1
|
Lee FFY, Harris C, Alper S. RNA Binding Proteins that Mediate LPS-induced Alternative Splicing of the MyD88 Innate Immune Regulator. J Mol Biol 2024; 436:168497. [PMID: 38369277 PMCID: PMC11001520 DOI: 10.1016/j.jmb.2024.168497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Inflammation driven by Toll-like receptor (TLR) signaling pathways is required to combat infection. However, inflammation can damage host tissues; thus it is essential that TLR signaling ultimately is terminated to prevent chronic inflammatory disorders. One mechanism that terminates persistent TLR signaling is alternative splicing of the MyD88 signaling adaptor, which functions in multiple TLR signaling pathways. While the canonical long isoform of MyD88 (MyD88-L) mediates TLR signaling and promotes inflammation, an alternatively-spliced shorter isoform of MyD88 (MyD88-S) produces a dominant negative inhibitor of TLR signaling. MyD88-S production is induced by inflammatory agonists including lipopolysaccharide (LPS), and thus MyD88-S induction is thought to act as a negative feedback loop that prevents chronic inflammation. Despite the potential role that MyD88-S production plays in inflammatory disorders, the mechanisms controlling MyD88 alternative splicing remain unclear. Here, we identify two RNA binding proteins, SRSF1 and HNRNPU, that regulate LPS-induced alternative splicing of MyD88.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA.
| |
Collapse
|
2
|
Matthay MA, Schmidt EP, Bastarache JA, Calfee CS, Frevert CW, Martin TR. The Translational Value of Rodent Models of Sepsis. Am J Respir Crit Care Med 2024; 209:488-490. [PMID: 38091521 PMCID: PMC10919117 DOI: 10.1164/rccm.202308-1489vp] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Affiliation(s)
- Michael A. Matthay
- Cardiovascular Research Institute
- Department of Medicine, and
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Eric P. Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Julie A. Bastarache
- Departments of Medicine, Cell and Development Biology, and Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; and
| | - Carolyn S. Calfee
- Department of Medicine, and
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | | | - Thomas R. Martin
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Shi X, Zhang R, Liu Z, Zhao G, Guo J, Mao X, Fan B. Alternative Splicing Reveals Acute Stress Response of Litopenaeus vannamei at High Alkalinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:103-115. [PMID: 38206418 DOI: 10.1007/s10126-023-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.
Collapse
Affiliation(s)
- Xiang Shi
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Ruiqi Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Jintao Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Xue Mao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Baoyi Fan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
4
|
Espejo LS, DeNicola D, Chang LM, Hofschneider V, Haskins AE, Balsa J, Freitas SS, Antenor A, Hamming S, Hull B, Castro-Portuguez R, Dang H, Sutphin GL. The Emerging Role of 3-Hydroxyanthranilic Acid on C. elegans Aging Immune Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574394. [PMID: 38260592 PMCID: PMC10802494 DOI: 10.1101/2024.01.07.574394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
3-hydroxyanthranilic acid (3HAA) is considered to be a fleeting metabolic intermediate along tryptophan catabolism through the kynurenine pathway. 3HAA and the rest of the kynurenine pathway have been linked to immune response in mammals yet whether it is detrimental or advantageous is a point of contention. Recently we have shown that accumulation of this metabolite, either through supplementation or prevention of its degradation, extends healthy lifespan in C. elegans and mice, while the mechanism remained unknown. Utilizing C. elegans as a model we investigate how 3HAA and haao-1 inhibition impact the host and the potential pathogens. What we find is that 3HAA improves host immune function with aging and serves as an antimicrobial against gram-negative bacteria. Regulation of 3HAA's antimicrobial activity is accomplished via tissue separation. 3HAA is synthesized in the C. elegans hypodermal tissue, localized to the site of pathogen interaction within the gut granules, and degraded in the neuronal cells. This tissue separation creates a new possible function for 3HAA that may give insight to a larger evolutionarily conserved function within the immune response.
