1
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
2
|
Alves VS, Cristina-Rodrigues F, Coutinho-Silva R. The P2Y 2 receptor as a sensor of nucleotides and cell recruitment during inflammatory processes of the liver. Purinergic Signal 2024; 20:465-467. [PMID: 38627279 PMCID: PMC11377366 DOI: 10.1007/s11302-024-10008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fabiana Cristina-Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
3
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circ Res 2024; 135:503-517. [PMID: 38957990 PMCID: PMC11293983 DOI: 10.1161/circresaha.124.324650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- Caitlin M Pavelec
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Alexander P Young
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Hannah L Luviano
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Emily E Orrell
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Anna Szagdaj
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Abigail G Wolpe
- Department of Cell Biology (A.G.W.), University of Virginia School of Medicine, Charlottesville
| | - Samantha H Thomas
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Scott Yeudall
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Clint M Upchurch
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Matthew J Wolf
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Norbert Leitinger
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
4
|
Ledderose C, Valsami EA, Elevado M, Junger WG. Adenosine Triphosphate Release From Influenza-Infected Lungs Enhances Neutrophil Activation and Promotes Disease Progression. J Infect Dis 2024; 230:120-130. [PMID: 39052721 PMCID: PMC11272046 DOI: 10.1093/infdis/jiad442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP) enhances neutrophil responses, but little is known about the role of ATP in influenza infections. METHODS We used a mouse influenza model to study if ATP release is associated with neutrophil activation and disease progression. RESULTS Influenza infection increased pulmonary ATP levels 5-fold and plasma ATP levels 3-fold vs healthy mice. Adding ATP at those concentrations to blood from healthy mice primed neutrophils and enhanced CD11b and CD63 expression, CD62L shedding, and reactive oxygen species production in response to formyl peptide receptor stimulation. Influenza infection also primed neutrophils in vivo, resulting in formyl peptide receptor-induced CD11b expression and CD62L shedding up to 3 times higher than that of uninfected mice. In infected mice, large numbers of neutrophils entered the lungs. These cells were significantly more activated than the peripheral neutrophils of infected mice and pulmonary neutrophils of healthy mice. Plasma ATP levels of infected mice and influenza disease progression corresponded with the numbers and activation level of their pulmonary neutrophils. CONCLUSIONS Findings suggest that ATP release from the lungs of infected mice promotes influenza disease progression by priming peripheral neutrophils, which become strongly activated and cause pulmonary tissue damage after their recruitment to the lungs.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Ledderose C, Valsami EA, Elevado M, Liu Q, Giva B, Curatolo J, Delfin J, Abutabikh R, Junger WG. Impaired ATP hydrolysis in blood plasma contributes to age-related neutrophil dysfunction. Immun Ageing 2024; 21:45. [PMID: 38961477 PMCID: PMC11221114 DOI: 10.1186/s12979-024-00441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The function of polymorphonuclear neutrophils (PMNs) decreases with age, which results in infectious and inflammatory complications in older individuals. The underlying causes are not fully understood. ATP release and autocrine stimulation of purinergic receptors help PMNs combat microbial invaders. Excessive extracellular ATP interferes with these mechanisms and promotes inflammatory PMN responses. Here, we studied whether dysregulated purinergic signaling in PMNs contributes to their dysfunction in older individuals. RESULTS Bacterial infection of C57BL/6 mice resulted in exaggerated PMN activation that was significantly greater in old mice (64 weeks) than in young animals (10 weeks). In contrast to young animals, old mice were unable to prevent the systemic spread of bacteria, resulting in lethal sepsis and significantly greater mortality in old mice than in their younger counterparts. We found that the ATP levels in the plasma of mice increased with age and that, along with the extracellular accumulation of ATP, the PMNs of old mice became increasingly primed. Stimulation of the formyl peptide receptors of those primed PMNs triggered inflammatory responses that were significantly more pronounced in old mice than in young animals. However, bacterial phagocytosis and killing by PMNs of old mice were significantly lower than that of young mice. These age-dependent PMN dysfunctions correlated with a decrease in the enzymatic activity of plasma ATPases that convert extracellular ATP to adenosine. ATPases depend on divalent metal ions, including Ca2+, Mg2+, and Zn2+, and we found that depletion of these ions blocked the hydrolysis of ATP and the formation of adenosine in human blood, resulting in ATP accumulation and dysregulation of PMN functions equivalent to those observed in response to aging. CONCLUSIONS Our findings suggest that impaired hydrolysis of plasma ATP dysregulates PMN function in older individuals. We conclude that strategies aimed at restoring plasma ATPase activity may offer novel therapeutic opportunities to reduce immune dysfunction, inflammation, and infectious complications in older patients.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qing Liu
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Brennan Giva
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Julian Curatolo
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Joshua Delfin
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Reem Abutabikh
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health, 9452 Medical Ctr Dr, La Jolla, San Diego, CA, 92037, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Pannexin 1 Channels Control Cardiomyocyte Metabolism and Neutrophil Recruitment During Non-Ischemic Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573679. [PMID: 38234768 PMCID: PMC10793433 DOI: 10.1101/2023.12.29.573679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.
Collapse
|
7
|
Maldarelli ME, Noto MJ. The emerging role for neutrophil mitochondrial metabolism in lung inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00036. [PMID: 38283697 PMCID: PMC10810349 DOI: 10.1097/in9.0000000000000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Recent advances shed light on the importance of mitochondrial metabolism in supporting essential neutrophil functions such as trafficking, NETosis, bacterial killing, and modulating inflammatory responses. Mitochondrial metabolism is now recognized to contribute to a number of lung diseases marked by neutrophilic inflammation, including bacterial pneumonia, acute lung injury, and chronic obstructive pulmonary disease. In this mini review, we provide an overview of neutrophil metabolism focusing on the role of mitochondrial programs, discuss select neutrophil effector functions that are directly influenced by mitochondrial metabolism, and present what is known about the role for mitochondrial metabolism in lung diseases marked by neutrophilic inflammation.
