1
|
Gu X, Chen Y, Qian P, He T, Wu Y, Lin W, Zheng J, Hong M. Cimifugin suppresses type 2 airway inflammation by binding to SPR and regulating its protein expression in a non-enzymatic manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154657. [PMID: 36701995 DOI: 10.1016/j.phymed.2023.154657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cimifugin is one of the main bioactive components of Yu-Ping-Feng-San, a well-known traditional Chinese medicine, which can effectively relieve Allergic asthma (AA) and atopic dermatitis and reduce recurrence in clinic. However, the underlying mechanism of cimifugin on AA is still unknown. PURPOSE In the present study, we aimed to investigate the effect and mechanism of cimifugin on AA. STUDY DESIGN In vivo and in vitro experimental studies were performed. METHODS The effect of cimifugin on AA was demonstrated in vivo and in vitro. Sepiapterin reductase (SPR) was predicted as the most potent target of cimifugin in treating AA by reverse docking. Molecular docking and microscale thermophoresis (MST) were used to analyze the direct binding between cimifugin and SPR. Overexpression and interference of SPR were performed to verify whether targeting SPR is a key step of cimifugin in the treatment of AA. QM385, an inhibitor of SPR, was administrated in vivo and in vitro to evaluate the role of SPR in AA. Further, HPLC and cell-free direct hSPR enzyme activity assay were performed to research whether cimifugin regulated SPR by influencing the enzyme activity. Simultaneously, the inhibitors of protein degradation were used in vitro to explore the mechanism of cimifugin on SPR. RESULTS We found cimifugin effectively alleviated AA by reducing airway hyperresponsiveness, inhibiting type 2 cytokines-mediated airway inflammation, and restoring the expression of epithelial barrier proteins. Molecular docking predicted the direct binding ability of cimifugin to SPR, which was further verified by MST. Notably, the therapeutic effect of cimifugin on AA was dampened with SPR interfering, in contrast, the phenotypic features of AA were significantly alleviated with QM385 application both in vivo and in vitro. Interestingly, cimifugin showed no effect on the enzyme activity of SPR, as the level of its substrate sepiapterin was not affected with cimifugin treatment by cell-free enzyme activity assay. Furthermore, we found cimifugin could reduce SPR protein expression without affecting its mRNA expression probably through autophagosome pathway. CONCLUSIONS To our knowledge, we're reporting for the first time that cimifugin can suppresses type 2 airway inflammation to alleviate AA by directly binding to SPR and regulating its protein expression in a non-enzymatic manner.
Collapse
Affiliation(s)
- Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Peiyao Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Ting He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yameng Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China; Department of Pharmacology, School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Vasquez-Vivar J, Shi Z, Tan S. Tetrahydrobiopterin in Cell Function and Death Mechanisms. Antioxid Redox Signal 2022; 37:171-183. [PMID: 34806400 PMCID: PMC9293684 DOI: 10.1089/ars.2021.0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023]
Abstract
Significance: Tetrahydrobiopterin (BH4) is most well known as a required cofactor for enzymes regulating cellular redox homeostasis, aromatic amino acid metabolism, and neurotransmitter synthesis. Less well known are the effects dependent on the cofactor's availability, factors governing its synthesis and recycling, redox implications of the cofactor itself, and protein-protein interactions that underlie cell death. This review provides an understanding of the recent advances implicating BH4 in the mechanisms of cell death and suggestions of possible therapeutic interventions. Recent Advances: The levels of BH4 often reflect the sum of synthetic and recycling enzyme activities. Enhanced expression of GTP cyclohydrolase, the rate-limiting enzyme in biosynthesis, increases BH4, leading to improved cell function and survival. Pharmacologically increasing BH4 levels has similar beneficial effects, leading to enhanced production of neurotransmitters and nitric oxide or reducing oxidant levels. The GTP cyclohydrolase-BH4 pairing has been implicated in a type of cell death, ferroptosis. At the cellular level, BH4 counteracts anticancer therapies directed to enhance ferroptosis via glutathione peroxidase 4 (GPX4) activity inhibition. Critical Issues: Because of the multitude of intertwined mechanisms, a clear relationship between BH4 and cell death is not well understood yet. The possibility that the cofactor directly influences cell viability has not been excluded in previous studies when modulating BH4-producing enzymes. Future Directions: The importance of cellular BH4 variations and BH4 biosynthetic enzymes to cell function and viability makes it essential to better characterize temporal changes, cofactor activity, and the influence on redox status, which in turn would help develop novel therapies. Antioxid. Redox Signal. 37, 171-183.
