 10.1074/jbc.m116.755330] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Chitinase-h (Chi-h) is of special interest among insect chitinases due to its exclusive distribution in lepidopteran insects and high sequence identity with bacterial and baculovirus homologs. Here OfChi-h, a Chi-h from Ostrinia furnacalis, was investigated. Crystal structures of both OfChi-h and its complex with chitoheptaose ((GlcN)7) reveal that OfChi-h possesses a long and asymmetric substrate binding cleft, which is a typical characteristics of a processive exo-chitinase. The structural comparison between OfChi-h and its bacterial homolog SmChiA uncovered two phenylalanine-to-tryptophan site variants in OfChi-h at subsites +2 and possibly -7. The F232W/F396W double mutant endowed SmChiA with higher hydrolytic activities toward insoluble substrates, such as insect cuticle, α-chitin, and chitin nanowhisker. An enzymatic assay demonstrated that OfChi-h outperformed OfChtI, an insect endo-chitinase, toward the insoluble substrates, but showed lower activity toward the soluble substrate ethylene glycol chitin. Furthermore, OfChi-h was found to be inhibited by N,N',N″-trimethylglucosamine-N,N',N″,N″'-tetraacetylchitotetraose (TMG-(GlcNAc)4), a substrate analog which can be degraded into TMG-(GlcNAc)1-2 Injection of TMG-(GlcNAc)4 into 5th-instar O. furnacalis larvae led to severe defects in pupation. This work provides insights into a molting-indispensable insect chitinase that is phylogenetically closer to bacterial chitinases than insect chitinases.
Collapse
Affiliation(s)
- Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Lei Chen
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Xi Jiang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and .,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
45
|
Kari J, Kont R, Borch K, Buskov S, Olsen JP, Cruyz-Bagger N, Väljamäe P, Westh P. Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry 2016; 56:167-178. [PMID: 28026938 DOI: 10.1021/acs.biochem.6b00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme-substrate interactions in the long, tunnel-shaped binding site of the CBH. In this work, we have investigated the initial complexation mode with cellulose of the most thoroughly studied CBH, Cel7A from Hypocrea jecorina (HjCel7A). We found that HjCel7A predominantly produces glucose when it initiates a processive run on insoluble microcrystalline cellulose, confirming the validity of an even and odd product ratio as an estimate of processivity. Moreover, the glucose released from cellulose was predominantly α-glucose. A link between the initial binding mode of the enzyme and the reducing end configuration was investigated by inhibition studies with the two anomers of cellobiose. A clear preference for β-cellobiose in product binding site +2 was observed for HjCel7A, but not the homologous endoglucanase, HjCe7B. Possible relationships between this anomeric preference in the product site and the prevalence of odd-numbered initial-cut products are discussed, and a correlation between processivity and anomer selectivity is proposed.
Collapse
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | - Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Kim Borch
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Steen Buskov
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | | | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| |
Collapse
|
46
|
Niu X, Liu CC, Xiong YJ, Yang MM, Ma F, Liu ZH, Yuan S. The Modes of Action of ChiIII, a Chitinase from Mushroom Coprinopsis cinerea, Shift with Changes in the Length of GlcNAc Oligomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6958-6968. [PMID: 27573573 DOI: 10.1021/acs.jafc.6b03086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A putative class III endochitinase (ChiIII) was reported previously to be expressed dominantly in fruiting bodies of Coprinopsis cinerea, and its expression levels increased with the maturation of the fruiting bodies. This paper further reports that ChiIII is a novel chitinase with exo- and endoactivities. When the substrate was (GlcNAc)3-5, ChiIII exhibited exoactivity, releasing GlcNAc processively from the reducing end of (GlcNAc)3-5; when the substrate was (GlcNAc)6-7, the activity of ChiIII shifted to an endoacting enzyme, randomly splitting chitin oligosaccharides to various shorter oligosaccharides. This shift in the mode of action of ChiIII may be related to its stronger hydrolytic capacity to degrade chitin in fungal cell walls. The predicted structure of ChiIII shows that it lacks the α+β domain insertion; however, its substrate binding cleft seems to be deeper than that of common endochitinases but shallower and more open than that of common exochitinases, which may be related to its exo- and endohydrolytic activities.
Collapse
Affiliation(s)
- Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Cui-Cui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Yuan-Jing Xiong
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Ming-Mei Yang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Fei Ma
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Zhong-Hua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| |
Collapse
|
47
|
Mayes HB, Knott BC, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Chem Sci 2016; 7:5955-5968. [PMID: 30155195 PMCID: PMC6091422 DOI: 10.1039/c6sc00571c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase (TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2SO ring configuration as it reaches its binding site. This work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.
Collapse
Affiliation(s)
- Heather B Mayes
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL 60208 , USA
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Brandon C Knott
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Michael F Crowley
- Biosciences Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL 60208 , USA
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology , Swedish University of Agricultural Sciences , SE-75007 , Uppsala , Sweden .
| | - Gregg T Beckham
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| |
Collapse
|
48
|
Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli. Appl Microbiol Biotechnol 2016; 100:8031-41. [PMID: 27138200 DOI: 10.1007/s00253-016-7546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Two putative chitinase genes, lin0153 and lin1996, from the nonpathogenic bacterium Listeria innocua were expressed in Escherichia coli, and the gene products were characterized. The genes were close homologs of chitinases from the pathogenic bacterium Listeria monocytogenes, in which chitinases and chitin-binding proteins play important roles in pathogenesis in mice-infection models. The purified recombinant enzymes that are different in size, LinChi78 (lin0153 product) and LinChi35 (lin1996 product)-with molecular masses of 82 and 38 kDa, including vector-derived additional sequences, respectively-exhibited optimum catalytic activity under neutral and acidic conditions at 50 °C, respectively, and were stable over broad pH (4-11) and temperature (4-40 °C) ranges. LinChi35 displayed higher k cat and K M values for 4-nitrophenyl N,N-diacetyl-β-D-chitobioside [4NP-(GlcNAc)2] than LinChi78. Both enzymes produced primarily dimers from colloidal chitin as a substrate. However, LinChi78 and LinChi35 could hydrolyze oligomeric substrates in a processive exo- and nonprocessive endo-manner, respectively, and showed different reactivity toward oligomeric substrates. Both enzymes could bind chitin beads but were different in their binding ability toward crystalline α-chitin and cellulose. The structure-function relationships of these chitinases are discussed in reference to other bacterial chitinases.
Collapse
|
49
|
Wang Y, Zhang S, Song X, Yao L. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface. Biotechnol Bioeng 2016; 113:1873-80. [DOI: 10.1002/bit.25970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yefei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Shujun Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Xiangfei Song
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Lishan Yao
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| |
Collapse
|
50
|
Jana S, Hamre AG, Wildberger P, Holen MM, Eijsink VGH, Beckham GT, Sørlie M, Payne CM. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases. J Phys Chem B 2016; 120:1236-49. [PMID: 26824449 DOI: 10.1021/acs.jpcb.5b12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of Serratia marcescens family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the "entrances" of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality.
Collapse
Affiliation(s)
- Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506-0046, United States
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Patricia Wildberger
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Matilde Mengkrog Holen
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Morten Sørlie
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences , Ås 1430, Norway
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506-0046, United States
| |
Collapse
|