1
|
Fresquez T, Tam BM, Eshelman SC, Moritz OL, Robichaux MA, Deretic D. Rabin8 phosphorylated by NDR2, the canine early retinal degeneration gene product, directs rhodopsin Golgi-to-cilia trafficking. J Cell Sci 2025; 138:JCS263401. [PMID: 39774853 DOI: 10.1242/jcs.263401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants. GFP-Rabin8 accumulated with endogenous Rabin8 at the Golgi-apposed exit sites (GESs), also known as the trans-Golgi network (TGN). Rabin8 mutants deficient in Rab11 binding prevented membrane association of GFP-Rabin8. GFP-Rabin8 and NDR2 kinase both interacted with the RTC-associated R-SNARE VAMP7 at the trans-Golgi and the GESs. Here, GFP-Rabin8 and the phosphomimetic GFP-Rabin8-S272E integrated into RTCs, which were subsequently functionalized by Rabin8 Rab8 GEF activity. Non-phosphorylatable GFP-Rabin8-S272A caused significant GES enlargement and deformation, possibly leading to unconventional membrane advancement toward the cilium, bypassing RTCs. Rabin8 phosphorylation loss due to an NDR2 gene disruption thereby likely causes dysfunctional rhodopsin Golgi-to-cilia trafficking underlying retinal degeneration and early-onset blindness.
Collapse
Affiliation(s)
- Theresa Fresquez
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Shannon C Eshelman
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Michael A Robichaux
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Dusanka Deretic
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
2
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, Conlon RA, Miyagi M, Imanishi Y. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J 2024; 38:e23606. [PMID: 38648465 PMCID: PMC11047207 DOI: 10.1096/fj.202302260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.
Collapse
Affiliation(s)
- Shimpei Takita
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sultana Jahan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Occelli LM, Tran NM, Chen S, Petersen-Jones SM. Cat LCA-CRX Model, Homozygous for an Antimorphic Mutation Has a Unique Phenotype. Transl Vis Sci Technol 2023; 12:15. [PMID: 37351895 PMCID: PMC10292669 DOI: 10.1167/tvst.12.6.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Mutations in the CRX transcription factor are associated with dominant retinopathies often with more severe macular changes. The CRX-mutant cat (Rdy-A182d2) is the only animal model with the equivalent of the critical retinal region for high-acuity vision, the macula. Heterozygous cats (CRXRdy/+) have a severe phenotype modeling Leber congenital amaurosis. This study reports the distinct ocular phenotype of homozygous cats (CRXRdy/Rdy). Methods Gene expression changes were assessed at both mRNA and protein levels. Changes in globe morphology and retinal structure were analyzed. Results CRXRdy/Rdy cats had high levels of mutant CRX mRNA and protein. The expression of photoreceptor target genes was severely impaired although there were variable effects on the expression of other transcription factors. The photoreceptor cells remained immature and failed to elaborate outer segments consistent with the lack of retinal function. The retinal layers displayed a progressive remodeling with cell loss but maintained overall retinal thickness due to gliosis. Rapid photoreceptor loss largely occurred in the macula-equivalent retinal region. The homozygous cats developed markedly increased ocular globe length. Conclusions The phenotype of CRXRdy/Rdy cats was more severe compared to CRXRdy/+ cats by several metrics. Translational Relevance The CRX-mutant cat is the only model for CRX-retinopathies with a macula-equivalent region. A prominent feature of the CRXRdy/Rdy cat phenotype not detectable in homozygous mouse models was the rapid degeneration of the macula-equivalent retinal region highlighting the value of this large animal model and its future importance in the testing of translational therapies aiming to restore vision.
Collapse
Affiliation(s)
- Laurence M. Occelli
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Nicholas M. Tran
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Shiming Chen
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
5
|
Spencer WJ. Extracellular vesicles highlight many cases of photoreceptor degeneration. Front Mol Neurosci 2023; 16:1182573. [PMID: 37273908 PMCID: PMC10233141 DOI: 10.3389/fnmol.2023.1182573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The release of extracellular vesicles is observed across numerous cell types and serves a range of biological functions including intercellular communication and waste disposal. One cell type which stands out for its robust capacity to release extracellular vesicles is the vertebrate photoreceptor cell. For decades, the release of extracellular vesicles by photoreceptors has been documented in many different animal models of photoreceptor degeneration and, more recently, in wild type photoreceptors. Here, I review all studies describing extracellular vesicle release by photoreceptors and discuss the most unifying theme among them-a photoreceptor cell fully, or partially, diverts its light sensitive membrane material to extracellular vesicles when it has defects in the delivery or morphing of this material into the photoreceptor's highly organized light sensing organelle. Because photoreceptors generate an enormous amount of light sensitive membrane every day, the diversion of this material to extracellular vesicles can cause a massive accumulation of these membranes within the retina. Little is known about the uptake of photoreceptor derived extracellular vesicles, although in some cases the retinal pigment epithelial cells, microglia, Müller glia, and/or photoreceptor cells themselves have been shown to phagocytize them.