Collapse
Affiliation(s)
- Luis S Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Destiny DeNicola
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Leah M Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Anne E Haskins
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Samuel S Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Angelo Antenor
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Sage Hamming
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bradford Hull
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - George L Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
6
|
Li N, Li Y, Han X, Zhang J, Han J, Jiang X, Wang W, Xu Y, Xu Y, Fu Y, Si S. LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing. Front Pharmacol 2022; 13:973612. [PMID: 36313296 PMCID: PMC9614042 DOI: 10.3389/fphar.2022.973612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.
Collapse
Affiliation(s)
- Ni Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Yan Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangxue Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| |
Collapse
|
7
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
9
|
Schmittmann L, Franzenburg S, Pita L. Individuality in the Immune Repertoire and Induced Response of the Sponge Halichondria panicea. Front Immunol 2021; 12:689051. [PMID: 34220847 PMCID: PMC8242945 DOI: 10.3389/fimmu.2021.689051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
The animal immune system mediates host-microbe interactions from the host perspective. Pattern recognition receptors (PRRs) and the downstream signaling cascades they induce are a central part of animal innate immunity. These molecular immune mechanisms are still not fully understood, particularly in terms of baseline immunity vs induced specific responses regulated upon microbial signals. Early-divergent phyla like sponges (Porifera) can help to identify the evolutionarily conserved mechanisms of immune signaling. We characterized both the expressed immune gene repertoire and the induced response to lipopolysaccharides (LPS) in Halichondria panicea, a promising model for sponge symbioses. We exposed sponges under controlled experimental conditions to bacterial LPS and performed RNA-seq on samples taken 1h and 6h after exposure. H. panicea possesses a diverse array of putative PRRs. While part of those PRRs was constitutively expressed in all analyzed sponges, the majority was expressed individual-specific and regardless of LPS treatment or timepoint. The induced immune response by LPS involved differential regulation of genes related to signaling and recognition, more specifically GTPases and post-translational regulation mechanisms like ubiquitination and phosphorylation. We have discovered individuality in both the immune receptor repertoire and the response to LPS, which may translate into holobiont fitness and susceptibility to stress. The three different layers of immune gene control observed in this study, - namely constitutive expression, individual-specific expression, and induced genes -, draw a complex picture of the innate immune gene regulation in H. panicea. Most likely this reflects synergistic interactions among the different components of immunity in their role to control and respond to a stable microbiome, seawater bacteria, and potential pathogens.
Collapse
Affiliation(s)
- Lara Schmittmann
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sören Franzenburg
- Research Group Genetics&Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Lucía Pita
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
10
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Cheng L, Liu WL, Tsou YT, Li JC, Chien CH, Su MP, Liu KL, Huang YL, Wu SC, Tsai JJ, Hsieh SL, Chen CH. Transgenic Expression of Human C-Type Lectin Protein CLEC18A Reduces Dengue Virus Type 2 Infectivity in Aedes aegypti. Front Immunol 2021; 12:640367. [PMID: 33767710 PMCID: PMC7985527 DOI: 10.3389/fimmu.2021.640367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
The C-type lectins, one family of lectins featuring carbohydrate binding domains which participate in a variety of bioprocesses in both humans and mosquitoes, including immune response, are known to target DENV. A human C-type lectin protein CLEC18A in particular shows extensive glycan binding abilities and correlates with type-I interferon expression, making CLEC18A a potential player in innate immune responses to DENV infection; this potential may provide additional regulatory point in improving mosquito immunity. Here, we established for the first time a transgenic Aedes aegypti line that expresses human CLEC18A. This expression enhanced the Toll immune pathway responses to DENV infection. Furthermore, viral genome and virus titers were reduced by 70% in the midgut of transgenic mosquitoes. We found significant changes in the composition of the midgut microbiome in CLEC18A expressing mosquitoes, which may result from the Toll pathway enhancement and contribute to DENV inhibition. Transgenic mosquito lines offer a compelling option for studying DENV pathogenesis, and our analyses indicate that modifying the mosquito immune system via expression of a human immune gene can significantly reduce DENV infection.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Ting Tsou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Hao Chien
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya, Japan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
12
|
Lee FFY, Davidson K, Harris C, McClendon J, Janssen WJ, Alper S. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. J Biol Chem 2020; 295:6236-6248. [PMID: 32179652 DOI: 10.1074/jbc.ra119.011495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.