Collapse
Affiliation(s)
- Mary E. Maldarelli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael J. Noto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Ledderose C, Valsami EA, Newhams M, Elevado MJ, Novak T, Randolph AG, Junger WG. ATP breakdown in plasma of children limits the antimicrobial effectiveness of their neutrophils. Purinergic Signal 2023; 19:651-662. [PMID: 36596963 PMCID: PMC10754799 DOI: 10.1007/s11302-022-09915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neutrophils (PMNs) require extracellular ATP and adenosine (ADO) to fight bacterial infections, which often have life-threatening consequences in pediatric patients. We wondered whether the ATP and ADO levels in the plasma of children change with age and if these changes influence the antimicrobial efficacy of the PMNs of these children. We measured plasma concentrations of ATP and ADO and the activities of the enzymes responsible for the breakdown of these mediators in plasma samples from healthy children and adolescents (n = 45) ranging in age from 0.2 to 15 years. In addition, using blood samples of these individuals, we compared how effective their PMNs were in the phagocytosis of bacteria. In an experimental sepsis model with young (10 days) and adolescent mice (10 weeks), we studied how age influenced the resilience of these animals to bacterial infections and whether addition of ATP could improve the antimicrobial capacity of their PMNs. We found that plasma ATP levels correlated with age and were significantly lower in infants (< 1 year) than in adolescents (12-15 years). In addition, we observed significantly higher plasma ATPase and adenosine deaminase activities in children (< 12 years) when compared to the adolescent population. The activities of these ATP and ADO breakdown processes correlated inversely with age and with the ability of PMNs to phagocytize bacteria. Similar to their human counterparts, young mice also had significantly lower plasma ATP levels when compared to adolescent animals. In addition, we found that mortality of young mice after bacterial infection was significantly higher than that of adolescent mice. Moreover, bacterial phagocytosis by PMNs of young mice was weaker when compared to that of older mice. Finally, we found that ATP supplementation could recover bacterial phagocytosis of young mice to levels similar to those of adolescent mice. Our findings suggest that rapid ATP hydrolysis in the plasma of young children lowers the antimicrobial functions of their PMNs and that this may contribute to the vulnerability of pediatric patients to bacterial infections.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Eleftheria-Angeliki Valsami
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Margaret Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark-Josef Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Ledderose C, Hashiguchi N, Valsami EA, Rusu C, Junger WG. Optimized flow cytometry assays to monitor neutrophil activation in human and mouse whole blood samples. J Immunol Methods 2023; 512:113403. [PMID: 36502881 DOI: 10.1016/j.jim.2022.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) protect the host from invading microorganisms. However, excessively activated PMNs can also cause damage to host tissues under inflammatory conditions. Here we developed simple assays to determine the activation state of PMNs in human whole blood that contains soluble mediators known to influence PMN functions. Because mouse models are widely used to study the role of PMNs in infectious and inflammatory diseases, we adapted these assays for the rapid and reliable assessment of PMN functions in murine blood samples. Freshly collected whole blood samples were stimulated with agonists of the formyl peptide receptors (FPR) of PMNs and changes in reactive oxygen species (ROS) production and the expression of CD11b, CD62L (L-selectin), CD66b, and CD63 on the cell surface were analyzed with flow cytometry. We optimized these assays to minimize inadvertent interferences such as cell stress generated during sample handling and the loss of plasma mediators that regulate PMN functions. Human PMNs readily responded to the FPR agonist N-formyl-methionyl-leucyl-phenylalanine (fMLP). The most sensitive responses of human PMNs to fMLP were CD11b, CD62L, and CD66b expression with half maximal effective concentrations (EC50) of 5, 8, and 6 nM fMLP, respectively. CD63 expression and ROS production required markedly higher fMLP concentrations with EC50 values of 19 and 50 nM fMLP, respectively. Mouse PMNs did not respond well to fMLP and required significantly higher concentrations of the FPR agonist WKYMVm (W-peptide) to achieve equivalent cell activation. The most sensitive response of mouse PMNs was ROS production with an EC50 of 38 nM W-peptide. Because mice do not express CD66b, we only assessed the expression of CD62L, CD11b, and CD63 with EC50 values of 54, 119, and 355 nM W-peptide, respectively. Validation of our optimized assays showed that they sensitively detect the responses of human PMNs to priming with endotoxin in vitro as well as the corresponding responses of murine PMNs to bacterial infection in a sepsis model. We conclude that these optimized assays could be useful tools for the monitoring of patients with infections, sepsis, and other inflammatory conditions as well as for the design and interpretation of preclinical studies of these diseases in mouse models.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Naoyuki Hashiguchi
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | | | - Christian Rusu
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
13
|
Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation. Commun Biol 2022; 5:1366. [PMID: 36513703 PMCID: PMC9747976 DOI: 10.1038/s42003-022-04339-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.
Collapse
|
14
|
Herman-de-Sousa C, Costa MA, Silva RP, Ferreirinha F, Ribeiro S, Correia-de-Sá P. A2A receptor-induced overexpression of pannexin-1 channels indirectly mediates adenosine fibrogenic actions by favouring ATP release from human subcutaneous fibroblasts. Life Sci 2022; 310:121080. [DOI: 10.1016/j.lfs.2022.121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
15
|
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels-a potential therapeutic target in inflammation. Front Cell Dev Biol 2022; 10:1020826. [PMID: 36438559 PMCID: PMC9682086 DOI: 10.3389/fcell.2022.1020826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Malaury Tournier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
17
|
Released ATP Mediates Spermatozoa Chemotaxis Promoted by Uterus-Derived Factor (UDF) in Ascaris suum. Int J Mol Sci 2022; 23:ijms23074069. [PMID: 35409429 PMCID: PMC8999757 DOI: 10.3390/ijms23074069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Fertilization requires sperm migration toward oocytes and subsequent fusion. Sperm chemotaxis, a process in which motile sperm are attracted by factors released from oocytes or associated structures, plays a key role in sperm migration to oocytes. Here, we studied sperm chemotaxis in the nematode Ascaris suum. Our data show that uterus-derived factor (UDF), the protein fraction of uterine extracts, can attract spermatozoa. UDF is heat resistant, but its activity is attenuated by certain proteinases. UDF binds to the surface of spermatozoa but not spermatids, and this process is mediated by membranous organelles that fuse with the plasma membrane. UDF induces spermatozoa to release ATP from intracellular storage sites to the extracellular milieu, and extracellular ATP modulates sperm chemotaxis. Moreover, UDF increases protein serine phosphorylation (pS) levels in sperm, which facilitates sperm chemotaxis. Taken together, we revealed that both extracellular ATP and intracellular pS signaling are involved in Ascaris sperm chemotaxis. Our data provide insights into the mechanism of sperm chemotaxis in Ascaris suum.
