1
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2024:10.1038/s41581-024-00906-1. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Nguyen HTT, Xu Z, Shi X, Liu S, Schulte ML, White GC, Ma YQ. Paxillin binding to the PH domain of kindlin-3 in platelets is required to support integrin αIIbβ3 outside-in signaling. J Thromb Haemost 2021; 19:3126-3138. [PMID: 34411430 PMCID: PMC9080902 DOI: 10.1111/jth.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Kindlin-3 is essential for supporting the bidirectional signaling of integrin αIIbβ3 in platelets by bridging the crosstalk between integrin αIIbβ3 and the cytoplasmic signaling adaptors. OBJECTIVE In this study, we identified a previously unrecognized paxillin binding site in the pleckstrin homology (PH) domain of kindlin-3 and verified its functional significance. METHODS Structure-based approaches were employed to identify the paxillin binding site in the PH domain of kindlin-3. In addition, the bidirectional signaling of integrin αIIbβ3 were evaluated in both human and mouse platelets. RESULTS In brief, we found that a β1-β2 loop in the PH domain of kindlin-3, an important part of the canonical membrane phospholipid binding pocket, was also involved in mediating paxillin interaction. Interestingly, the binding sites of paxillin and membrane phospholipids in the PH domain of kindlin-3 were mutually exclusive. Specific disruption of paxillin binding to the PH domain by point mutations inhibited platelet spreading on immobilized fibrinogen while having no inhibition on soluble fibrinogen binding to stimulated platelets. In addition, a membrane-permeable peptide derived from the β1-β2 loop in the PH domain of kindlin-3 was capable of inhibiting platelet spreading and clot retraction, but it had no effect on soluble fibrinogen binding to platelets and platelet aggregation. Treatment with this peptide significantly reduced thrombus formation in mice. CONCLUSION Taken together, these findings suggest that interaction between paxillin and the PH domain of kindlin-3 plays an important role in supporting integrin αIIbβ3 outside-in signaling in platelets, thus providing a novel antithrombotic target.
Collapse
Affiliation(s)
| | - Zhen Xu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Xiaofeng Shi
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuzhen Liu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Gilbert C. White
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| | - Yan-Qing Ma
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
- Department of Biochemistry, Medical College of Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Orré T, Joly A, Karatas Z, Kastberger B, Cabriel C, Böttcher RT, Lévêque-Fort S, Sibarita JB, Fässler R, Wehrle-Haller B, Rossier O, Giannone G. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat Commun 2021; 12:3104. [PMID: 34035280 PMCID: PMC8149821 DOI: 10.1038/s41467-021-23372-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Focal adhesions (FAs) initiate chemical and mechanical signals involved in cell polarity, migration, proliferation and differentiation. Super-resolution microscopy revealed that FAs are organized at the nanoscale into functional layers from the lower plasma membrane to the upper actin cytoskeleton. Yet, how FAs proteins are guided into specific nano-layers to promote interaction with given targets is unknown. Using single protein tracking, super-resolution microscopy and functional assays, we link the molecular behavior and 3D nanoscale localization of kindlin with its function in integrin activation inside FAs. We show that immobilization of integrins in FAs depends on interaction with kindlin. Unlike talin, kindlin displays free diffusion along the plasma membrane outside and inside FAs. We demonstrate that the kindlin Pleckstrin Homology domain promotes membrane diffusion and localization to the membrane-proximal integrin nano-layer, necessary for kindlin enrichment and function in FAs. Using kindlin-deficient cells, we show that kindlin membrane localization and diffusion are crucial for integrin activation, cell spreading and FAs formation. Thus, kindlin uses a different route than talin to reach and activate integrins, providing a possible molecular basis for their complementarity during integrin activation.
Collapse
Affiliation(s)
- Thomas Orré
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Adrien Joly
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Clément Cabriel
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | | | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | | | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| |
Collapse
|
4
|
Bu W, Levitskaya Z, Tan SM, Gao YG. Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. J Cell Sci 2021; 134:256567. [PMID: 33912917 DOI: 10.1242/jcs.256115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its β-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.