Collapse
Affiliation(s)
- Frank Fang-Yao Lee
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kevin Davidson
- Pulmonary and Critical Care, WakeMed Hospital, Raleigh, North Carolina 27610
| | - Chelsea Harris
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Jazalle McClendon
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado 80206; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Scott Alper
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045.
| |
Collapse
|
13
|
Murphy Schafer AR, Smith JL, Pryke KM, DeFilippis VR, Hirsch AJ. The E3 Ubiquitin Ligase SIAH1 Targets MyD88 for Proteasomal Degradation During Dengue Virus Infection. Front Microbiol 2020; 11:24. [PMID: 32117091 PMCID: PMC7033647 DOI: 10.3389/fmicb.2020.00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
The dengue virus presents a serious threat to human health globally and can cause severe, even life-threatening, illness. Dengue virus (DENV) is endemic on all continents except Antarctica, and it is estimated that more than 100 million people are infected each year. Herein, we further mine the data from a previously described screen for microRNAs (miRNAs) that block flavivirus replication. We use miR-424, a member of the miR-15/16 family, as a tool to further dissect the role of host cell proteins during DENV infection. We observed that miR-424 suppresses expression of the E3 ubiquitin ligase SIAH1, which is normally induced during dengue virus 2 (DENV2) infection through activation of the unfolded protein response (UPR). Specific siRNA-mediated knockdown of SIAH1 also results in inhibition of DENV replication, demonstrating that this target is at least partly responsible for the antiviral activity of miR-424. We further show that SIAH1 binds to and ubiquitinates the innate immune adaptor protein MyD88 and that the antiviral effect of SIAH1 knockdown is reduced in cells in which MyD88 has been deleted by CRISPR/Cas9 gene editing. Additionally, MyD88-dependent signaling, triggered either by DENV2 infection or the Toll-like receptor 7 (TLR7) ligand imiquimod, is increased in cells in which SIAH1 has been knocked down by miR-424 or a SIAH1-specific siRNA. These observations suggest an additional pathway by which DENV2 harnesses aspects of the UPR to dampen the host innate immune response and promote viral replication.
Collapse
Affiliation(s)
- Ashleigh R Murphy Schafer
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Kara M Pryke
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
14
|
West KO, Scott HM, Torres-Odio S, West AP, Patrick KL, Watson RO. The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Rep 2019; 29:1594-1609.e5. [PMID: 31693898 PMCID: PMC6981299 DOI: 10.1016/j.celrep.2019.09.078] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
While transcriptional control of innate immune gene expression is well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, or are influenced by, macrophage activation. Here, we demonstrate that the splicing factor hnRNP M is a critical repressor of innate immune gene expression and that its function is regulated by pathogen sensing cascades. Loss of hnRNP M led to hyperinduction of a unique regulon of inflammatory and antimicrobial genes following diverse innate immune stimuli. While mutating specific serines on hnRNP M had little effect on its ability to control pre-mRNA splicing or transcript levels of housekeeping genes in resting macrophages, it greatly impacted the protein's ability to dampen induction of specific innate immune transcripts following pathogen sensing. These data reveal a previously unappreciated role for pattern recognition receptor signaling in controlling splicing factor phosphorylation and establish pre-mRNA splicing as a critical regulatory node in defining innate immune outcomes.
