1
|
Šoltysová M, Řezáčová P. Structure and function of bacterial transcription regulators of the SorC family. Transcription 2024:1-22. [PMID: 39223991 DOI: 10.1080/21541264.2024.2387895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Šoltysová M, Škerlová J, Pachl P, Škubník K, Fábry M, Sieglová I, Farolfi M, Grishkovskaya I, Babiak M, Nováček J, Krásný L, Řezáčová P. Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function. Nucleic Acids Res 2024; 52:7305-7320. [PMID: 38842936 PMCID: PMC11229326 DOI: 10.1093/nar/gkae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Jana Škerlová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Petr Pachl
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Karel Škubník
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Milan Fábry
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Irena Sieglová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Martina Farolfi
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Campus-ViennaBiocenter 1, 1030 Vienna, Austria
| | - Michal Babiak
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Jiří Nováček
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| |
Collapse
|
3
|
Xu L, Wang W, Zhang X, Ma K, Wang H, Xue T. Role of LsrR in the regulation of biofilm formation in mammary pathogenic Escherichia coli. BMC Vet Res 2024; 20:220. [PMID: 38783285 PMCID: PMC11112850 DOI: 10.1186/s12917-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mammary Pathogenic Escherichia coli (MPEC) is an important pathogen that can escape the attack of the host immune system through biofilm formation and proliferate in the mammary gland continuously, resulting in mastitis in cows and causing enormous economic losses. As an effector of AI-2 quorum sensing, LsrR extensively affects the expression levels of hundreds of genes related to multiple biological processes in model E. coli strain. However, the regulatory role of LsrR in MPEC and whether it is involved in pathogenesis has been seldom reported. RESULTS In this study, the function of LsrR in strain MPEC5, obtained from a milk sample in dairy cows with mastitis, was investigated by performing high-throughput sequencing (RNA-seq) assays. The results revealed that LsrR down-regulated the transcript levels of fimAICDFGH (encoding Type 1 pili), which have been reported to be associated with biofilm formation process. Biofilm assays confirmed that deletion of lsrR resulted in a significant increase in biofilm formation in vitro. In addition, electrophoretic mobility shift assay (EMSA) provided evidence that LsrR protein could directly bind to the promoter regions of fimAICDFGH in a dose-dependent manner. CONCLUSIONS These results indicate that LsrR protein inhibits the biofilm formation ability of MPEC5 by directly binding to the fimAICDFGH promoter region. This study presents a novel clue for further exploration of the prevention and treatment of MPEC.
Collapse
Affiliation(s)
- Li Xu
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei,, Anhui, 230036, China.
| |
Collapse
|
4
|
Escobar-Muciño E, Arenas-Hernández MMP, Luna-Guevara ML. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022; 10:884. [PMID: 35630329 PMCID: PMC9143355 DOI: 10.3390/microorganisms10050884] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.