Collapse
Affiliation(s)
- Jeannette Vasquez-Vivar
- Redox Biology Program, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
- Division of Neonatology, Children's Hospital of Michigan, Wayne State University and Central Michigan University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
5
|
Wu Y, Chen P, Sun L, Yuan S, Cheng Z, Lu L, Du H, Zhan M. Sepiapterin reductase: Characteristics and role in diseases. J Cell Mol Med 2020; 24:9495-9506. [PMID: 32734666 PMCID: PMC7520308 DOI: 10.1111/jcmm.15608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/05/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
Sepiapterin reductase, a homodimer composed of two subunits, plays an important role in the biosynthesis of tetrahydrobiopterin. Furthermore, sepiapterin reductase exhibits a wide distribution in different tissues and is associated with many diseases, including brain dysfunction, chronic pain, cardiovascular disease and cancer. With regard to drugs targeting sepiapterin reductase, many compounds have been identified and provide potential methods to treat various diseases. However, the underlying mechanism of sepiapterin reductase in many biological processes is unclear. Therefore, this article summarized the structure, distribution and function of sepiapterin reductase, as well as the relationship between sepiapterin reductase and different diseases, with the aim of finding evidence to guide further studies on the molecular mechanisms and the potential clinical value of sepiapterin reductase. In particular, the different effects induced by the depletion of sepiapterin reductase or the inhibition of the enzyme suggest that the non-enzymatic activity of sepiapterin reductase could function in certain biological processes, which also provides a possible direction for sepiapterin reductase research.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Peng Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Li Sun
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Zujue Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Ligong Lu
- Interventional Radiology CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hongzhi Du
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Meixiao Zhan
- Interventional Radiology CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
6
|
Soares AG, Muscara MN, Costa SKP. Molecular mechanism and health effects of 1,2-Naphtoquinone. EXCLI JOURNAL 2020; 19:707-717. [PMID: 32636724 PMCID: PMC7332801 DOI: 10.17179/excli2020-1210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Extensive literature regarding the health side effects of ambient pollutants (AP) are available, such as diesel exhaust particles (DEPs), but limited studies are available on their electrophilic contaminant 1,2-Naphthoquinone (1,2-NQ), enzymatically derived from naphthalene. This review summarizes relevant toxicologic and biological properties of 1,2-NQ as an environmental pollutant or to a lesser degree as a backbone in drug development to treat infectious diseases. It presents evidence of 1,2-NQ-mediated genotoxicity, neurogenic inflammation, and cytotoxicity due to several mechanistic properties, including the production of reactive oxygen species (ROS), that promote cell damage, carcinogenesis, and cell death. Many signal transduction pathways act as a vulnerable target for 1,2-NQ, including kappaB kinase b (IKKbeta) and protein tyrosine phosphatase 1B (PTP1B). Antioxidant molecules act in defense against ROS/RNS-mediated 1,2-NQ responses to injury. Nonetheless, its inhibitory effects at PTP1B, altering the insulin signaling pathway, represents a new therapeutic target to treat diabetes type 2. Questions exist whether exposure to 1,2-NQ may promote arylation of the Keap1 factor, a negative regulator of Nrf2, as well as acting on the sepiapterin reductase activity, an NADPH-dependent enzyme which catalyzes the formation of critical cofactors in aromatic amino acid metabolism and nitric oxide biosynthesis. Exposure to 1,2-NQ is linked to neurologic, behavioral, and developmental disturbances as well as increased susceptibility to asthma. Limited new knowledge exists on molecular modeling of quinones molecules as antitumoral and anti-microorganism agents. Altogether, these studies suggest that 1,2-NQ and its intermediate compounds can initiate a number of pathological pathways as AP in living organisms but it can be used to better understand molecular pathways.