Collapse
Affiliation(s)
- Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
15
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Yang Y, Gao D, Liu Z. Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2019; 91:188-193. [PMID: 31077849 DOI: 10.1016/j.fsi.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/22/2023]
Abstract
Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
16
|
Pollyea DA, Harris C, Rabe JL, Hedin BR, De Arras L, Katz S, Wheeler E, Bejar R, Walter MJ, Jordan CT, Pietras EM, Alper S. Myelodysplastic syndrome-associated spliceosome gene mutations enhance innate immune signaling. Haematologica 2019; 104:e388-e392. [PMID: 30846499 DOI: 10.3324/haematol.2018.214155] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Chelsea Harris
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Jennifer L Rabe
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Brenna R Hedin
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Lesly De Arras
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Sigrid Katz
- Division of Hematology and Oncology, University of California, San Diego, La Jolla, CA
| | - Emily Wheeler
- Division of Hematology and Oncology, University of California, San Diego, La Jolla, CA
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California, San Diego, La Jolla, CA
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Scott Alper
- Department of Biomedical Research, National Jewish Health, Denver, CO .,Center for Genes, Environment and Health, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
17
|
Sun R, Qiu L, Yi Q, Wang M, Yue F, Wang L, Song L. CgNrdp1, a conserved negative regulating factor of MyD88-dependent Toll like receptor signaling in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 74:386-392. [PMID: 29305334 DOI: 10.1016/j.fsi.2017.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Toll like receptor (TLR) signaling cascades are under precise regulations to ensure the proper immune responses during various pathogen invasions. The neuregulin receptor degradation protein-1 (Nrdp1) has been demonstrated to be a novel negative regulator of TLR signaling by targeting MyD88 to induce degradation in mammals. In the present study, an Nrdp1 homologue, CgNrdp1, was identified from the genome of Pacific oyster Crassostrea gigas. It contained an open reading frame encoding a polypeptide of 315 amino acids which shared high identities with other homologues from different species. There was a conserved RING domain in CgNrdp1, indicating the functional E3 ubiquitin ligase activity. The bacterially expressed recombinant CgNrdp1 and CgMyD88 showed much stronger affinity compared to control groups in the ELISA assay, showing the interacting ability between CgNrdp1 and CgMyD88. When CgMyD88 or HsMyD88 was co-transfected with CgNrdp1 into HEK293T cells, the luciferase activities of NF-κB were significantly decreased compared to those in MyD88 single-transfection groups, indicating the conserved negative regulating function of CgNrdp1 on the MyD88 induced TLR signaling. These results indicated that CgNrdp1 was a negative regulator of TLR signaling in oyster and the Nrdp1-MyD88 axis was functional and highly conserved from mollusks to mammals in the negative regulation of TLR signaling.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
18
|
Abstract
In this chapter, we describe methods for functional genomics studies in mouse macrophages. In particular, we describe complementary methods for gene inhibition using RNA interference (RNAi) and gene overexpression. These methods are readily amenable to medium- and high-throughput functional genomics investigations. These complementary loss-of-function and gain-of-function genomic approaches provide a rapid means of investigating the function of candidate genes prior to initiating more cumbersome studies in vivo.
Collapse
Affiliation(s)
- Frank Fang-Yao Lee
- Department of Biomedical Research and Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Scott Alper
- Department of Biomedical Research and Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
19
|
Abstract
Numerous approaches have been taken in the hunt for human disease genes. The identification of such genes not only provides a great deal of information about the mechanism of disease development, but also provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the nonmammalian model organism C. elegans for the identification of human disease genes. Studies utilizing this relatively simple organism offer a good balance between the ability to recapitulate many aspects of human disease, while still offering an abundance of powerful cell biological, genetic, and genomic tools for disease gene discovery. C. elegans and other nonmammalian models have produced, and will continue to produce, key insights into human disease pathogenesis.