Collapse
Affiliation(s)
- Esmeralda Escobar-Muciño
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - M. Lorena Luna-Guevara
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico
| |
Collapse
|
5
|
Šoltysová M, Sieglová I, Fábry M, Brynda J, Škerlová J, Řezáčová P. Structural insight into DNA recognition by bacterial transcriptional regulators of the SorC/DeoR family. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1411-1424. [PMID: 34726169 DOI: 10.1107/s2059798321009633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
The SorC/DeoR family is a large family of bacterial transcription regulators that are involved in the control of carbohydrate metabolism and quorum sensing. To understand the structural basis of DNA recognition, structural studies of two functionally characterized SorC/DeoR family members from Bacillus subtilis were performed: the deoxyribonucleoside regulator bsDeoR and the central glycolytic genes regulator bsCggR. Each selected protein represents one of the subgroups that are recognized within the family. Crystal structures were determined of the N-terminal DNA-binding domains of bsDeoR and bsCggR in complex with DNA duplexes representing the minimal operator sequence at resolutions of 2.3 and 2.1 Å, respectively. While bsDeoRDBD contains a homeodomain-like HTH-type domain, bsCggRDBD contains a winged helix-turn-helix-type motif. Both proteins form C2-symmetric dimers that recognize two consecutive major grooves, and the protein-DNA interactions have been analyzed in detail. The crystal structures were used to model the interactions of the proteins with the full DNA operators, and a common mode of DNA recognition is proposed that is most likely to be shared by other members of the SorC/DeoR family.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Irena Sieglová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jiří Brynda
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jana Škerlová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
6
|
Wang H, Shang F, Shen J, Xu J, Chen X, Ni J, Yu L, Xue T. LsrR, the effector of AI-2 quorum sensing, is vital for the H 2O 2 stress response in mammary pathogenic Escherichia coli. Vet Res 2021; 52:127. [PMID: 34600565 PMCID: PMC8487509 DOI: 10.1186/s13567-021-00998-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Mammary pathogenic Escherichia coli (MPEC) is an important causative agent of mastitis in dairy cows that results in reduced milk quality and production, and is responsible for severe economic losses in the dairy industry worldwide. Oxidative stress, as an imbalance between reactive oxygen species (ROS) and antioxidants, is a stress factor that is common in most bacterial habitats. The presence of ROS can damage cellular sites, including iron-sulfur clusters, cysteine and methionine protein residues, and DNA, and may cause bacterial cell death. Previous studies have reported that Autoinducer 2 (AI-2) can regulate E. coli antibiotic resistance and pathogenicity by mediating the intracellular receptor protein LsrR. This study explored the regulatory mechanism of LsrR on the H2O2 stress response in MPEC, showing that the transcript levels of lsrR significantly decreased under H2O2 stress conditions. The survival cell count of lsrR mutant XW10/pSTV28 was increased about 3080-fold when compared with that of the wild-type WT/pSTV28 in the presence of H2O2 and overexpression of lsrR (XW10/pUClsrR) resulted in a decrease in bacterial survival rates under these conditions. The β-galactosidase reporter assays showed that mutation of lsrR led to a remarkable increase in expression of the promoters of ahpCF, katG and oxyR, while lsrR-overexpressing significantly reduced the expression of ahpCF and katG. The electrophoretic mobility shift assays confirmed that LsrR could directly bind to the promoter regions of ahpCF and katG. These results revealed the important role played by LsrR in the oxidative stress response of MPEC.
Collapse
Affiliation(s)
- Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jingyi Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
7
|
Yi L, Dong X, Grenier D, Wang K, Wang Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143031. [PMID: 33129525 DOI: 10.1016/j.scitotenv.2020.143031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The microbial community is an important part of the natural ecosystem, and the quorum sensing system is a momentous communication tool for the microbial community to connect to the surrounding environment. Quorum sensing is a process of cell-cell communication that relies on the production, release, and detection of extracellular signaling molecules, which are called autoinducers. Quorum sensing systems in bacteria consist of two main components: a receptor protein and an autoinducer. The binding of autoinducer to its receptor activates the target gene, which then performs the corresponding function in bacteria. In a natural environment, different bacterial species possess quorum sensing receptors that are structurally and functionally different. So far, many bacterial quorum sensing receptors have been identified and the structure and function of some receptors have been characterized. There are many reviews about quorum sensing and quorum sensing receptors, but there are few reviews that describe various types of quorum sensing in different environments with receptors as the core. Therefore, we summarize the well-defined quorum sensing receptors involved in intra-species and inter-species cell-cell communication, and describe the structure, function, and characteristics of typical receptors for different types of quorum sensing. A systematic understanding of quorum sensing receptors will help researchers to further explore the signaling mechanism and regulation mechanism of quorum sensing system, provide help to clarify the role and function of quorum sensing in natural ecosystems, then provide theoretical basis for the discovery or synthesis of new targeted drugs that block quorum sensing.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Xiao Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