Collapse
|
6
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
7
|
Hollingsworth TJ, Wang X, Simpson RN, White WA, Williams RW, Jablonski MM. Current Advancements in Mouse Models of Retinal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:371-376. [PMID: 37440059 DOI: 10.1007/978-3-031-27681-1_54] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The field of retinal degenerative (RDs) disease study has been in a state of exponential growth from discovering the underlying genetic components of such diseases as age-related macular degeneration (AMD) and retinitis pigmentosa (RP) to the first gene therapy developed and approved for human Leber congenital amaurosis. However, a source for high-fidelity animal models of these complex, multifactorial, and/or polygenic diseases is a need that has yet to be fulfilled. While models for AMD and RP do exist, they often require aging the animals for a year or more, feeding special diets, or introduction of external modulators such as exposure to cigarette smoke. Currently, work is being done to uncover high-fidelity naturally occurring models of these retinal diseases with the hope and intent of providing the vision community the tools it needs to better understand, treat, and, one day, cure the patients suffering from these devastating afflictions.
Collapse
Affiliation(s)
- T J Hollingsworth
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, TN, USA.
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA.
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Xiangdi Wang
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Raven N Simpson
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - William A White
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Robert W Williams
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Monica M Jablonski
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
8
|
Yefimova MG. Myelinosome organelles in pathological retinas: ubiquitous presence and dual role in ocular proteostasis maintenance. Neural Regen Res 2022; 18:1009-1016. [PMID: 36254982 PMCID: PMC9827766 DOI: 10.4103/1673-5374.355753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body. Recent lines of evidence point out several non-classical strategies employed by ocular tissues to cope with aberrant constituents generated in the retina and in the retinal pigmented epithelium cells exposed to various stressors. Along with conventional strategies relying upon the intracellular degradation of aberrant constituents through ubiquitin-proteasome and/or lysosome-dependent autophagy proteolysis, two non-conventional mechanisms also contribute to proteostasis maintenance in ocular tissues. An exosome-mediated clearing and a myelinosome-driven secretion mechanism do not require intracellular degradation but provide the export of aberrant constituents and "waste proteins" outside of the cells. The current review is centered on the non-degradative myelinosome-driven secretion mechanism, which operates in the retina of transgenic Huntington's disease R6/1 model mice. Myelinosome-driven secretion is supported by rare organelles myelinosomes that are detected not only in degenerative Huntington's disease R6/1 retina but also in various pathological states of the retina and of the retinal pigmented epithelium. The intra-retinal traffic and inter-cellular exchange of myelinosomes was discussed in the context of a dual role of the myelinosome-driven secretion mechanism for proteostasis maintenance in different ocular compartments. Special focus was made on the interplay between degradative and non-degradative strategies in ocular pathophysiology, to delineate potential therapeutic approaches to counteract several vision diseases.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg, Russia,Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers, France,Correspondence to: Marina G. Yefimova, .
| |
Collapse
|
9
|
Ho AT, Hurst LD. Stop codon usage as a window into genome evolution: mutation, selection, biased gene conversion and the TAG paradox. Genome Biol Evol 2022; 14:6648529. [PMID: 35867377 PMCID: PMC9348620 DOI: 10.1093/gbe/evac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Protein coding genes terminate with one of three stop codons (TAA, TGA, or TAG) that, like synonymous codons, are not employed equally. With TGA and TAG having identical nucleotide content, analysis of their differential usage provides an unusual window into the forces operating on what are ostensibly functionally identical residues. Across genomes and between isochores within the human genome, TGA usage increases with G + C content but, with a common G + C → A + T mutation bias, this cannot be explained by mutation bias-drift equilibrium. Increased usage of TGA in G + C-rich genomes or genomic regions is also unlikely to reflect selection for the optimal stop codon, as TAA appears to be universally optimal, probably because it has the lowest read-through rate. Despite TAA being favored by selection and mutation bias, as with codon usage bias G + C pressure is the prime determinant of between-species TGA usage trends. In species with strong G + C-biased gene conversion (gBGC), such as mammals and birds, the high usage and conservation of TGA is best explained by an A + T → G + C repair bias. How to explain TGA enrichment in other G + C-rich genomes is less clear. Enigmatically, across bacterial and archaeal species and between human isochores TAG usage is mostly unresponsive to G + C pressure. This unresponsiveness we dub the TAG paradox as currently no mutational, selective, or gBGC model provides a well-supported explanation. That TAG does increase with G + C usage across eukaryotes makes the usage elsewhere yet more enigmatic. We suggest resolution of the TAG paradox may provide insights into either an unknown but common selective preference (probably at the DNA/RNA level) or an unrecognized complexity to the action of gBGC.