Collapse
Affiliation(s)
- Javier Apfeld
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Scott Alper
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
Schrom EC, Prada JM, Graham AL. Immune Signaling Networks: Sources of Robustness and Constrained Evolvability during Coevolution. Mol Biol Evol 2017; 35:676-687. [PMID: 29294066 DOI: 10.1093/molbev/msx321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defense against infection incurs costs as well as benefits that are expected to shape the evolution of optimal defense strategies. In particular, many theoretical studies have investigated contexts favoring constitutive versus inducible defenses. However, even when one immune strategy is theoretically optimal, it may be evolutionarily unachievable. This is because evolution proceeds via mutational changes to the protein interaction networks underlying immune responses, not by changes to an immune strategy directly. Here, we use a theoretical simulation model to examine how underlying network architectures constrain the evolution of immune strategies, and how these network architectures account for desirable immune properties such as inducibility and robustness. We focus on immune signaling because signaling molecules are common targets of parasitic interference but are rarely studied in this context. We find that in the presence of a coevolving parasite that disrupts immune signaling, hosts evolve constitutive defenses even when inducible defenses are theoretically optimal. This occurs for two reasons. First, there are relatively few network architectures that produce immunity that is both inducible and also robust against targeted disruption. Second, evolution toward these few robust inducible network architectures often requires intermediate steps that are vulnerable to targeted disruption. The few networks that are both robust and inducible consist of many parallel pathways of immune signaling with few connections among them. In the context of relevant empirical literature, we discuss whether this is indeed the most evolutionarily accessible robust inducible network architecture in nature, and when it can evolve.
Collapse
Affiliation(s)
- Edward C Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Joaquín M Prada
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| |
Collapse
|
21
|
Rodet F, Tasiemski A, Boidin-Wichlacz C, Van Camp C, Vuillaume C, Slomianny C, Salzet M. Hm-MyD88 and Hm-SARM: two key regulators of the neuroimmune system and neural repair in the medicinal leech. Sci Rep 2015; 5:9624. [PMID: 25880897 PMCID: PMC4399414 DOI: 10.1038/srep09624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/19/2015] [Indexed: 01/07/2023] Open
Abstract
Unlike mammals, the CNS of the medicinal leech can regenerate damaged neurites, thus restoring neural functions after lesion. We previously demonstrated that the injured leech nerve cord is able to mount an immune response promoting the regenerative processes. Indeed neurons and microglia express sensing receptors like Hm-TLR1, a leech TLR ortholog, associated with chemokine release in response to a septic challenge or lesion. To gain insights into the TLR signaling pathways involved during these neuroimmune responses, members of the MyD88 family were investigated. In the present study, we report the characterization of Hm-MyD88 and Hm-SARM. The expression of their encoding gene was strongly regulated in leech CNS not only upon immune challenge but also during CNS repair, suggesting their involvement in both processes. This work also showed for the first time that differentiated neurons of the CNS could respond to LPS through a MyD88-dependent signalling pathway, while in mammals, studies describing the direct effect of LPS on neurons and the outcomes of such treatment are scarce and controversial. In the present study, we established that this PAMP induced the relocalization of Hm-MyD88 in isolated neurons.
Collapse
Affiliation(s)
- F Rodet
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - A Tasiemski
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - C Boidin-Wichlacz
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - C Van Camp
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - C Vuillaume
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - C Slomianny
- Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - M Salzet
- Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| |
Collapse
|
22
|
O’Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet 2015; 11:e1004932. [PMID: 25658809 PMCID: PMC4450051 DOI: 10.1371/journal.pgen.1004932] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
The innate immune response plays a key role in fighting infection by activating inflammation and stimulating the adaptive immune response. However, chronic activation of innate immunity can contribute to the pathogenesis of many diseases with an inflammatory component. Thus, various negatively acting factors turn off innate immunity subsequent to its activation to ensure that inflammation is self-limiting and to prevent inflammatory disease. These negatively acting pathways include the production of inhibitory acting alternate proteins encoded by alternative mRNA splice forms of genes in Toll-like receptor (TLR) signaling pathways. We previously found that the SF3a mRNA splicing complex was required for a robust innate immune response; SF3a acts to promote inflammation in part by inhibiting the production of a negatively acting splice form of the TLR signaling adaptor MyD88. Here we inhibit SF3a1 using RNAi and subsequently perform an RNAseq study to identify the full complement of genes and splicing events regulated by SF3a in murine macrophages. Surprisingly, in macrophages, SF3a has significant preference for mRNA splicing events within innate immune signaling pathways compared with other biological pathways, thereby affecting the splicing of specific genes in the TLR signaling pathway to modulate the innate immune response. Within minutes after we are exposed to pathogens, our bodies react with a rapid response known as the “innate immune response.” This arm of the immune response regulates the process of inflammation, in which various immune cells are recruited to sites of infection and are activated to produce a host of antimicrobial compounds. This response is critical to fight infection. However, this response, if it is activated too strongly or if it becomes chronic, can do damage and can contribute to numerous very common diseases ranging from atherosclerosis to asthma to cancer. Thus it is essential that this response be tightly regulated, turned on when we have an infection, and turned off when not needed. We are investigating a mechanism that helps turn off this response, to ensure that inflammation is limited to prevent inflammatory disease. This mechanism involves the production of alternate forms of RNAs and proteins that control inflammation. We have discovered that a protein known as SF3a1 can regulate the expression of these alternate inhibitory RNA forms and are investigating how to use this knowledge to better control inflammation.