Collapse
Affiliation(s)
- Wenting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China518055
| | - Zarina Levitskaya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore639798
| |
Collapse
|
5
|
Phosphorylation of Kindlins and the Control of Integrin Function. Cells 2021; 10:cells10040825. [PMID: 33916922 PMCID: PMC8067640 DOI: 10.3390/cells10040825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Integrins serve as conduits for the transmission of information between cells and their extracellular environment. Signaling across integrins is bidirectional, transducing both inside-out and outside-signaling. Integrin activation, a transition from a low affinity/avidity state to a high affinity/avidity state for cognate ligands, is an outcome of inside-signaling. Such activation is particularly important for the recognition of soluble ligands by blood cells but also influences cell-cell and cell-matrix interactions. Integrin activation depends on a complex series of interactions, which both accelerate and inhibit their interconversion from the low to the high affinity/avidity state. There are three components regarded as being most proximately involved in integrin activation: the integrin cytoplasmic tails, talins and kindlins. The participation of each of these molecules in integrin activation is highly regulated by post-translation modifications. The importance of targeted phosphorylation of integrin cytoplasmic tails and talins in integrin activation is well-established, but much less is known about the role of post-translational modification of kindlins. The kindlins, a three-member family of 4.1-ezrin-radixin-moesin (FERM)-domain proteins in mammals, bind directly to the cytoplasmic tails of integrin beta subunits. This commentary provides a synopsis of the emerging evidence for the role of kindlin phosphorylation in integrin regulation.
Collapse
|
6
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Zhan J, Zhang H. Kindlins: Roles in development and cancer progression. Int J Biochem Cell Biol 2018; 98:93-103. [PMID: 29544897 DOI: 10.1016/j.biocel.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
The Kindlins are FERM domain proteins comprising three members (Kindlin-1, -2 and -3) which are evolutionarily conserved. Kindlins bind with β-integrin cytoplasmic tails and execute broad biological functions including directed cell migration, proliferation, differentiation and survival. In light of more and more evidence point to the importance of Kindlin family members in normal development and human diseases especially in cancers, we aim to portrait the profile of Kindlins in the regulation of embryonic development and cancer progression. We first summarize all the known binding proteins for individual member of Kindlin family. We then outline the Kindlin-regulated signaling pathways including Wnt/β-catenin, TGFβ, EGFR, and Hedgehog signalings. Furthermore, we descript the pivotal role of Kindlins in embryonic development in detail with notions that Kindlin-1 is highly expressed in endo/ectodermal originated tissues, Kindlin-2 is highly expressed in mesoderm-derived tissues and Kindlin-3 is highly expressed in mesoderm- and ectoderm-derived tissues. Deregulation of Kindlins is generally reported in cancers from different organs. We also briefly descript the role of Kindlins in other diseases. Finally, we update the recent understanding of how Kindlins are regulated and modified as well as the degradation mechanism of Kindlins, respectively.
Collapse
Affiliation(s)
- Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
9
|
Naughton FB, Kalli AC, Sansom MS. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition. J Mol Biol 2018; 430:372-388. [DOI: 10.1016/j.jmb.2017.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
|
10
|
Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH Domains and Phosphoinositides Interactions and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:19-32. [DOI: 10.1007/5584_2018_236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, Wang J, White GC, Xu Z, Ma YQ. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci 2017; 130:3764-3775. [PMID: 28954813 DOI: 10.1242/jcs.205641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Ming Huang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Jingjing Lai
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Kaijun Mao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Youpei Hu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Yingying Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Marie L Schulte
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Gilbert C White
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| |
Collapse
|
12
|
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain. Biochem J 2016; 474:539-556. [PMID: 27974389 PMCID: PMC5290484 DOI: 10.1042/bcj20160791] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Abstract
Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin–radixin–moiesin domain) comprising F0–F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1–β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2. Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2. In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1–β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein–membrane interactions.
Collapse
|
13
|
Gao Y, Bai JL, Liu XY, Qu YJ, Cao YY, Wang JC, Jin YW, Wang H, Song F. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome. J Zhejiang Univ Sci B 2016; 16:957-62. [PMID: 26537214 DOI: 10.1631/jzus.b1500080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2-6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1-6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene.