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, UK
| | | |
Collapse
|
10
|
Ho AT, Hurst LD. Unusual mammalian usage of TGA stop codons reveals that sequence conservation need not imply purifying selection. PLoS Biol 2022; 20:e3001588. [PMID: 35550630 PMCID: PMC9129041 DOI: 10.1371/journal.pbio.3001588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The assumption that conservation of sequence implies the action of purifying selection is central to diverse methodologies to infer functional importance. GC-biased gene conversion (gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle mimic the action of selection, this being thought to be especially important in mammals. As mutation is GC→AT biased, to demonstrate that gBGC does indeed cause false signals requires evidence that an AT-rich residue is selectively optimal compared to its more GC-rich allele, while showing also that the GC-rich alternative is conserved. We propose that mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We show that this mammalian exceptionalism is well explained by gBGC mimicking purifying selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe (i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR sequences); (ii) that higher TGA usage and higher TAA→TGA substitution rates are predicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA substitution rates between GC-rich and GC-poor genes is largest in genomes that possess higher between-gene GC variation. TAA optimality is supported both by enrichment in highly expressed genes and trends associated with effective population size. High TGA usage and high TAA→TGA rates in mammals are thus consistent with gBGC’s predicted ability to “drive” deleterious mutations and supports the hypothesis that sequence conservation need not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at frequencies far above their mutational equilibrium in high recombining domains supports the generality of these results.
Collapse
Affiliation(s)
- Alexander Thomas Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | | |
Collapse
|
11
|
Hollingsworth TJ, Wang X, White WA, Simpson RN, Jablonski MM. Chronic Proinflammatory Signaling Accelerates the Rate of Degeneration in a Spontaneous Polygenic Model of Inherited Retinal Dystrophy. Front Pharmacol 2022; 13:839424. [PMID: 35387333 PMCID: PMC8978607 DOI: 10.3389/fphar.2022.839424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Collectively, retinal neurodegenerative diseases are comprised of numerous subtypes of disorders which result in loss of a varying cell types in the retina. These diseases can range from glaucoma, which results in retinal ganglion cell death, to age-related macular degeneration and retinitis pigmentosa, which result in cell death of the retinal pigment epithelium, photoreceptors, or both. Regardless of the disease, it’s been recently found that increased release of proinflammatory cytokines and proliferation of active microglia result in a remarkably proinflammatory microenvironment that assists in the pathogenesis of the disease; however, many of the details of these inflammatory events have yet to be elucidated. In an ongoing study, we have used systems genetics to identify possible models of spontaneous polygenic age-related macular degeneration by mining the BXD family of mice using single nucleotide polymorphism analyses of known genes associated with the human retinal disease. One BXD strain (BXD32) was removed from the study as the rate of degeneration observed in these animals was markedly increased with a resultant loss of most all photoreceptors by 6 months of age. Using functional and anatomical exams including optokinetic nystamography, funduscopy, fluorescein angiography, and optical coherence tomography, along with immunohistochemical analyses, we show that the BXD32 mouse strain exhibits a severe neurodegenerative phenotype accompanied by adverse effects on the retinal vasculature. We also expose the concurrent establishment of a chronic proinflammatory microenvironment including the TNFα secretion and activation of the NF-κB and JAK/STAT pathways with an associated increase in activated macrophages and phagoptosis. We conclude that the induced neuronal death and proinflammatory pathways work synergistically in the disease pathogenesis to enhance the rate of degeneration in this spontaneous polygenic model of inherited retinal dystrophy.