Collapse
Affiliation(s)
- Brian P. O’Connor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Thomas Danhorn
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Lesly De Arras
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brenna R. Flatley
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Roland A. Marcus
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Eveline Farias-Hesson
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Sonia M. Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abnave P, Conti F, Torre C, Ghigo E. What RNAi screens in model organisms revealed about microbicidal response in mammals? Front Cell Infect Microbiol 2015; 4:184. [PMID: 25629007 PMCID: PMC4290690 DOI: 10.3389/fcimb.2014.00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
The strategies evolved by pathogens to infect hosts and the mechanisms used by the host to eliminate intruders are highly complex. Because several biological pathways and processes are conserved across model organisms, these organisms have been used for many years to elucidate and understand the mechanisms of the host-pathogen relationship and particularly to unravel the molecular processes enacted by the host to kill pathogens. The emergence of RNA interference (RNAi) and the ability to apply it toward studies in model organisms have allowed a breakthrough in the elucidation of host-pathogen interactions. The aim of this mini-review is to highlight and describe recent breakthroughs in the field of host-pathogen interactions using RNAi screens of model organisms. We will focus specifically on the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. Moreover, a recent study examining the immune system of planarian will be discussed.
Collapse
Affiliation(s)
- Prasad Abnave
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Filippo Conti
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Cedric Torre
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| |
Collapse
|
24
|
De Arras L, Guthrie BS, Alper S. Using RNA-interference to investigate the innate immune response in mouse macrophages. J Vis Exp 2014:e51306. [PMID: 25407484 DOI: 10.3791/51306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell. However, macrophages can be technically challenging to transfect and can exhibit inefficient RNAi-induced gene knockdown. In this protocol, we describe methods to efficiently transfect two mouse macrophage cell lines (RAW264.7 and J774A.1) with siRNA using the Amaxa Nucleofector 96-well Shuttle System and describe procedures to maximize the effect of siRNA on gene knockdown. Moreover, the described methods are adapted to work in 96-well format, allowing for medium and high-throughput studies. To demonstrate the utility of this approach, we describe experiments that utilize RNAi to inhibit genes that regulate lipopolysaccharide (LPS)-induced cytokine production.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine
| | - Brandon S Guthrie
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine
| | - Scott Alper
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine;
| |
Collapse
|
25
|
Keikhaee MR, Nash EB, O'Rourke SM, Bowerman B. A semi-dominant mutation in the general splicing factor SF3a66 causes anterior-posterior axis reversal in one-cell stage C. elegans embryos. PLoS One 2014; 9:e106484. [PMID: 25188372 PMCID: PMC4154684 DOI: 10.1371/journal.pone.0106484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Establishment of anterior-posterior polarity in one-cell stage Caenorhabditis elegans embryos depends in part on astral microtubules. As the zygote enters mitosis, these microtubules promote the establishment of a posterior pole by binding to and protecting a cytoplasmic pool of the posterior polarity protein PAR-2 from phosphorylation by the cortically localized anterior polarity protein PKC-3. Prior to activation of the sperm aster, the oocyte Meiosis I and II spindles assemble and function, usually at the future anterior pole, but these meiotic spindle microtubules fail to establish posterior polarity through PAR-2. Here we show that a semi-dominant mutation in the general splicing factor SF3a66 can lead to a reversed axis of AP polarity that depends on PAR-2 and possibly on close proximity of oocyte meiotic spindles with the cell cortex. One possible explanation is that reduced levels of PKC-3, due to a general splicing defect, can result in axis reversal due to a failure to prevent oocyte meiotic spindle microtubules from interfering with AP axis formation.