Collapse
|
18
|
Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol 2022; 63:102191. [PMID: 35276496 PMCID: PMC8995387 DOI: 10.1016/j.coph.2022.102191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Immune cell mobilization and their accumulation in the extravascular space is a key consequence of tissue injury. Maladaptive trafficking and immune activation following reperfusion of ischemic tissue can exacerbate tissue repair. After ischemic injury such as myocardial infarction (MI), PMNs are the first cells to arrive at the sites of insult and their response is critical for the sequential progression of ischemia from inflammation to resolution and finally to tissue repair. However, PMN-induced inflammation can also be detrimental to cardiac function and ultimately lead to heart failure. In this review, we highlight the role of PMNs during key cellular and molecular events of ischemic heart failure. We address new research on PMN metabolism, and how this orchestrates diverse functions such as PMN chemotaxis, degranulation, and phagocytosis. Particular focus is given to PMN metabolism regulation by mitochondrial function and mTOR kinase activity.
Collapse
Affiliation(s)
- Enzo B Piccolo
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Optimized HPLC method to elucidate the complex purinergic signaling dynamics that regulate ATP, ADP, AMP, and adenosine levels in human blood. Purinergic Signal 2022; 18:223-239. [DOI: 10.1007/s11302-022-09842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
|
21
|
Zhong J, Li M, Xu J, Dong W, Qin Y, Qiu S, Li X, Wang H. Roflupram attenuates α-synuclein-induced cytotoxicity and promotes the mitochondrial translocation of Parkin in SH-SY5Y cells overexpressing A53T mutant α-synuclein. Toxicol Appl Pharmacol 2022; 436:115859. [PMID: 34990728 DOI: 10.1016/j.taap.2021.115859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023]
Abstract
We have previously shown that inhibition of cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4) protects against cellular toxicity in neuronal cells. Since α-synuclein (α-syn) toxicity contributes to the neurodegeneration of Parkinson's disease (PD). The aim of this study was to explore the effects and mechanisms of PDE4 on α-syn-induced neuronal toxicity. Using mutant human A53T α-syn overexpressed SH-SY5Y cells, we found that PDE4B knockdown reduced cellular apoptosis. Roflupram (ROF, 20 μM), a selective PDE4 inhibitor, produced similar protective effects and restored the morphological alterations of mitochondria. Mechanistic studies identified that α-syn enhanced the phosphorylation of Parkin at Ser131, followed by the decreased mitochondrial translocation of Parkin. Whereas both PDE4B knockdown and PDE4 inhibition by ROF blocked the effects of α-syn on Parkin phosphorylation and mitochondrial translocation. Moreover, PDE4 inhibition reversed the increase in the phosphorylation of p38 mitogen-activated protein kinase (MAPK) induced by α-syn. ROF treatment also reduced the binding of p38 MAPK to Parkin. Consistently, overexpression of PDE4B blocked the roles of ROF on p38 MAPK phosphorylation, Parkin phosphorylation, and the subsequent mitochondrial translocation of parkin. Furthermore, PDE4B overexpression attenuated the protective role of ROF, as evidenced by reduced mitochondria membrane potential and increased cellular apoptosis. Interestingly, ROF failed to suppress α-syn-induced cytotoxicity in the presence of a protein kinase A (PKA) inhibitor H-89. Our findings indicate that PDE4 facilitates α-syn-induced cytotoxicity via the PKA/p38 MAPK/Parkin pathway in SH-SY5Y cells overexpressing A53T mutant α-synuclein. PDE4 inhibition by ROF is a promising strategy for the prevention and treatment of α-syn-induced neurodegeneration.
Collapse
Affiliation(s)
- Jiahong Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Wenli Dong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunyun Qin
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuqing Qiu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
22
|
Insuela DBR, Ferrero MR, Gonçalves-de-Albuquerque CF, Chaves ADS, da Silva AYO, Castro-Faria-Neto HC, Simões RL, Barja-Fidalgo TC, Silva PMRE, Martins MA, Silva AR, Carvalho VF. Glucagon Reduces Neutrophil Migration and Increases Susceptibility to Sepsis in Diabetic Mice. Front Immunol 2021; 12:633540. [PMID: 34295325 PMCID: PMC8290340 DOI: 10.3389/fimmu.2021.633540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Immunopharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda da Silva Chaves
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Rafael Loureiro Simões
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD. Restraint of Human Skin Fibroblast Motility, Migration, and Cell Surface Actin Dynamics, by Pannexin 1 and P2X7 Receptor Signaling. Int J Mol Sci 2021; 22:1069. [PMID: 33499026 PMCID: PMC7865282 DOI: 10.3390/ijms22031069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ana C. Abbott
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Valparaíso 2360102, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| |
Collapse
|
24
|
Kameritsch P, Pogoda K. The Role of Connexin 43 and Pannexin 1 During Acute Inflammation. Front Physiol 2020; 11:594097. [PMID: 33192611 PMCID: PMC7658380 DOI: 10.3389/fphys.2020.594097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
During acute inflammation, the recruitment of leukocytes from the blood stream into the inflamed tissue is a well-described mechanism encompassing the interaction of endothelial cells with leukocytes allowing leukocytes to reach the site of tissue injury or infection where they can fulfill their function such as phagocytosis. This process requires a fine-tuned regulation of a plethora of signaling cascades, which are still incompletely understood. Here, connexin 43 (Cx43) and pannexin 1 (Panx1) are known to be pivotal for the correct communication of endothelial cells with leukocytes. Pharmacological as well as genetic approaches provide evidence that endothelial Cx43-hemichannels and Panx1-channels release signaling molecules including ATP and thereby regulate vessel function and permeability as well as the recruitment of leukocytes during acute inflammation. Furthermore, Cx43 hemichannels and Panx1-channels in leukocytes release signaling molecules and can mediate the activation and function of leukocytes in an autocrine manner. The focus of the present review is to summarize the current knowledge of the role of Cx43 and Panx1 in endothelial cells and leukocytes in the vasculature during acute inflammation and to discuss relevant molecular mechanisms regulating Cx43 and Panx1 function.