Collapse
Affiliation(s)
- T J Hollingsworth
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xiangdi Wang
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - William A White
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Raven N Simpson
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Monica M Jablonski
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Liu X, Jia R, Meng X, Li Y, Yang L. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp Eye Res 2021; 215:108893. [PMID: 34919893 DOI: 10.1016/j.exer.2021.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
RHO is one of the most common genetic causes of autosomal dominant retinitis Pigmentosa (adRP) and there is no effective therapy for this disease. While rapidly developed CRISPR/Cas9 gene editing technology presents a promising therapeutic strategy to treat adRP. A large number of studies for treating adRP using CRISPR/Cas9 have been performed based on transgenic mouse models which are affected with adRP caused by mutant mouse rhodopsin allele, the counterpart of human rhodopsin. Recently, some RHO humanized mouse models like T17M, P23H are generated, which permit testing of the therapeutic effect of CRISPR/Cas9 in preclinical in vivo systems, without putting humans at risk. While available humanized mouse models are few compared to the number of known RHO mutations, but it is time-consuming and costly to build humanized mice for each mutation. We wonder whether a humanized mouse model having several mutations simultaneously can be developed, although which rarely occurs in patients, to investigate the therapeutic effect of CRISPR/Cas9 for RHO-mediated adRP in preclinical in vivo systems. Homology directed repair strategy combing with CRISPR/Cas9 was employed to introduce human RHO genomic fragment containing the replacement of mouse exon1(mE1) after the start codon to mE5 before the stop codon and all introns by the human counterparts. The human rhodopsin could express under the control of the endogenous murine promoter both transcriptionally and translationally in vivo. Human rhodopsin in humanized mouse lines (without mutation) could replace murine rhodopsin morphologically and functionally. While human rhodopsin containing T17M, G51D, G114R, R135W and P171R mutations simultaneously in mutant humanized (Mut-Rhowt/hum and Mut-Rhohum/hum) mouse lines caused retinal degeneration. Mut-Rhohum/hum mice suffered from severe retinal degeneration with defective formation of rod outer segment, leaving nonrecordable electroretinogram (ERG) at 3 months. Mut- Rhowt/hum mice had a slower rate of photoreceptors loss. In 7-month-old Mut- Rhowt/hum mice, statistically reduced scotopic ERG responses were visible compared with age-matched WT mice, but the shortened outer segment and thinner outer nuclear layer could be observed from 3 months. From 7 months to 9 months, significantly abnormal scotopic ERG responses were visible and photoreceptors loss were also obvious in 9-month-old Mut-Rhowt/hum mice. In 12-month-old Mut- Rhowt/hum mice, statistically reduced scotopic and photopic ERG responses and retinal degeneration throughout the retina were visible. Because scotopic responses were more affected than photopic responses in mutant humanized mice, demonstrating that rods dysfunction was more severe than cones dysfunction and deteriorated earlier, the pattern of retinal degeneration caused by mutant human rhodopsin was a typical rod-cone decay. Immunocytochemistry in cells indicated human rhodopsin proteins with 5 mutations aggregated in the cytoplasm and were also retained in the endoplasmic reticulum. The mutant human rhodopsin also accumulated in rod inner segments and cellular bodies in vivo. In conclusion, our humanized models provide excellent opportunities to study the human rhodopsin expression patterns. Our mutant humanized heterozygotes can provide opportunities to explore gene editing therapies via CRISPR/Cas9 for these five mutations in preclinical studies, it is time-saving and cost-effective.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
13
|
Xiao YS, Liang J, Gao M, Sun JR, Liu Y, Chen JQ, Zhao XH, Wang YM, Chen YH, Wang YW, Wan XL, Luo XT, Sun XD. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol 2021; 14:1334-1344. [PMID: 34540608 PMCID: PMC8403851 DOI: 10.18240/ijo.2021.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To illustrate the underlying mechanism how prominin-1 (also known as Prom1) mutation contribute to progressive photoreceptor degeneration. METHODS A CRISPR-mediated Prom1 knockout (Prom1-KO) mice model in the C57BL/6 was generated and the photoreceptor degeneration phenotypes by means of structural and functional tests were demonstrated. Immunohistochemistry and immunoblot analysis were performed to reveal the localization and quantity of related outer segment (OS) proteins. RESULTS The Prom1-KO mice developed the photoreceptor degeneration phenotype including the decreased outer nuclear layer (ONL) thickness and compromised electroretinogram amplitude. Immunohistochemistry analysis revealed impaired trafficking of photoreceptor OS proteins. Immunoblot data demonstrated decreased photoreceptor OS proteins. CONCLUSION Prom1 deprivation causes progressive photoreceptor degeneration. Prom1 is essential for maintaining normal trafficking and normal quantity of photoreceptor OS proteins. The new light is shed on the pathogenic mechanism underlying photoreceptor degeneration caused by Prom1 mutation.