8
|
Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int 2020; 137:109742. [DOI: 10.1016/j.foodres.2020.109742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
9
|
Torcato IM, Kasal MR, Brito PH, Miller ST, Xavier KB. Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LsrB receptor family. J Biol Chem 2019; 294:4450-4463. [PMID: 30696769 DOI: 10.1074/jbc.ra118.006938] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/26/2019] [Indexed: 12/22/2022] Open
Abstract
Autoinducer-2 (AI-2) is unique among quorum-sensing signaling molecules, as it is produced and recognized by a wide variety of bacteria and thus facilitates interspecies communication. To date, two classes of AI-2 receptors have been identified: the LuxP-type, present in the Vibrionales, and the LsrB-type, found in a number of phylogenetically distinct bacterial families. Recently, AI-2 was shown to affect the colonization levels of a variety of bacteria in the microbiome of the mouse gut, including members of the genus Clostridium, but no AI-2 receptor had been identified in this genus. Here, we identify a noncanonical, functional LsrB-type receptor in Clostridium saccharobutylicum. This novel LsrB-like receptor is the first one reported with variations in the binding-site amino acid residues that interact with AI-2. The crystal structure of the C. saccharobutylicum receptor determined at 1.35 Å resolution revealed that it binds the same form of AI-2 as the other known LsrB-type receptors, and isothermal titration calorimetry (ITC) assays showed that binding of AI-2 occurs at a submicromolar concentration. Using phylogenetic analysis, we inferred that the newly identified noncanonical LsrB receptor shares a common ancestor with known LsrB receptors and that noncanonical receptors are present in bacteria from different phyla. This led us to identify putative AI-2 receptors in bacterial species in which no receptors were known, as in bacteria belonging to the Spirochaetes and Actinobacteria phyla. Thus, this work represents a significant step toward understanding how AI-2-mediated quorum sensing influences bacterial interactions in complex biological niches.
Collapse
Affiliation(s)
- Inês M Torcato
- From the Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.,the Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Meghann R Kasal
- the Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, and
| | - Patrícia H Brito
- From the Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.,the Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Rua Câmara Pestana, 6, 1150-082 Lisboa, Portugal
| | - Stephen T Miller
- the Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, and
| | - Karina B Xavier
- From the Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal,
| |
Collapse
|
10
|
Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2016; 45:D543-D550. [PMID: 27899573 PMCID: PMC5210515 DOI: 10.1093/nar/gkw1003] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.
Collapse
Affiliation(s)
- Ingrid M Keseler
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - César Bonavides-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ron Caspi
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Carol Fulcher
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Anamika Kothari
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Quang Ong
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Martin Peralta-Gil
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - David A Velázquez-Ramírez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Daniel Weaver
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ian Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D Karp
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
11
|
Graff SM, Bentley WE. Mathematical model of LsrR-binding and derepression in Escherichia coli K12. J Bioinform Comput Biol 2016; 15:1650039. [PMID: 27989220 DOI: 10.1142/s0219720016500396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Quorum sensing (QS) enables bacterial communication and collective behavior in response to self-secreted signaling molecules. Unlocking its genetic regulation will provide insight towards understanding its influence on pathogenesis, formation of biofilms, and many other phenotypes. There are few datasets available that link QS-mediated gene expression to its regulatory components and even fewer mathematical models that incorporate known mechanistic detail. By integrating these data with annotated sequence information, mathematical inferences can be pieced together that shed light on regulatory structure. A first principles model, developed here for the E. coli QS system, builds on known mechanistic detail and is used to develop a working model of LuxS-regulated (Lsr) activity. That is, our model is meant to discriminate among hypothetical mechanisms governing lsr transcriptional regulation. Our simulations are in qualitative agreement with experimentally observed data. Importantly, our results point to the importance of transcriptional regulator, LsrR, cycling on genetic control. We also found several experimental observations in E. coli and homologous systems that were not explained by current mechanistic understanding. For example, by comparing simulations with reports of the integrating host factor in Aggrigatibacter actinomycetemcomitans, we conclude that additional transcriptional components are likely involved. An iterative process of simulation and experiment, therefore, is needed to inform new experiments and incorporate new model detail, the benefit of which will more rapidly validate mechanistic understanding.
Collapse
Affiliation(s)
- Steven M Graff
- * Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- * Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.,† Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2. Proc Natl Acad Sci U S A 2014; 111:14235-40. [PMID: 25225400 DOI: 10.1073/pnas.1408691111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors.