Collapse
Affiliation(s)
- Petra Kameritsch
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kristin Pogoda
- Medical Faculty, Department of Physiology, Augsburg University, Augsburg, Germany
| |
Collapse
|
25
|
Ledderose C, Junger WG. Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol 2020; 11:549889. [PMID: 33133068 PMCID: PMC7550529 DOI: 10.3389/fimmu.2020.549889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular ATP is the universal energy carrier that fuels many cellular processes. However, immune cells can also release a portion of their ATP into the extracellular space. There, ATP activates purinergic receptors that mediate autocrine and paracrine signaling events needed for the initiation, modulation, and termination of cell functions. Mitochondria contribute to these processes by producing ATP that is released. Here, we summarize the synergistic interplay between mitochondria and purinergic signaling that regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1, P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen recognition. These mitochondrial and purinergic signaling mechanisms are indispensable for host immune defense. However, they also represent an Achilles heel that can render the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while inflammation and tissue damage generate excessive systemic ATP levels that distort autocrine purinergic signaling and impair T cell function. An improved understanding of the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel strategies for the diagnosis and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Ledderose C, Bromberger S, Slubowski CJ, Sueyoshi K, Aytan D, Shen Y, Junger WG. The purinergic receptor P2Y11 choreographs the polarization, mitochondrial metabolism, and migration of T lymphocytes. Sci Signal 2020; 13:13/651/eaba3300. [PMID: 32994212 DOI: 10.1126/scisignal.aba3300] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T cells must migrate to encounter antigen-presenting cells and perform their roles in host defense. Here, we found that autocrine stimulation of the purinergic receptor P2Y11 regulates the migration of human CD4 T cells. P2Y11 receptors redistributed from the front to the back of polarized cells where they triggered intracellular cAMP/PKA signals that attenuated mitochondrial metabolism at the back. The absence of P2Y11 receptors at the front of cells resulted in hotspots of mitochondrial metabolism and localized ATP production that stimulated P2X4 receptors, Ca2+ influx, and pseudopod protrusion at the front. This regulatory function of P2Y11 receptors depended on their subcellular redistribution and autocrine stimulation by cellular ATP release and was perturbed by indiscriminate global stimulation. We conclude that excessive extracellular ATP-such as in response to inflammation, sepsis, and cancer-disrupts this autocrine feedback mechanism, which results in defective T cell migration, impaired T cell function, and loss of host immune defense.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sophie Bromberger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Koichiro Sueyoshi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dilan Aytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Shen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
28
|
Alarcón P, Manosalva C, Quiroga J, Belmar I, Álvarez K, Díaz G, Taubert A, Hermosilla C, Carretta MD, Burgos RA, Hidalgo MA. Oleic and Linoleic Acids Induce the Release of Neutrophil Extracellular Traps via Pannexin 1-Dependent ATP Release and P2X1 Receptor Activation. Front Vet Sci 2020; 7:260. [PMID: 32582772 PMCID: PMC7291836 DOI: 10.3389/fvets.2020.00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Non-esterified fatty acids (NEFAs) such as oleic acid (OA) and linoleic acid (LA) are associated with a higher incidence of infectious diseases such as metritis and mastitis during the bovine peripartum. Fatty acids can induce an increase in the release of ATP, and changes in the expression levels of purinergic receptors in bovine polymorphonuclears (PMN) during peripartum have also been reported. PMN respond to inflammatory processes with production of ROS, release of proteolytic and bactericidal proteins, and formation of neutrophil extracellular traps (NETs). NETs formation is known to require ATP production through glycolysis. Studies have shown that the above-mentioned metabolic changes alter innate immune responses, particularly in PMN. We hypothesized that NEFAs induce the formation of NETs through ATP release by Pannexin 1 and activation of purinergic receptors. In this study, we found that OA and LA induce NET formation and extracellular ATP release. Carbenoxolone, a pannexin-1 (PANX1) inhibitor, reduced OA- and LA-induced ATP release. We also found that P2X1, P2X4, P2X5, P2X7, and PANX1 were expressed at the mRNA level in bovine PMN. Additionally, NEFA-induced NET formation was completely abolished with exposure to NF449, a P2X1 antagonist, and partially inhibited by treatment with etomoxir, an inhibitor of fatty acid oxidation (FAO). Our results suggest that OA and LA induce NET formation and ATP release via PANX1 and activation of P2X1. These new data contribute to explaining the effects of NEFA high concentrations during the transition period of dairy cattle and further understanding of pro-inflammatory effects and outcome of postpartum diseases.