Collapse
Affiliation(s)
- Yu-Shu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jun-Ran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jie-Qiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Huan Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yi-Min Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Wei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Ling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xue-Ting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| |
Collapse
|
14
|
Hollingsworth T, Hubbard MG, Levi HJ, White W, Wang X, Simpson R, Jablonski MM, Gross AK. Proinflammatory Pathways Are Activated in the Human Q344X Rhodopsin Knock-In Mouse Model of Retinitis Pigmentosa. Biomolecules 2021; 11:1163. [PMID: 34439829 PMCID: PMC8393353 DOI: 10.3390/biom11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease of the retina that results in complete blindness. Currently, there are very few treatments for the disease and those that exist work only for the recessively inherited forms. To better understand the pathogenesis of RP, multiple mouse models have been generated bearing mutations found in human patients including the human Q344X rhodopsin knock-in mouse. In recent years, the immune system was shown to play an increasingly important role in RP degeneration. By way of electroretinography, optical coherence tomography, funduscopy, fluorescein angiography, and fluorescent immunohistochemistry, we show degenerative and vascular phenotypes, microglial activation, photoreceptor phagocytosis, and upregulation of proinflammatory pathway proteins in the retinas of the human Q344X rhodopsin knock-in mouse. We also show that an FDA-approved pharmacological agent indicated for the treatment of rheumatoid arthritis is able to halt activation of pro-inflammatory signaling in cultured retinal cells, setting the stage for pre-clinical trials using these mice to inhibit proinflammatory signaling in an attempt to preserve vision. We conclude from this work that pro- and autoinflammatory upregulation likely act to enhance the progression of the degenerative phenotype of rhodopsin Q344X-mediated RP and that inhibition of these pathways may lead to longer-lasting vision in not only the Q344X rhodopsin knock-in mice, but humans as well.
Collapse
Affiliation(s)
- T.J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Meredith G. Hubbard
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| | - Hailey J. Levi
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| | - William White
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Xiangdi Wang
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Raven Simpson
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Alecia K. Gross
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| |
Collapse
|
15
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
16
|
Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183605. [PMID: 33766534 DOI: 10.1016/j.bbamem.2021.183605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Light absorption by rhodopsin leads to the release of all-trans retinal (ATRal) in the lipid phase of photoreceptor disc membranes. Retinol dehydrogenase 8 (RDH8) then reduces ATRal into all-trans retinol, which is the first step of the visual cycle. The membrane binding of RDH8 has been postulated to be mediated by one or more palmitoylated cysteines located in its C-terminus. Different peptide variants of the C-terminus of RDH8 were thus used to obtain information on the mechanism of membrane binding of this enzyme. Steady-state and time-resolved fluorescence measurements were performed using short and long C-terminal segments of bovine RDH8, comprising one or two tryptophan residues. The data demonstrate that the amphipathic alpha helical structure of the first portion of the C-terminus of RDH8 strongly contributes to its membrane binding, which is also favored by palmitoylation of at least one of the cysteines located in the last portion of the C-terminus.
Collapse
|
17
|
Dhamija S, Yang CM, Seiler J, Myacheva K, Caudron-Herger M, Wieland A, Abdelkarim M, Sharma Y, Riester M, Groß M, Maurer J, Diederichs S. A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nat Cell Biol 2020; 22:999-1010. [DOI: 10.1038/s41556-020-0551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
|
18
|
Kramarski L, Arbely E. Translational read-through promotes aggregation and shapes stop codon identity. Nucleic Acids Res 2020; 48:3747-3760. [PMID: 32128584 PMCID: PMC7144920 DOI: 10.1093/nar/gkaa136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/22/2020] [Indexed: 12/14/2022] Open
Abstract
Faithful translation of genetic information depends on the ability of the translational machinery to decode stop codons as termination signals. Although termination of protein synthesis is highly efficient, errors in decoding of stop codons may lead to the synthesis of C-terminally extended proteins. It was found that in eukaryotes such elongated proteins do not accumulate in cells. However, the mechanism for sequestration of C-terminally extended proteins is still unknown. Here we show that 3′-UTR-encoded polypeptides promote aggregation of the C-terminally extended proteins, and targeting to lysosomes. We demonstrate that 3′-UTR-encoded polypeptides can promote different levels of protein aggregation, similar to random sequences. We also show that aggregation of endogenous proteins can be induced by aminoglycoside antibiotics that promote stop codon read-through, by UAG suppressor tRNA, or by knokcdown of release factor 1. Furthermore, we find correlation between the fidelity of termination signals, and the predicted propensity of downstream 3′-UTR-encoded polypeptides to form intrinsically disordered regions. Our data highlight a new quality control mechanism for elimination of C-terminally elongated proteins.
Collapse
Affiliation(s)
- Lior Kramarski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
19
|
Ropelewski P, Imanishi Y. RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors. eNeuro 2020; 7:ENEURO.0507-19.2020. [PMID: 32376599 PMCID: PMC7242815 DOI: 10.1523/eneuro.0507-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
Rhodopsin is mislocalized to the inner segment plasma membrane (IS PM) in various blinding disorders including autosomal-dominant retinitis pigmentosa caused by class I rhodopsin mutations. In these disorders, rhodopsin-laden microvesicles are secreted into the extracellular milieu by afflicted photoreceptor cells. Using a Xenopus laevis model expressing class I mutant rhodopsin or Na+/K+-ATPase (NKA) fused to Dendra2, we fluorescently labeled the microvesicles and found retinal pigment epithelial (RPE) cells are capable of engulfing microvesicles containing rhodopsin. A unique sorting mechanism allows class I mutant rhodopsin, but not NKA, to be packaged into the microvesicles. Under normal physiological conditions, NKA is not shed as microvesicles to the extracellular space, but is degraded intracellularly. Those studies provide novel insights into protein homeostasis in the photoreceptor IS PM.