Collapse
|
13
|
Adams BL, Carter KK, Guo M, Wu HC, Tsao CY, Sintim HO, Valdes JJ, Bentley WE. Evolved Quorum sensing regulator, LsrR, for altered switching functions. ACS Synth Biol 2014; 3:210-9. [PMID: 24111753 DOI: 10.1021/sb400068z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to carry out innovative complex, multistep synthetic biology functions, members of a cell population often must communicate with one another to coordinate processes in a programmed manner. It therefore follows that native microbial communication systems are a conspicuous target for developing engineered populations and networks. Quorum sensing (QS) is a highly conserved mechanism of bacterial cell-cell communication and QS-based synthetic signal transduction pathways represent a new generation of biotechnology toolbox members. Specifically, the E. coli QS master regulator, LsrR, is uniquely positioned to actuate gene expression in response to a QS signal. In order to expand the use of LsrR in synthetic biology, two novel LsrR switches were generated through directed evolution: an "enhanced" repression and derepression eLsrR and a reversed repression/derepression function "activator" aLsrR. Protein modeling and docking studies are presented to gain insight into the QS signal binding to these two evolved proteins and their newly acquired functionality. We demonstrated the use of the aLsrR switch using a coculture system in which a QS signal, produced by one bacterial strain, is used to inhibit gene expression via aLsrR in a different strain. These first ever AI-2 controlled synthetic switches allow gene expression from the lsr promoter to be tuned simultaneously in two distinct cell populations. This work expands the tools available to create engineered microbial populations capable of carrying out complex functions necessary for the development of advanced synthetic products.
Collapse
Affiliation(s)
- Bryn L. Adams
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | | | | | | | | | | - James J. Valdes
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | |
Collapse
|
14
|
Ha JH, Eo Y, Grishaev A, Guo M, Smith JAI, Sintim HO, Kim EH, Cheong HK, Bentley WE, Ryu KS. Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. J Am Chem Soc 2013; 135:15526-35. [PMID: 24047255 DOI: 10.1021/ja407068v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) is a cell-to-cell communication system responsible for a variety of bacterial phenotypes including virulence and biofilm formation. QS is mediated by small molecules, autoinducers (AIs), including AI-2 that is secreted by both Gram-positive and -negative microbes. LsrR is a key transcriptional regulator that governs the varied downstream processes by perceiving AI-2 signal, but its activation via autoinducer-binding remains poorly understood. Here, we provide detailed regulatory mechanism of LsrR from the crystal structures in complexes with the native signal (phospho-AI-2, D5P) and two quorum quenching antagonists (ribose-5-phosphate, R5P; phospho-isobutyl-AI-2, D8P). Interestingly, the bound D5P and D8P molecules are not the diketone forms but rather hydrated, and the hydrated moiety forms important H-bonds with the carboxylate of D243. The D5P-binding flipped out F124 of the binding pocket, and resulted in the disruption of the dimeric interface-1 by unfolding the α7 segment. However, the same movement of F124 by the D8P'-binding did not cause the unfolding of the α7 segment. Although the LsrR-binding affinity of R5P (Kd, ∼1 mM) is much lower than that of D5P and D8P (∼2.0 and ∼0.5 μM), the α-anomeric R5P molecule fits into the binding pocket without any structural perturbation, and thus stabilizes the LsrR tetramer. The binding of D5P, not D8P and R5P, disrupted the tetrameric structure and thus is able to activate LsrR. The detailed structural and mechanistic insights from this study could be useful for facilitating design of new antivirulence and antibiofilm agents based on LsrR.
Collapse
Affiliation(s)
- Jung-Hye Ha
- Division of Magnetic Resonance Research, Korea Basic Science Institute , Yangcheong-Ri 804-1, Ochang-Eup, Cheongwon-Gun, Chungcheongbuk-Do 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci 2013; 14:17694-728. [PMID: 23994835 PMCID: PMC3794749 DOI: 10.3390/ijms140917694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules.
Collapse
|