Collapse
Affiliation(s)
- Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Isidora Belmar
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Álvarez
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Gustavo Díaz
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
29
|
Yeung AK, Patil CS, Jackson MF. Pannexin‐1 in the CNS: Emerging concepts in health and disease. J Neurochem 2020; 154:468-485. [DOI: 10.1111/jnc.15004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Albert K. Yeung
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Chetan S. Patil
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Michael F. Jackson
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
30
|
Zhu B, Feng Z, Guo Y, Zhang T, Mai A, Kang Z, Weijen T, Wang D, Yin D, Zhu D, Gao J. F0F1 ATP synthase regulates extracellular calcium influx in human neutrophils by interacting with Ca v2.3 and modulates neutrophil accumulation in the lipopolysaccharide-challenged lung. Cell Commun Signal 2020; 18:19. [PMID: 32019549 PMCID: PMC7001235 DOI: 10.1186/s12964-020-0515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neutrophils form the first line of innate host defense against invading microorganisms. We previously showed that F0F1 ATP synthase (F-ATPase), which is widely known as mitochondrial respiratory chain complex V, is expressed in the plasma membrane of human neutrophils and is involved in regulating cell migration. Whether F-ATPase performs cellular functions through other pathways remains unknown. METHODS Blue native polyacrylamide gel electrophoresis followed by nano-ESI-LC MS/MS identification and bioinformatic analysis were used to identify protein complexes containing F-ATPase. Then, the identified protein complexes containing F-ATPase were verified by immunoblotting, immunofluorescence colocalization, immunoprecipitation, real-time RT-PCR and agarose gel electrophoresis. Immunoblotting, flow cytometry and a LPS-induced mouse lung injury model were used to assess the effects of the F-ATPase-containing protein complex in vitro and in vivo. RESULTS We found that the voltage-gated calcium channel (VGCC) α2δ-1 subunit is a binding partner of cell surface F-ATPase in human neutrophils. Further investigation found that the physical connection between the two proteins may exist between the F1 part (α and β subunits) of F-ATPase and the α2 part of VGCC α2δ-1. Real-time RT-PCR and PCR analyses showed that Cav2.3 (R-type) is the primary type of VGCC expressed in human neutrophils. Research on the F-ATPase/Cav2.3 functional complex indicated that it can regulate extracellular Ca2+ influx, thereby modulating ERK1/2 phosphorylation and reactive oxygen species production, which are typical features of neutrophil activation. In addition, the inhibition of F-ATPase can reduce neutrophil accumulation in the lungs of mice that were intratracheally instilled with lipopolysaccharide, suggesting that the inhibition of F-ATPase may prevent neutrophilic inflammation-induced tissue damage. CONCLUSIONS In this study, we identified a mechanism by which neutrophil activity is modulated, with simultaneous regulation of neutrophil-mediated pulmonary damage. These results show that surface F-ATPase of neutrophils is a potential innate immune therapeutic target.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Zhengfu Feng
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Yan Guo
- Clinical Laboratory of Dongcheng People’s Hospital, Dong guan, 523007 Guangdong China
| | - Tian Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Ai Mai
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Ting Weijen
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 40402 Taiwan
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics of Xiamen University, Xiamen, 361102 Fujian China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| | - Dongxing Zhu
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong China
| |
Collapse
|
31
|
Giustarini G, Vrisekoop N, Kruijssen L, Wagenaar L, van Staveren S, van Roest M, Bleumink R, Bol-Schoenmakers M, Weaver RJ, Koenderman L, Smit J, Pieters R. Trovafloxacin-Induced Liver Injury: Lack in Regulation of Inflammation by Inhibition of Nucleotide Release and Neutrophil Movement. Toxicol Sci 2020; 167:385-396. [PMID: 30247740 DOI: 10.1093/toxsci/kfy244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The fluoroquinolone trovafloxacin (TVX) is associated with a high risk of drug-induced liver injury (DILI). Although part of the liver damage by TVX+TNF relies on neutrophils, we have recently demonstrated that liver recruitment of monocytes and neutrophils is delayed by TVX. Here we show that the delayed leukocyte recruitment is caused by a combination of effects which are linked to the capacity of TVX to block the hemichannel pannexin 1. TVX inhibited find-me signal release in apoptotic HepG2 hepatocytes, decelerated freshly isolated human neutrophils toward IL-8 and f-MLF, and decreased the liver expression of ICAM-1. In blood of TVX+TNF-treated mice, we observed an accumulation of activated neutrophils despite an increased MIP-2 release by the liver. Depletion of monocytes and neutrophils caused increased serum concentrations of TNF, IL-6, and MIP-2 in TVX-treated mice as well as in mice treated with the fluoroquinolone levofloxacin, known to have a lower DILI-inducing profile. This supports the idea that early leukocyte recruitment regulates inflammation. In conclusion, disrupted regulation by leukocytes appears to constitute a fundamental step in the onset of TVX-induced liver injury, acting in concert with the capability of TVX to induce hepatocyte cell death. Interference of leukocyte-mediated regulation of inflammation represents a novel mechanism to explain the onset of DILI.
Collapse
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Laura Kruijssen
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Laura Wagenaar
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Selma van Staveren
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Manon van Roest
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Rob Bleumink
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Richard J Weaver
- Institut de Recherches Internationales Servier (I.R.I.S.), Suresnes 92284, France
| | - Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Joost Smit
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci Rep 2019; 9:16556. [PMID: 31719610 PMCID: PMC6851112 DOI: 10.1038/s41598-019-53058-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/24/2019] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the first immune cells to kill invading microbes at sites of infection using a variety of processes, including the release of proteases, phagocytosis and the production of neutrophil extracellular traps (NETs). NET formation, or NETosis, is a specific and highly efficient process, which is induced by a variety of stimuli leading to expulsion of DNA, proteases and antimicrobial peptides to the extracellular space. However, uncontrolled NETosis may lead to adverse effects and exert tissue damage in pathological conditions. Here, we show that the ATP channel pannexin1 (Panx1) is functionally expressed by bone marrow-derived neutrophils (BMDNs) of wild-type (WT) mice and that ATP contributes to NETosis induced in vitro by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate (PMA). Interestingly, neutrophils isolated from Panx1−/− mice showed reduced and/or delayed induction of NETosis. Brilliant blue FCF dye (BB-FCF), a Panx1 channel inhibitor, decreased NETosis in wild-type neutrophils to the extent observed in Panx1−/− neutrophils. Thus, we demonstrate that ATP and Panx1 channels contribute to NETosis and may represent a therapeutic target.