Collapse
Affiliation(s)
- Philip Ropelewski
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yoshikazu Imanishi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
20
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
21
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
22
|
Innate and Autoimmunity in the Pathogenesis of Inherited Retinal Dystrophy. Cells 2020; 9:cells9030630. [PMID: 32151065 PMCID: PMC7140441 DOI: 10.3390/cells9030630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal dystrophies (RDs) are heterogenous in many aspects including genes involved, age of onset, rate of progression, and treatments. While RDs are caused by a plethora of different mutations, all result in the same outcome of blindness. While treatments, both gene therapy-based and drug-based, have been developed to slow or halt disease progression and prevent further blindness, only a small handful of the forms of RDs have treatments available, which are primarily for recessively inherited forms. Using immunohistochemical methods coupled with electroretinography, optical coherence tomography, and fluorescein angiography, we show that in rhodopsin mutant mice, the involvement of both the innate and the autoimmune systems could be a strong contributing factor in disease progression and pathogenesis. Herein, we show that monocytic phagocytosis and inflammatory cytokine release along with protein citrullination, a major player in forms of autoimmunity, work to enhance the progression of RD associated with a rhodopsin mutation.
Collapse
|
23
|
Fleming I, Cavalcanti ARO. Selection for tandem stop codons in ciliate species with reassigned stop codons. PLoS One 2019; 14:e0225804. [PMID: 31770405 PMCID: PMC6879139 DOI: 10.1371/journal.pone.0225804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The failure of mRNA translation machinery to recognize a stop codon as a termination signal and subsequent translation of the 3' untranslated region (UTR) is referred to as stop codon readthrough, the frequency of which is related to the length, composition, and structure of mRNA sequences downstream of end-of-gene stop codons. Secondary in-frame stop codons within a few positions downstream of the primary stop codons, so-called tandem stop codons (TSCs), serve as backup termination signals, which limit the effects of readthrough: polypeptide product degradation, mislocalization, and aggregation. In this study, ciliate species with UAA and UAG stop codons reassigned to code for glutamine are found to possess statistical excesses of TSCs at the beginning of their 3' UTRs. The overrepresentation of TSCs in these species is greater than that observed in standard code organisms. Though the overall numbers of TSCs are lower in most species with alternative stop codons because they use fewer than three unique stop codons, the relatively great overrepresentation of TSCs in alternative-code ciliate species suggests that there exist stronger selective pressures to maintain TSCs in these organisms compared to standard code organisms.
Collapse
Affiliation(s)
- Ira Fleming
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
| | - Andre R. O. Cavalcanti
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wan A, Place E, Pierce EA, Comander J. Characterizing variants of unknown significance in rhodopsin: A functional genomics approach. Hum Mutat 2019; 40:1127-1144. [PMID: 30977563 PMCID: PMC7027811 DOI: 10.1002/humu.23762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a major bottleneck in human genetics, and is increasingly important in determining which patients with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin (RHO) variants from literature and in‐house genetic diagnostic testing were created to efficiently detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A relatively simple next‐generation sequencing‐based readout was developed so that a flow cytometry‐based assay could be performed simultaneously on all variants in a pooled format, without the need for barcodes or viral transduction. The resulting dataset characterized the surface expression of every RHO library variant with a high degree of reproducibility (r2 = 0.92–0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved by identifying VUS which showed low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across multiple assays and correlated with clinical disease severity. This study presents a parallelized, higher‐throughput cell‐based assay for the functional characterization of VUS in RHO, and can be applied more broadly to other inherited retinal disease genes and other disorders.
Collapse
Affiliation(s)
- Aliete Wan
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Emily Place
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jason Comander
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
26
|
Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Mol Neurobiol 2018; 56:1637-1652. [PMID: 29911255 DOI: 10.1007/s12035-018-1192-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.