Collapse
Affiliation(s)
- Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, USA. 7703 Floyd Curl Dr. San Antonio, TX, USA 78229.,Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Marcelo N Muscara
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Soraia K P Costa
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| |
Collapse
|
7
|
Wu Y, Du H, Zhan M, Wang H, Chen P, Du D, Liu X, Huang X, Ma P, Peng D, Sun L, Yuan S, Ding J, Lu L, Jiang J. Sepiapterin reductase promotes hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner. Cell Death Dis 2020; 11:248. [PMID: 32312975 PMCID: PMC7170898 DOI: 10.1038/s41419-020-2471-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022]
Abstract
Sepiapterin reductase plays an enzymatic role in the biosynthesis of tetrahydrobiopterin, which is reported in limited studies to regulate the progression of several tumors. However, the role of sepiapterin reductase in hepatocellular carcinoma remains largely unknown. Here, we found that sepiapterin reductase was frequently highly expressed in human hepatocellular carcinoma, which was significantly associated with higher T stage, higher tumor node metastasis stage, and even shorter survival of hepatocellular carcinoma patients. Furthermore, cell and animal experiments showed that sepiapterin reductase depletion inhibited cancer cell proliferation and promoted cancer cell apoptosis. Importantly, the results suggested that sepiapterin reductase enzymatic activity was not necessary for the progression of hepatocellular carcinoma, based on the comparison between SMMC-7721 and SMMC-7721 containing sepiapterin reductase mutant. Moreover, we showed that sepiapterin reductase regulated the development of hepatocellular carcinoma via the FoxO3a/Bim-signaling pathway. Collectively, our study suggests that sepiapterin reductase controls hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner, which provides a potential prognostic factor and therapeutic strategy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu Road West, Wuhan, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hongxv Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xinyi Liu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Xingxv Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, China
| | - Dezheng Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jian Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Liang H, Liu N, Wang R, Zhang Y, Chen J, Dai Z, Yang Y, Wu G, Wu Z. N-Acetyl Serotonin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Antioxidants (Basel) 2020; 9:antiox9040303. [PMID: 32272634 PMCID: PMC7222184 DOI: 10.3390/antiox9040303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Haiwei Liang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ning Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
9
|
Boslett J, Reddy N, Alzarie YA, Zweier JL. Inhibition of CD38 with the Thiazoloquin(az)olin(on)e 78c Protects the Heart against Postischemic Injury. J Pharmacol Exp Ther 2019; 369:55-64. [PMID: 30635470 PMCID: PMC6413770 DOI: 10.1124/jpet.118.254557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Inhibition of and genetic deletion of the NAD(P)+ hydrolase [NAD(P)ase] CD38 have been shown to protect against ischemia/reperfusion (I/R) injury in rat and mouse hearts. CD38 has been shown to enhance salvage of NADP(H), which in turn prevents impairment of endothelial nitric oxide synthase function, a hallmark of endothelial dysfunction. Despite growing evidence for a role of CD38 in postischemic injury, until recently there had been a lack of potent CD38 inhibitors. Recently, a new class of thiazoloquin(az)olin(on)e compounds were identified as highly potent and specific CD38 inhibitors. Herein, we investigate the ability of one of these compounds, 78c, to inhibit CD38 and protect the heart in an ex vivo model of myocardial I/R injury. The potency and mechanism of CD38 inhibition by 78c was assessed in vitro using recombinant CD38. The dose-dependent tissue uptake of 78c in isolated mouse hearts was determined, and high tissue permeability of 78c was observed when delivered in perfusate. Treatment of hearts with 78c was protective against both postischemic endothelial and cardiac myocyte injury, with preserved nitric oxide synthase-dependent vasodilatory and contractile function, respectively. Myocardial infarction was also significantly decreased in 78c-treated hearts, with preserved levels of high-energy phosphates. Protective effects peaked at 10 μM treatment, and similar protection without toxicity was seen at 5-fold higher doses. Overall, 78c was shown to be a potent and biologically active CD38 inhibitor with favorable tissue uptake and marked protective effects against I/R injury with enhanced preservation of contractile function, coronary flow, and decreased infarction.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Nikhil Reddy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Yasmin A Alzarie