Collapse
|
33
|
Kondo Y, Ledderose C, Slubowski CJ, Fakhari M, Sumi Y, Sueyoshi K, Bezler AK, Aytan D, Arbab M, Junger WG. Frontline Science: Escherichia coli use LPS as decoy to impair neutrophil chemotaxis and defeat antimicrobial host defense. J Leukoc Biol 2019; 106:1211-1219. [PMID: 31392789 DOI: 10.1002/jlb.4hi0319-109r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections and sepsis are leading causes of morbidity and mortality in critically ill patients. Currently, there are no effective treatments available to improve clinical outcome in sepsis. Here, we elucidated a mechanism by which Escherichia coli (E. coli) bacteria impair neutrophil (PMN) chemotaxis and we studied whether this mechanism can be therapeutically targeted to improve chemotaxis and antimicrobial host defense. PMNs detect bacteria with formyl peptide receptors (FPR). FPR stimulation triggers mitochondrial ATP production and release. Autocrine stimulation of purinergic receptors exerts excitatory and inhibitory downstream signals that induce cell polarization and cell shape changes needed for chemotaxis. Here we show that the bacterial cell wall product LPS dose-dependently impairs PMN chemotaxis. Exposure of human PMNs to LPS triggered excessive mitochondrial ATP production and disorganized intracellular trafficking of mitochondria, resulting in global ATP release that disrupted purinergic signaling, cell polarization, and chemotaxis. In mice infected i.p. with E. coli, LPS treatment increased the spread of bacteria at the infection site and throughout the systemic circulation. Removal of excessive systemic ATP with apyrase improved chemotaxis of LPS-treated human PMNs in vitro and enhanced the clearance of E. coli in infected and LPS-treated mice. We conclude that systemic ATP accumulation in response to LPS is a potential therapeutic target to restore PMN chemotaxis and to boost the antimicrobial host immune defense in sepsis.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahtab Fakhari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuka Sumi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Koichiro Sueyoshi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann-Katrin Bezler
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dilan Aytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mona Arbab
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| |
Collapse
|
34
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
35
|
Liu H, Yuan M, Yao Y, Wu D, Dong S, Tong X. In vitro effect of Pannexin 1 channel on the invasion and migration of I-10 testicular cancer cells via ERK1/2 signaling pathway. Biomed Pharmacother 2019; 117:109090. [PMID: 31202174 DOI: 10.1016/j.biopha.2019.109090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Pannexin (Panx) plays a crucial role in several cellular processes such as immune cell death, cell proliferation, invasion, and migration, apoptosis, and autophagy. However, the role of Panx in regulating cell migration and invasion in testicular cancer remains to be elucidated. In the present study, we determined the correlation between Panx-1 channel function and migration and invasion in I-10 testicular cancer cells. Transwell and wound healing assays showed that inhibition of Panx-1 by carbenoxolone (CBX) and probenecid (PBN) attenuated the migration and invasion of testicular cancer cells in vitro. Moreover, knockdown of Panx-1 with short hairpin RNA (shRNA) remarkably decreased the migration and invasion ability of I-10 cells. In shRNA-transfected cells, extracellular ATP (released through Panx channel) was also found to be decreased. Similarly, overexpression of Panx-1 with mPanx-1 increased the migration and invasion ability of I-10 cells. Moreover, we found that in mPanx-1-transfected cells treated with U0126 (inhibitor of p-ERK1/2), the migration and invasion of I-10 cells were remarkably attenuated. Overall, increased Panx-1 promotes migration and invasion in testicular cancer cells, and the effect is probably be related with ERK1/2 kinase activity. Thus, Panx-1 can serve as a potential therapeutic target for the treatment of testicular cancer.
Collapse
Affiliation(s)
- Haofeng Liu
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Min Yuan
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Yanxue Yao
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Dandan Wu
- College of Life Sciences, Nanjing University, Jiangsu, Nanjing, 210093, PR China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China.
| |
Collapse
|
36
|
Majumdar R, Steen K, Coulombe PA, Parent CA. Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol 2019; 57:123-134. [PMID: 30852463 PMCID: PMC7087401 DOI: 10.1016/j.ceb.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Migration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Yang X, Zhao G, Yan J, Xu R, Che C, Zheng H, Zhu G, Zhang J. Pannexin 1 Channels Contribute to IL-1β Expression via NLRP3/Caspase-1 Inflammasome in Aspergillus Fumigatus Keratitis. Curr Eye Res 2019; 44:716-725. [PMID: 30793631 DOI: 10.1080/02713683.2019.1584321] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose: Pannexin 1 channels are deemed to play important roles in inflammation. However, there is limited information regarding their roles in fungal infection diseases, especially fungal keratitis. This study aimed to investigate the role of pannexin 1 channels in Aspergillus fumigatus (A. fumigatus) keratitis. Materials and Methods: Mouse models or immortalized human corneal epithelial cells (HCECs) were infected with or without A. fumigatus for given time. The expression of pannexin 1 channels was tested by qPCR, western blot and immunofluorescence staining. Mice of A. fumigatus keratitis were pretreated with carbenoxolone (CBX) or 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate (BzATP) to block or activate the opening of pannexin 1 channels respectively. The clinical score was recorded. Cornea tissues were examined for the downstream signals of pannexin 1 channels, including NLRP3, Caspase-1 and IL-1β, and myeloperoxidase (MPO) by PCR and ELISA. Data were analyzed with commercial data analysis software and a P < 0.05 was considered to be statistically significant. Results: Upon A. fumigatus infection, pannexin 1 expression increased at both the mRNA and the protein levels in mice corneas (P< 0.05, n = 3). Immunofluorescence indicated that pannexin 1 channels were mainly located in the corneal epithelial layer, and they were upregulated after A. fumigatus infection. In vitro, the same tendency was found at the mRNA and the protein levels in HCECs (P< 0.05, n = 8). In mouse model, blockage of pannexin 1 channels by CBX caused more severely keratitis. The downstream signals of pannexin 1 channels (NLRP3/Caspase-1/IL-1β) and MPO were down-regulated. Whereas activation the opening of pannexin 1 channels by BzATP reduced corneal infection with increased expression of Caspase-1 and IL-1β. Conclusions: Pannexin 1 channels play important roles in the regulation of progression and leucocytes aggregation during corneal A. fumigatus infection via the NLRP3/Caspase-1/IL-β pathway.