Collapse
|
27
|
C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. J Neurosci 2018; 38:3160-3176. [PMID: 29440555 DOI: 10.1523/jneurosci.2964-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
C8ORF37 is a causative gene for three different clinical forms of incurable retinal degeneration. However, the completely unknown function of C8ORF37 limits our understanding of the pathogenicity of C8ORF37 mutations. Here, we performed a comprehensive phenotypic characterization of a C8orf37 KO mouse line, generated using CRISPR/Cas9 technology. Both C8orf37 KO male and female mice exhibited progressive and simultaneous degeneration of rod and cone photoreceptors but no non-ocular phenotypes. The major ultrastructural feature of C8orf37 KO photoreceptors was massive disorganization of the outer segment (OS) membrane discs starting from the onset of disc morphogenesis during development. At the molecular level, the amounts of multiple OS-specific membrane proteins, including proteins involved in membrane disc organization, were reduced, although these proteins were targeted normally to the OS. Considering the distribution of C8ORF37 throughout the photoreceptor cell body, the normal structure of the KO photoreceptor connecting cilium, and the absence of defects in other ciliary organs of the KO mice, our findings do not support the previous notion that C8ORF37 was a ciliary protein. Because C8ORF37 is absent in the photoreceptor OS, C8ORF37 may participate in the secretory pathway of OS membrane proteins in the photoreceptor cell body and thus maintain the homeostasis of these proteins. This study established a valid animal model for future therapeutic studies of C8ORF37-associated retinal degeneration. This study also shed new light on the role of C8ORF37 in photoreceptors and on the pathogenic mechanism underlying retinal degeneration caused by C8ORF37 mutations.SIGNIFICANCE STATEMENT Inherited retinal degeneration is a group of incurable conditions with poorly understood underlying molecular mechanisms. We investigated C8ORF37, a causative gene for three retinal degenerative conditions: retinitis pigmentosa, cone-rod dystrophy, and Bardet-Biedl syndrome. C8ORF37 encodes a protein with no known functional domains and thus its biological function is unpredictable. We knocked out the C8ORF37 ortholog in mice, which resulted in a retinal phenotype similar to that observed in patients. We further demonstrated that C8ORF37 is required for photoreceptor outer segment disc formation and alignment, a process that is critical for photoreceptor function and survival. This study advances our understanding of the pathogenesis of retinal degeneration and establishes a valuable mouse model for future therapeutic development.
Collapse
|
28
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
29
|
Ezquerra-Inchausti M, Barandika O, Anasagasti A, Irigoyen C, López de Munain A, Ruiz-Ederra J. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa. Sci Rep 2017; 7:39652. [PMID: 28045043 PMCID: PMC5206707 DOI: 10.1038/srep39652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/24/2016] [Indexed: 01/24/2023] Open
Abstract
Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes.
Collapse
Affiliation(s)
| | - Olatz Barandika
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ander Anasagasti
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Cristina Irigoyen
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Ophthalmology, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain.,Department of Neurology, Donostia University Hospital, San Sebastián, Spain.,CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, Spain
| | - Javier Ruiz-Ederra
- Division of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| |
Collapse
|
30
|
Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 2016; 55:32-51. [PMID: 27352937 PMCID: PMC5112133 DOI: 10.1016/j.preteyeres.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan A Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared C Gilliam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Arribere JA, Cenik ES, Jain N, Hess GT, Lee CH, Bassik MC, Fire AZ. Translation readthrough mitigation. Nature 2016; 534:719-23. [PMID: 27281202 PMCID: PMC5054982 DOI: 10.1038/nature18308] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors.
Collapse
|
32
|
Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Vis Neurosci 2016; 33:e002. [DOI: 10.1017/s0952523815000322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRetinitis pigmentosa (RP) comprises several heritable diseases that involve photoreceptor, and ultimately retinal, degeneration. Currently, mutations in over 50 genes have known links to RP. Despite advances in clinical characterization, molecular characterization of RP remains challenging due to the heterogeneous nature of causal genes, mutations, and clinical phenotypes. In this study, we compiled large datasets of two important visual genes associated with RP: rhodopsin, which initiates the phototransduction cascade, and the retinoid isomerase RPE65, which regenerates the visual cycle. We used a comparative evolutionary approach to investigate the relationship between interspecific sequence variation and pathogenic mutations that lead to degenerative retinal disease. Using codon-based likelihood methods, we estimated evolutionary rates (dN/dS) across both genes in a phylogenetic context to investigate differences between pathogenic and nonpathogenic amino acid sites. In both genes, disease-associated sites showed significantly lower evolutionary rates compared to nondisease sites, and were more likely to occur in functionally critical areas of the proteins. The nature of the dataset (e.g., vertebrate or mammalian sequences), as well as selection of pathogenic sites, affected the differences observed between pathogenic and nonpathogenic sites. Our results illustrate that these methods can serve as an intermediate step in understanding protein structure and function in a clinical context, particularly in predicting the relative pathogenicity (i.e., functional impact) of point mutations and their downstream phenotypic effects. Extensions of this approach may also contribute to current methods for predicting the deleterious effects of candidate mutations and to the identification of protein regions under strong constraint where we expect pathogenic mutations to occur.