Collapse
Affiliation(s)
- Ying Gao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin-li Bai
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiao-yan Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-jin Qu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yan-yan Cao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Jian-cai Wang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-wei Jin
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Hong Wang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Song
- Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
14
|
Kalli AC, Rog T, Vattulainen I, Campbell ID, Sansom MSP. The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations. J Membr Biol 2016; 250:337-351. [PMID: 27465729 PMCID: PMC5579164 DOI: 10.1007/s00232-016-9908-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, 5230, Odense M, Denmark
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
15
|
Zhang G, Gu Y, Begum R, Chen H, Gao X, McGrath JA, Parsons M, Song B. Kindlin-1 Regulates Keratinocyte Electrotaxis. J Invest Dermatol 2016; 136:2229-2239. [PMID: 27427485 PMCID: PMC5756539 DOI: 10.1016/j.jid.2016.05.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/05/2022]
Abstract
Kindler syndrome (KS) is an autosomal recessive blistering skin disease resulting from pathogenic mutations in FERMT1. This gene encodes kindlin-1, a focal adhesion protein involved in activation of the integrin family of extracellular matrix receptors. Most cases of KS show a marked reduction or complete absence of the kindlin-1 protein in keratinocytes, resulting in defective cell adhesion and migration. Electric fields also act as intrinsic regulators of adhesion and migration in the skin, but the molecular mechanisms by which this occurs are poorly understood. Here we show that keratinocytes derived from KS patients are unable to undergo electrotaxis, and this defect is restored by overexpression of wild-type kindlin-1 but not a W612A mutation that prevents kindlin-integrin binding. Moreover, deletion of the pleckstrin homology domain of kindlin-1 also failed to rescue electrotaxis in KS cells, indicating that both integrin and lipid binding are required for this function. Kindlin-1 was also required for the maintenance of lamellipodial protrusions during electrotaxis via electric field-activated β1 integrin. Indeed, inhibition of β1 integrins also leads to loss of electrotaxis in keratinocytes. Our data suggest that loss of kindlin-1 function may therefore result in epithelial insensitivity to electric fields and contribute to KS disease pathology.
Collapse
Affiliation(s)
- Gaofeng Zhang
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Rumena Begum
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK
| | - Hongduo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - John A McGrath
- St. Johns Institute of Dermatology, King's College London, Guys Campus, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK.
| | - Bing Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
NMR Characterization and Membrane Interactions of the Loop Region of Kindlin-3 F1 Subdomain. PLoS One 2016; 11:e0153501. [PMID: 27101375 PMCID: PMC4839668 DOI: 10.1371/journal.pone.0153501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Kindlins-1,2 and 3 are FERM domain-containing cytosolic proteins involved in the activation and regulation of integrin-mediated cell adhesion. Apart from binding to integrin β cytosolic tails, kindlins and the well characterized integrin-activator talin bind membrane phospholipids. The ubiquitin-like F1 sub-domain of the FERM domain of talin contains a short loop that binds to the lipid membrane. By contrast, the F1 sub-domain of kindlins contains a long loop demonstrated binding to the membrane. Here, we report structural characterization and lipid interactions of the 83-residue F1 loop of kindlin-3 using NMR and optical spectroscopy methods. NMR studies demonstrated that the F1 loop of kindlin-3 is globally unfolded but stretches of residues assuming transient helical conformations could be detected in aqueous solution. We mapped membrane binding interactions of the F1 loop with small unilamellar vesicles (SUVs) containing either zwitterionic lipids or negatively charged lipids using 15N-1H HSQC titrations. These experiments revealed that the F1 loop of kindlin-3 preferentially interacted with the negatively charged SUVs employing almost all of the residues. By contrast, only fewer residues appeared to be interacted with SUVs containing neutral lipids. Further, CD and NMR data suggested stabilization of helical conformations and predominant resonance perturbations of the F1 loop in detergent containing solutions. Conformations of an isolated N-terminal peptide fragment, or EK21, of the F1 loop, containing a poly-Lys sequence motif, important for membrane interactions, were also investigated in detergent solutions. EK21 adopted a rather extended or β-type conformations in complex with negatively charged SDS micelles. To our knowledge, this is the first report describing the conformations and residue-specific interactions of kindlin F1 loop with lipids. These data therefore provide important insights into the interactions of kindlin FERM domain with membrane lipids that contribute toward the integrin activating property.
Collapse
|
17
|
Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 2014; 42:1418-24. [DOI: 10.1042/bst20140144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many cellular signalling and related events are triggered by the association of peripheral proteins with anionic lipids in the cell membrane (e.g. phosphatidylinositol phosphates or PIPs). This association frequently occurs via lipid-binding modules, e.g. pleckstrin homology (PH), C2 and four-point-one, ezrin, radixin, moesin (FERM) domains, present in peripheral and cytosolic proteins. Multiscale simulation approaches that combine coarse-grained and atomistic MD simulations may now be applied with confidence to investigate the molecular mechanisms of the association of peripheral proteins with model bilayers. Comparisons with experimental data indicate that such simulations can predict specific peripheral protein–lipid interactions. We discuss the application of multiscale MD simulation and related approaches to investigate the association of peripheral proteins which contain PH, C2 or FERM-binding modules with lipid bilayers of differing phospholipid composition, including bilayers containing multiple PIP molecules.