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Quinone and nitrofurantoin redox cycling by recombinant cytochrome b5 reductase. Toxicol Appl Pharmacol 2018; 359:102-107. [PMID: 30222979 DOI: 10.1016/j.taap.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
NADH cytochrome b5 reductase mediates electron transfer from NADH to cytochrome b5 utilizing flavin adenine dinucleotide as a redox cofactor. Reduced cytochrome b5 is an important cofactor in many metabolic reactions including cytochrome P450-mediated xenobiotic metabolism, steroid biosynthesis and fatty acid metabolism, hemoglobin reduction, and methionine and plasmalogen synthesis. Using recombinant human enzyme, we discovered that cytochrome b5 reductase mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity was oxygen-dependent and preferentially utilized NADH as a co-substrate; NADH was 5-10 times more active than NADPH in supporting redox cycling. Redox cycling activity was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione), nitrofurantoin and 2-hydroxyestradiol. Using menadione as the substrate, quinone redox cycling was found to inhibit reduction of cytochrome b5 by cytochrome b5 reductase, as measured by heme spectral changes in cytochrome b5. Under anaerobic conditions where redox cycling is inhibited, menadione had no effect on the reduction of cytochrome b5. Chemical redox cycling by cytochrome b5 reductase may be important in generating cytotoxic reactive oxygen species in target tissues. This activity, together with the inhibition of cytochrome b5 reduction by redox-active chemicals and consequent deficiencies in available cellular cytochrome b5, are likely to contribute to tissue injury following exposure to quinones and related redox active chemicals.
Collapse
|
11
|
Lavrich KS, Corteselli EM, Wages PA, Bromberg PA, Simmons SO, Gibbs-Flournoy EA, Samet JM. Investigating mitochondrial dysfunction in human lung cells exposed to redox-active PM components. Toxicol Appl Pharmacol 2018; 342:99-107. [PMID: 29407367 DOI: 10.1016/j.taap.2018.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | | | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Yang S, Jan YH, Mishin V, Heck DE, Laskin DL, Laskin JD. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem Res Toxicol 2017; 30:1406-1418. [PMID: 28595002 DOI: 10.1021/acs.chemrestox.7b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 μM) and l-xylulose (Ki = 940 μM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| |
Collapse
|
13
|
Hara A, Endo S, Matsunaga T, Soda M, Yashiro K, El-Kabbani O. Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. J Biochem 2017; 162:371-379. [DOI: 10.1093/jb/mvx041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
|
14
|
Tang Y, Pei Z, Liu L, Wang D, Kong L, Liu S, Jiang X, Gao Y, Ma H. Expression and Enzyme Activity Detection of a Sepiapterin Reductase Gene from Musca domestica Larva. Appl Biochem Biotechnol 2017; 181:604-612. [PMID: 27704475 DOI: 10.1007/s12010-016-2235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases and nitric oxide synthase. Sepiapterin reductase (SPR) catalyzes the final steps of BH4 biosynthesis. Studies on SPR from several insects and other organisms have been reported. However, thus far, enzyme activity of SPR in Musca domestica is kept unknown. In this study, 186 differentially expressed genes including SPR gene from Musca domestica (MDSPR) were screened in subtractive cDNA library. The MDSPR gene was cloned, and the recombinant MDSPI16 protein was expressed as a 51-kDa protein in soluble form. The MDSPR exhibited strong activity to the substrate sepiapterin (SP). The values of Vmax and Km of the MDSPR for SP were 6.83 μM/min and 23.48 μM, and the optimum temperature and pH of MDSPR were 50 °C and 4.0, respectively. This study provides new hypotheses and methods for the production of BH4 using insect-derived SPR.