Collapse
|
33
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
34
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
35
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|
36
|
Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:39-71. [PMID: 26055054 DOI: 10.1016/bs.pmbts.2015.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodopsin is a seven-transmembrane G protein-coupled receptor (GPCR) and is the main component of the photoreceptor outer segment (OS), a ciliary compartment essential for vision. Because the OSs are incapable of protein synthesis, rhodopsin must first be synthesized in the inner segments (ISs) and subsequently trafficked across the connecting cilia to the OSs where it participates in the phototransduction cascade. Rapid turnover of the OS necessitates a high rate of synthesis and efficient trafficking of rhodopsin to the cilia. This cilia-targeting mechanism is shared among other ciliary-localized GPCRs. In this review, we will discuss the process of rhodopsin trafficking from the IS to the OS beginning with the trafficking signals present on the protein. Starting from the endoplasmic reticulum and the Golgi apparatus within the IS, we will cover the molecular components assisting the biogenesis and the proper sorting. We will also review the confirmed binding and interacting partners that help target rhodopsin toward the connecting cilium as well as the cilia-localized components which direct proteins into the proper compartments of the OS. While rhodopsin is the most critical and abundant component of the photoreceptor OS, mutations in the rhodopsin gene commonly lead to its mislocalization within the photoreceptors. In addition to covering the trafficking patterns of rhodopsin, we will also review some of the most common rhodopsin mutants which cause mistrafficking and subsequent death of photoreceptors. Toward the goal of understanding the pathogenesis, three major mechanisms of aberrant trafficking as well as putative mechanisms of photoreceptor degeneration will be discussed.
Collapse
|
37
|
An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina. Cell Death Dis 2014; 5:e1578. [PMID: 25522272 PMCID: PMC4454166 DOI: 10.1038/cddis.2014.539] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/23/2014] [Accepted: 11/27/2014] [Indexed: 12/03/2022]
Abstract
Recent studies on the endoplasmic reticulum stress have shown that the unfolded
protein response (UPR) is involved in the pathogenesis of inherited retinal
degeneration caused by mutant rhodopsin. However, the main question of whether
UPR activation actually triggers retinal degeneration remains to be addressed.
Thus, in this study, we created a mouse model for retinal degeneration caused by
a persistently activated UPR to assess the physiological and morphological
parameters associated with this disease state and to highlight a potential
mechanism by which the UPR can promote retinal degeneration. We performed an
intraocular injection in C57BL6 mice with a known unfolded protein response
(UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography
(ERG), spectral domain optical coherence tomography (SD-OCT) and histological
analyses. We detected a significant loss of photoreceptor function (over
60%) and retinal structure (35%) 30 days post treatment. Analysis
of retinal protein extracts demonstrated a significant upregulation of
inflammatory markers including interleukin-1β
(IL-1β), IL-6, tumor necrosis factor-α
(TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1.
Similarly, we detected a strong inflammatory response in mice expressing either
Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe
retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in
mice. RNA and protein analysis revealed a significant upregulation of pro- and
anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor
kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1
microglial markers in both the retinas expressing mutant rhodopsins. We then
assessed if the Tn-induced inflammatory marker IL-1β was capable
of inducing retinal degeneration by injecting C57BL6 mice with a recombinant
IL-1β. We observed ~19% reduction in ERG a-wave
amplitudes and a 29% loss of photoreceptor cells compared with control
retinas, suggesting a potential link between pro-inflammatory cytokines and
retinal pathophysiological effects. Our work demonstrates that in the context of
an established animal model for ocular disease, the persistent activation of the
UPR could be responsible for promoting retinal degeneration via the UPR-induced
pro-inflammatory cytokine IL-1β.
Collapse
|
38
|
Schmitt SM, Gull M, Brändli AW. Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 2014; 69-70:225-46. [PMID: 24576445 DOI: 10.1016/j.addr.2014.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 02/08/2023]
Abstract
Many rare human inherited diseases remain untreatable despite the fact that the disease causing genes are known and adequate mouse disease models have been developed. In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic phenotype in whole organisms. Embryos of zebrafish and Xenopus frogs are abundant, small and free-living. They can be easily arrayed in multi-well dishes and treated with small organic molecules. With the development of novel genome modification tools, such a zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas, it is now possible to efficiently engineer non-mammalian models of inherited human diseases. Here, we will review the rapid progress made in adapting these novel genome editing tools to Xenopus. The advantages of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery screening will be discussed. Being a tetrapod, Xenopus complements zebrafish as an indispensable non-mammalian animal model for the study of human disease pathologies and the discovery of novel therapeutics for inherited diseases.
Collapse
|