Collapse
|
18
|
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci 2014; 127:4308-21. [PMID: 25086068 DOI: 10.1242/jcs.155879] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5β1 integrin activation defects in kindlin-2-knockdown fibroblasts. Using chimeric kindlins, we show that the relatively uncharacterized kindlin-2 F2 subdomain drives FA targeting and integrin activation. We find that the integrin-linked kinase (ILK)-PINCH-parvin complex binds strongly to the kindlin-2 F2 subdomain but poorly to that of kindlin-3. Using a point-mutated kindlin-2, we establish that efficient kindlin-2-mediated integrin activation and FA targeting require binding to the ILK complex. Thus, ILK-complex binding is crucial for normal kindlin-2 function and differential ILK binding contributes to kindlin isoform specificity.
Collapse
Affiliation(s)
| | - Nina N Brahme
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Nikit Kumar
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Srikala Raghavan
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Qadota H, Benian GM. An approach for exploring interaction between two proteins in vivo. Front Physiol 2014; 5:162. [PMID: 24808865 PMCID: PMC4010775 DOI: 10.3389/fphys.2014.00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
We describe a strategy for exploring the function of protein-protein interactions in striated muscle in vivo. We describe our experience using this strategy to study the interaction of UNC-112 (kindlin) with PAT-4 (integrin linked kinase). Random mutagenesis is used to generate a collection of mutants that are screened for lack of binding or gain of binding using a yeast 2-hybrid assay. The mutant proteins are then expressed in transgenic C. elegans to determine their ability to localize in the sarcomere. We emphasize two advantages of this strategy: (1) for studying the interaction of protein A with protein B, when protein A can interact with multiple proteins, and (2) it explores the function of an interaction rather than the absence of, or reduced level of, a protein as can be obtained with null mutants or knockdown by RNAi. We propose that this method can be generalized for studying the meaning of a protein-protein interaction in muscle for any system in which transgenic animals can be generated and their muscles can be imaged.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University Atlanta, GA, USA
| | - Guy M Benian
- Department of Pathology, Emory University Atlanta, GA, USA
| |
Collapse
|
20
|
Yates LA, Gilbert RJC. Efficient production and purification of recombinant murine kindlin-3 from insect cells for biophysical studies. J Vis Exp 2014. [PMID: 24686835 PMCID: PMC4153465 DOI: 10.3791/51206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kindlins are essential coactivators, with talin, of the cell surface receptors integrins and also participate in integrin outside-in signalling, and the control of gene transcription in the cell nucleus. The kindlins are ~75 kDa multidomain proteins and bind to an NPxY motif and upstream T/S cluster of the integrin β-subunit cytoplasmic tail. The hematopoietically-important kindlin isoform, kindlin-3, is critical for platelet aggregation during thrombus formation, leukocyte rolling in response to infection and inflammation and osteoclast podocyte formation in bone resorption. Kindlin-3's role in these processes has resulted in extensive cellular and physiological studies. However, there is a need for an efficient method of acquiring high quality milligram quantities of the protein for further studies. We have developed a protocol, here described, for the efficient expression and purification of recombinant murine kindlin-3 by use of a baculovirus-driven expression system in Sf9 cells yielding sufficient amounts of high purity full-length protein to allow its biophysical characterization. The same approach could be taken in the study of the other mammalian kindlin isoforms.
Collapse
Affiliation(s)
- Luke A Yates
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford;
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford;
| |
Collapse
|
21
|
Kalli AC, Devaney I, Sansom MSP. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase. Biochemistry 2014; 53:1724-32. [PMID: 24588644 PMCID: PMC4167384 DOI: 10.1021/bi5000299] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The
phosphatase and tensin homologue (PTEN) and the Ciona
intestinalis voltage sensitive phosphatase (Ci-VSP) are both
phosphatidylinositol phosphate (PIP) phosphatases that contain a C2
domain. PTEN is a tumor suppressor protein that acts as a phosphatase
on PIP3 in mammalian cell membranes. It contains two principal
domains:
a phosphatase domain (PD) and a C2 domain. Despite detailed structural
and functional characterization, less is known about its mechanism
of interaction with PIP-containing lipid bilayers. Ci-VSP consists
of an N-terminal transmembrane voltage sensor domain and a C-terminal
PTEN domain, which in turn contains a PD and a C2 domain. The nature
of the interaction of the PTEN domain of Ci-VSP with membranes has
not been well established. We have used multiscale molecular dynamics
simulations to define the interaction mechanisms
of PTEN and of the Ci-VSP PTEN domains with PIP-containing lipid bilayers.