Collapse
Affiliation(s)
- Yan Tang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Zhihua Pei
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Lei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
- Jilin Medical University, Jilin Street No.5, Jilin, Jilin Province, 132013, China
| | - Dongfang Wang
- Chengdu tongwei Co. Ltd,houwu district, Chengdu, Sichuan Province, 610041, China
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Shuming Liu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Xiuyun Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118, China.
| |
Collapse
|
15
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Haruki H, Hovius R, Pedersen MG, Johnsson K. Tetrahydrobiopterin Biosynthesis as a Potential Target of the Kynurenine Pathway Metabolite Xanthurenic Acid. J Biol Chem 2016; 291:652-7. [PMID: 26565027 PMCID: PMC4705385 DOI: 10.1074/jbc.c115.680488] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/05/2015] [Indexed: 12/22/2022] Open
Abstract
Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation.
Collapse
Affiliation(s)
- Hirohito Haruki
- From the Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruud Hovius
- From the Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Miriam Grønlund Pedersen
- From the Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kai Johnsson
- From the Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Jiang ZC, Liang CH, Wang HL, Chen Y, Zheng J, Yu SN, Jiang JY. Effect of N-acetylserotonin on hepatocyte apoptosis after liver ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1387-1394. [DOI: 10.11569/wcjd.v23.i9.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-acetylserotonin (NAS) on hepatocyte apoptosis after liver ischemia-reperfusion (I/R) injury in rats.
METHODS: Adult male SD rats weighting 200-250 g were used. The afferent vessels of the left and median lobes were occluded by a microvascular bulldog clamp and then reperfused after 60 min with or without NAS. The morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. The expression of Bcl-2, Bax and activated Caspase3 was evaluated by immunohistochemistry.
RESULTS: The hepatocytes exhibited marked ballooning hydropic degeneration and focal necrosis in the I/R group. NAS pretreatment rescued the morphological damage. Compared with the sham operation group, the expression of cleaved Caspase3, Bcl-2 and Bax in the liver tissue was increased, and the ratio of Bcl-2/Bax was decreased in the I/R group (P < 0.01). The apoptosis index (AI) and expression of cleaved Caspase3 and Bax were decreased in the NAS intervention group compared with the I/R group (P < 0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio were increased (P < 0.01).
CONCLUSION: NAS could attenuate hepatocyte apoptosis after liver I/R injury via mechanisms possibly associated with induction of Bcl-2 protein expression and inhibition of Bax protein expression in hepatocytes.
Collapse
|
18
|
Yang S, Jan YH, Mishin V, Richardson JR, Hossain MM, Heindel ND, Heck DE, Laskin DL, Laskin JD. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase. J Pharmacol Exp Ther 2014; 352:529-40. [PMID: 25550200 DOI: 10.1124/jpet.114.221572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Yi-Hua Jan
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Vladimir Mishin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Muhammad M Hossain
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Ned D Heindel
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Diane E Heck
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Debra L Laskin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School (S.Y., Y.-H.J., J.R.R., M.H.H., J.D.L.) and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (V.M., D.L.L.); Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania (N.D.H.); and Department of Environmental Health Science, New York Medical College, Valhalla, New York (D.E.H.)
| |
Collapse
|
19
|
N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:310504. [PMID: 25013541 PMCID: PMC4074966 DOI: 10.1155/2014/310504] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Collapse
|
20
|
Protective effect of N-acetylserotonin against acute hepatic ischemia-reperfusion injury in mice. Int J Mol Sci 2013; 14:17680-93. [PMID: 23994834 PMCID: PMC3794748 DOI: 10.3390/ijms140917680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.
Collapse
|