Collapse
Affiliation(s)
- Xuejiao Yang
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Guiqiu Zhao
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Junwei Yan
- b Department of Vascular Surgery , Huangdao Branch of the Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Rui Xu
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Chengye Che
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Hengrui Zheng
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Guoqiang Zhu
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Jie Zhang
- a Department of Ophthalmology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| |
Collapse
|
38
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
39
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
40
|
Li S, Li J, Wang N, Zhang T, Xu Y, Sun J. Expression analysis of Pannexin1 channel gene in response to immune challenges and its role in infection-induced ATP release in tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2018; 81:470-475. [PMID: 30064016 DOI: 10.1016/j.fsi.2018.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
ATP released from immune cells plays an important role in activation of host innate immunity. However, the molecular mechanisms for pathogen infection-induced ATP release in fish remains unclear. Pannexin1 (Panx1) is a recently identified ATP release channel important for controlling immune responses. The immune relevance of Panx1 in fish, however, is still poorly understood. In this study, we characterized a Panx1 gene homologue (termed tPanx1) from Nile tilapia (Oreochromis niloticus) and analyzed its expression in response to different immune challenges. We also investigated the role of tPanx1 channel in bacterial infection-induced ATP release. Real-time quantitative PCR analysis revealed that tPanx1 gene is expressed in all tested tissues with predominant expression in intestine. Immune challenges with lipopolysaccharide, polyinosinic-polycytidylic acid and zymosan led to increased gene expression of tPanx1 in tilapia head kidney cells and peripheral blood leucocytes. In addition, tPanx1 gene was up-regulated in hepatopancreas, muscle, spleen, gill, head kidney and blood after Aeromonas hydrophila infection. Furthermore, pharmacological inhibition of tPanx1 channel activity with Panx1 channel inhibitor, carbenoxolone, significantly attenuated A. hydrophila infection-induced ATP release in tilapia head kidney cells. Taken together, our findings suggested that tPanx1 is an important immune response gene involved in bacterial infection-induced ATP release in tilapia O. niloticus.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yaqi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
41
|
Diezmos EF, Markus I, Perera DS, Gan S, Zhang L, Sandow SL, Bertrand PP, Liu L. Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa. Front Pharmacol 2018; 9:865. [PMID: 30127744 PMCID: PMC6087744 DOI: 10.3389/fphar.2018.00865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants. Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cytokines TNFα and IL-1β (each 10 ng/mL) were used to induce colitis in mucosal strips, and the effects of Panx1 and P2X7R on cytokines-induced tissue damage were determined in the presence of the Panx1 channel blocker 10Panx1 (100 μM) and P2X7R antagonist A438079 (100 μM). The effects of 10Panx1 and A438079 on cytokines-enhanced epithelial permeability were also studied using Caco-2 cells. Results: Histological staining showed that the mucosal strips had severe structural damage in the cytokines-only group but not in the incubation-control group (P < 0.01). Compared to the cytokines-only group, crypt damage was significantly decreased in groups receiving cytokines with inhibitors (10Panx1, A438079, or 10Panx1 + A438079, P < 0.05). The immunoreactive signals of tight junction protein zonula occludens-1 (ZO-1) were abundant in all control tissues but were significantly disrupted and lost in the cytokines-only group (P < 0.01). The diminished ZO-1 immunoreactivity induced by cytokines was prevented in the presence of 10Panx1 (P = 0.04). Likewise, 10Panx1 significantly attenuated the cytokines-evoked increase in paracellular permeability of Caco-2 cells. Although the inhibition of P2X7R activity by A438079 diminished cytokines-induced crypt damage, its effect on the maintenance of ZO-1 immunoreactivity and Caco-2 epithelial cell integrity was less evident. Conclusion: The blockade of Panx1 and P2X7R reduced the inflammatory cytokines-induced crypt damage, loss of tight junctions and increase in cell permeability. Thus, Panx1 and P2X7R may have roles in causing mucosal damage, a common clinical feature of inflammatory bowel disease.