Our results suggest a novel mechanism of association of the PTEN with
such bilayers, in which an initial electrostatics-driven encounter
of the protein and bilayer is followed by reorientation of the protein
to optimize its interactions with PIP molecules in the membrane. Although
a PIP3 molecule binds close to the active site of PTEN,
our simulations suggest a further conformational change of the protein
may be required for catalytically productive binding to occur. Ci-VSP
interacted with membranes in an orientation comparable to that of
PTEN but bound directly to PIP-containing membranes without a subsequent
reorientation step. Again, PIP3 bound close to the active
site of the Ci-VSP PD, but not in a catalytically productive manner.
Interactions of Ci-VSP with the bilayer induced clustering of PIP
molecules around the protein.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | | | | |
Collapse
|
22
|
Fitzpatrick P, Shattil SJ, Ablooglu AJ. C-terminal COOH of integrin β1 is necessary for β1 association with the kindlin-2 adapter protein. J Biol Chem 2014; 289:11183-11193. [PMID: 24599960 DOI: 10.1074/jbc.m113.535369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are driving forces in cellular processes. As a prime example, transmembrane integrins link extracellular matrix and intracellular proteins, resulting in bidirectional signaling that regulates cell migration, proliferation, differentiation, and survival. Here we provide the first evidence that interaction between the integrin β1 cytoplasmic tail and kindlin-2, a member of a family of adapters implicated in human disease pathogenesis, is mainly governed by the β1 C-terminal carboxylate moiety and is required for laterality organ development in zebrafish. Affinity measurements indicate that this unusual protein-protein interaction mode is coordinated by a putative carboxylate-binding motif in the kindlin-2 FERM subdomain F3. Contrary to the C terminus of proteins that engage PDZ domains, the C-terminal three residues of β1, per se, do not contribute to kindlin-2 binding or to laterality organ development. Thus, by employing zebrafish as an in situ physiological tool to correlate protein structure and function, we have discovered an unexpected association chemistry between an integrin and a key adapter involved in integrin signaling.
Collapse
Affiliation(s)
- Paul Fitzpatrick
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0726
| | - Sanford J Shattil
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0726
| | - Ararat J Ablooglu
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0726.
| |
Collapse
|
23
|
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8:6-16. [DOI: 10.1007/s11684-014-0317-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Indexed: 11/25/2022]
|
24
|
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14:503-17. [PMID: 23860236 PMCID: PMC4116690 DOI: 10.1038/nrm3624] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Collapse
Affiliation(s)
- David A Calderwood
- Departments of Pharmacology and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, S. Parks Rd., Oxford, OX1 3QU, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH
| |
Collapse
|
25
|
Xu Z, Gao J, Hong J, Ma YQ. Integrity of kindlin-2 FERM subdomains is required for supporting integrin activation. Biochem Biophys Res Commun 2013; 434:382-7. [PMID: 23578664 DOI: 10.1016/j.bbrc.2013.03.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/31/2013] [Indexed: 11/19/2022]
Abstract
Kindlin family members are essential for supporting integrin activation by functionally cooperating with the talin head domain. Both the talin head and kindlin are FERM domain-containing proteins that can simultaneously interact with the integrin β cytoplasmic tails. While the talin head is well studied, the molecular basis of kindlin's interaction with integrin during integrin activation is still poorly understood. Here we defined the subdomain boundaries in kindlin-2 and evaluated their contribution to integrin activation and recognition. We found that each subdomain in kindlin-2 was required for co-activating the integrin αIIbβ3 together with the talin head (inside-out signaling) and for enhancing integrin αIIbβ3-mediated cell spreading (outside-in signaling). To evaluate the involvement of the kindlin-2 subdomains in integrin interaction, we developed a FACS-based binding assay and found that an intact FERM domain in kindlin-2 was required for the interaction. Taking all together, these findings suggest that the integrity of kindlin-2 subdomains is a prerequisite for supporting integrin recognition and for subsequent integrin activation.
Collapse
Affiliation(s)
- Zhen Xu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|