Collapse
Affiliation(s)
- Mohammad R. Keikhaee
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric B. Nash
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sean M. O'Rourke
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
26
|
De Arras L, Laws R, Leach SM, Pontis K, Freedman JH, Schwartz DA, Alper S. Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity. Genetics 2014; 197:485-96. [PMID: 24361939 PMCID: PMC4063909 DOI: 10.1534/genetics.113.160499] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/15/2013] [Indexed: 01/08/2023] Open
Abstract
The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Rebecca Laws
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Sonia M Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Kyle Pontis
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| | - Jonathan H Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - David A Schwartz
- Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206 Department of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Scott Alper
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206 Integrated Center for Genes, Environment and Health, National Jewish Health and University of Colorado, Denver, Colorado 80206
| |
Collapse
|
27
|
Hirose K, Li SZ, Ohlemiller KK, Ransohoff RM. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. J Assoc Res Otolaryngol 2014; 15:555-70. [PMID: 24845404 DOI: 10.1007/s10162-014-0458-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are highly effective agents against gram-negative bacterial infections, but they cause adverse effects on hearing and balance dysfunction as a result of toxicity to hair cells of the cochlea and vestibular organs. While ototoxicity has been comprehensively studied, the contributions of the immune system, which controls the host response to infection, have not been studied in antibiotic ototoxicity. Recently, it has been shown that an inflammatory response is induced by hair cell injury. In this study, we found that lipopolysaccharide (LPS), an important component of bacterial endotoxin, when given in combination with kanamycin and furosemide, augmented the inflammatory response to hair cell injury and exacerbated hearing loss and hair cell injury. LPS injected into the peritoneum of experimental mice induced a brisk cochlear inflammatory response with recruitment of mononuclear phagocytes into the spiral ligament, even in the absence of ototoxic agents. While LPS alone did not affect hearing, animals that received LPS prior to ototoxic agents had worse hearing loss compared to those that did not receive LPS pretreatment. The poorer hearing outcome in LPS-treated mice did not correlate to changes in endocochlear potential. However, LPS-treated mice demonstrated an increased number of CCR2(+) inflammatory monocytes in the inner ear when compared with mice treated with ototoxic agents alone. We conclude that LPS and its associated inflammatory response are harmful to the inner ear when coupled with ototoxic medications and that the immune system may contribute to the final hearing outcome in subjects treated with ototoxic agents.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA,
| | | | | | | |
Collapse
|
28
|
De Arras L, Alper S. Limiting of the innate immune response by SF3A-dependent control of MyD88 alternative mRNA splicing. PLoS Genet 2013; 9:e1003855. [PMID: 24204290 PMCID: PMC3812059 DOI: 10.1371/journal.pgen.1003855] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Controlling infectious disease without inducing unwanted inflammatory disease requires proper regulation of the innate immune response. Thus, innate immunity needs to be activated when needed during an infection, but must be limited to prevent damage. To accomplish this, negative regulators of innate immunity limit the response. Here we investigate one such negative regulator encoded by an alternative splice form of MyD88. MyD88 mRNA exists in two alternative splice forms: MyD88L, a long form that encodes a protein that activates innate immunity by transducing Toll-like receptor (TLR) signals; and a short form that encodes a different protein, MyD88S, that inhibits the response. We find that MyD88S levels regulate the extent of inflammatory cytokine production in murine macrophages. MyD88S mRNA levels are regulated by the SF3A and SF3B mRNA splicing complexes, and these mRNA splicing complexes function with TLR signaling to regulate MyD88S production. Thus, the SF3A mRNA splicing complex controls production of a negative regulator of TLR signaling that limits the extent of innate immune activation.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|