Collapse
Affiliation(s)
- Erica F Diezmos
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Irit Markus
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - D S Perera
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Steven Gan
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Inflammation and Healing Cluster, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul P Bertrand
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Ledderose C, Liu K, Kondo Y, Slubowski CJ, Dertnig T, Denicoló S, Arbab M, Hubner J, Konrad K, Fakhari M, Lederer JA, Robson SC, Visner GA, Junger WG. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest 2018; 128:3583-3594. [PMID: 29894310 DOI: 10.1172/jci120972] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
T cells must migrate in order to encounter antigen-presenting cells (APCs) and to execute their varied functions in immune defense and inflammation. ATP release and autocrine signaling through purinergic receptors contribute to T cell activation at the immune synapse that T cells form with APCs. Here, we show that T cells also require ATP release and purinergic signaling for their migration to APCs. We found that the chemokine stromal-derived factor-1α (SDF-1α) triggered mitochondrial ATP production, rapid bursts of ATP release, and increased migration of primary human CD4+ T cells. This process depended on pannexin-1 ATP release channels and autocrine stimulation of P2X4 receptors. SDF-1α stimulation caused localized accumulation of mitochondria with P2X4 receptors near the front of cells, resulting in a feed-forward signaling mechanism that promotes cellular Ca2+ influx and sustains mitochondrial ATP synthesis at levels needed for pseudopod protrusion, T cell polarization, and cell migration. Inhibition of P2X4 receptors blocked the activation and migration of T cells in vitro. In a mouse lung transplant model, P2X4 receptor antagonist treatment prevented the recruitment of T cells into allograft tissue and the rejection of lung transplants. Our findings suggest that P2X4 receptors are therapeutic targets for immunomodulation in transplantation and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Department of Medicine/Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Dertnig
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Denicoló
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mona Arbab
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes Hubner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kirstin Konrad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahtab Fakhari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary A Visner
- Department of Medicine/Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| |
Collapse
|
43
|
Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Arch Toxicol 2018; 92:2607-2627. [PMID: 29987408 DOI: 10.1007/s00204-018-2255-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. This chronic disease is characterized by excessive deposition of extracellular matrix components mainly due to transdifferentiation of quiescent hepatic stellate cell into myofibroblasts-like cells, which in turn is driven by cell death and inflammation. In the last few years, paracrine signaling through pannexin1 channels has emerged as a key player in the latter processes. The current study was set up to investigate the role of pannexin1 signaling in liver fibrosis. Wild-type and whole body pannexin1 knock-out mice were treated with carbon tetrachloride or subjected to bile duct ligation. Evaluation of the effects of pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, oxidative stress, inflammation and regenerative capacity. In parallel, to elucidate the molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. While pannexin1 knock-out mice treated with carbon tetrachloride displayed reduced collagen content, hepatic stellate cell activation, inflammation and hepatic regeneration, bile duct ligated counterparts showed increased hepatocellular injury and antioxidant enzyme activity with a predominant immune response. Gene expression profiling revealed a downregulation of fibrotic and immune responses in pannexin1 knock-out mice treated with carbon tetrachloride, whereas bile duct ligated pannexin1-deficient animals showed a pronounced inflammatory profile. This study shows for the first time an etiology-dependent role for pannexin1 signaling in experimental liver fibrosis.
Collapse
|
44
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Csóka B, Németh ZH, Szabó I, Davies DL, Varga ZV, Pálóczi J, Falzoni S, Di Virgilio F, Muramatsu R, Yamashita T, Pacher P, Haskó G. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight 2018; 3:99431. [PMID: 29875325 PMCID: PMC5997389 DOI: 10.1172/jci.insight.99431] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Zoltán H. Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Ildikó Szabó
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, USC, Los Angeles, California, USA
| | - Zoltán V. Varga
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - János Pálóczi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| |
Collapse
|
46
|
Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharmacol 2018; 151:307-313. [PMID: 29427624 PMCID: PMC5899962 DOI: 10.1016/j.bcp.2018.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
The purine nucleoside adenosine is a present in most body fluids where it regulates a wide variety of physiologic and pharmacologic processes. Adenosine mediates its effects through activating 4 G protein-coupled receptors expressed on the cell membrane: A1, A2A, A2B, and A3. The adenosine receptors are widely distributed in the body, and tissues with high expression include immune tissues, cartilage, bone, heart, and brain. Here we review the source and metabolism of adenosine and the role of adenosine in regulating immunity and cartilage biology.
Collapse
Affiliation(s)
- György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
47
|
Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci 2018; 19:ijms19041222. [PMID: 29669994 PMCID: PMC5979498 DOI: 10.3390/ijms19041222] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides (e.g., ATP, ADP, UTP, UDP) released by inflammatory cells interact with specific purinergic P2 type receptors to modulate their recruitment and activation. The focus of this review is on stimuli and mechanisms of extracellular nucleotide release and its consequences during inflammation. Necrosis leads to non-specific release of nucleotides, whereas specific release mechanisms include vesicular exocytosis and channel-mediated release via connexin or pannexin hemichannels. These release mechanisms allow stimulated inflammatory cells such as macrophages, neutrophils, and endothelial cells to fine-tune autocrine/paracrine responses during acute and chronic inflammation. Key effector functions of inflammatory cells are therefore regulated by purinergic signaling in acute and chronic diseases, making extracellular nucleotide release a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Michel Dosch
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Joël Gerber
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Fadi Jebbawi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| |
Collapse
|
48
|
Welsh TG, Kucenas S. Purinergic signaling in oligodendrocyte development and function. J Neurochem 2018; 145:6-18. [PMID: 29377124 DOI: 10.1111/jnc.14315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.
Collapse
Affiliation(s)
- Taylor G Welsh
- Neuroscience Graduate Program, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
49
|
Wang X, Chen D. Purinergic Regulation of Neutrophil Function. Front Immunol 2018; 9:399. [PMID: 29545806 PMCID: PMC5837999 DOI: 10.3389/fimmu.2018.00399] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling, which utilizes nucleotides (particularly ATP) and adenosine as transmitter molecules, plays an essential role in immune system. In the extracellular compartment, ATP predominantly functions as a pro-inflammatory molecule through activation of P2 receptors, whereas adenosine mostly functions as an anti-inflammatory molecule through activation of P1 receptors. Neutrophils are the most abundant immune cells in circulation and have emerged as an important component in orchestrating a complex series of events during inflammation. However, because of the destructive nature of neutrophil-derived inflammatory agents, neutrophil activation is fine-tuned, and purinergic signaling is intimately involved in this process. Indeed, shifting the balance between P2 and P1 signaling is critical for neutrophils to appropriately exert their immunologic activity. Here, we review the role of purinergic signaling in regulating neutrophil function, and discuss the potential of targeting purinergic signaling for the treatment of neutrophil-associated infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Garg C, Seo JH, Ramachandran J, Loh JM, Calderon F, Contreras JE. Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 2018; 15:42. [PMID: 29439712 PMCID: PMC5812039 DOI: 10.1186/s12974-018-1069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. Methods The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. Results Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. Conclusion Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma. Electronic supplementary material The online version of this article (10.1186/s12974-018-1069-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charu Garg
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Ji Meng Loh
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|