1
|
Dolai S, Pal S, Deepa S, Garai K. Quantitative Assessment of Conformational Heterogeneity in Apolipoprotein E4 Using Hydrogen-Deuterium Exchange Mass Spectrometry. J Phys Chem B 2024; 128:10075-10085. [PMID: 39360975 DOI: 10.1021/acs.jpcb.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Apolipoprotein E4 (apoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). However, structural differences between apoE4 and the AD-neutral isoform, apoE3, still remain unclear. Recent studies suggest that apoE4 harbors intermediates. However, the biophysical properties and isoform specificity of these intermediates are not known. Here, we use the kinetics of hydrogen-deuterium exchange by mass spectrometry (HDX-MS) to examine the conformational heterogeneities in apoE3 and apoE4. First, we use numerical simulations to compute the HDX-mass spectra of a protein following mixed EX1/EX2 kinetics. The results indicate that in the presence of EX1 kinetics, which is an indicator of conformational heterogeneity, time evolution of the standard deviation (σ(t)) of the spectra exhibits a clear peak, which is dependent on the number of residues (NEX1) and the rate constant of EX1 kinetics (kEX1). Then, we performed experiments with several variants of the apoE proteins and compared them with simulation to estimate NEX1 and kEX1. Kinetics of the mean deuteration is found to be faster for apoE4, consistent with its poorer stability than apoE3. Importantly, in the case of apoE4, σ(t) exhibits a clear peak at t ∼ 60 s, but apoE3 shows only a small peak at 1800 s. Therefore, both NEX1 and kEX1 are larger for apoE4, indicating greater conformational heterogeneity. Notably, the partial EX1 kinetics is observed in both the isolated N-terminal fragment and the full-length form of apoE4, although it is more pronounced in the full-length protein. Moreover, it is enhanced at higher pH and in the presence of bis-ANS. Mutations such as R61T and R112I diminish the EX1 kinetics, making apoE4 behave more like apoE3. Thus, the amino acid substitution at position 112 alters the structural dynamics of the N-terminal domain of apoE4; the changes are further propagated and amplified in the full-length protein. We conclude that HDX-MS is a label-free and robust methodology to characterize structural heterogeneities of proteins even under native conditions. This opens opportunities for screening of the "structure corrector" drug molecules that could convert apoE4 to apoE3-like.
Collapse
Affiliation(s)
- Subhrajyoti Dolai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Sudip Pal
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - S Deepa
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| |
Collapse
|
2
|
Poblano J, Castillo-Tobías I, Berlanga L, Tamayo-Ordoñez MC, Del Carmen Rodríguez-Salazar M, Silva-Belmares SY, Aguayo-Morales H, Cobos-Puc LE. Drugs targeting APOE4 that regulate beta-amyloid aggregation in the brain: Therapeutic potential for Alzheimer's disease. Basic Clin Pharmacol Toxicol 2024; 135:237-249. [PMID: 39020526 DOI: 10.1111/bcpt.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce β-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aβ aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Joan Poblano
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ileana Castillo-Tobías
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Lia Berlanga
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | | | | | | | - Hilda Aguayo-Morales
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
3
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2024:10.1007/s12035-024-04449-1. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
4
|
Alam MZ, Bagabir HA, Zaher MAF, Alqurashi TMA, Alghamdi BS, Kazi M, Ashraf GM, Alshahrany GA, Alzahrani NA, Bakhalgi RM, Juweiriya, Al-Thepyani M, AboTaleb HA, Aldhahri RS, El-Aziz GSA, Al-Abbasi FA, Eibani LK, Alzahrani FJ, Khan MSA. Black Seed Oil-Based Curcumin Nanoformulations Ameliorated Cuprizone-Induced Demyelination in the Mouse Hippocampus. Mol Neurobiol 2024:10.1007/s12035-024-04310-5. [PMID: 38890237 DOI: 10.1007/s12035-024-04310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Thamer M A Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. BOX-2457, 11451, Riyadh, Saudi Arabia
| | - Ghulam Md Ashraf
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gadah Ali Alshahrany
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rafal Mohammed Bakhalgi
- Department of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Juweiriya
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India
| | - Mona Al-Thepyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Gamal Said Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loay Khaled Eibani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Jaman Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Tan J, Tan YY, Ngian ZK, Chong SY, Rao VK, Wang JW, Zeng X, Ong CT. ApoE maintains neuronal integrity via microRNA and H3K27me3-mediated repression. iScience 2024; 27:109231. [PMID: 38439966 PMCID: PMC10909902 DOI: 10.1016/j.isci.2024.109231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
ApoE regulates neurogenesis, although how it influences genetic programs remains elusive. Cortical neurons induced from isogenic control and ApoE-/- human neural stem cells (NSCs) recapitulated key transcriptomic signatures of in vivo counterparts identified from single-cell human midbrain. Surprisingly, ApoE expression in NSC and neural progenitor cells (NPCs) is not required for differentiation. Instead, ApoE prevents the over-proliferation of non-neuronal cells during extended neuronal culture when it is not expressed. Elevated miR-199a-5p level in ApoE-/- cells lowers the EZH1 protein and the repressive H3K27me3 mark, a phenotype rescued by miR-199a-5p steric inhibitor. Reduced H3K27me3 at genes linked to extracellular matrix organization and angiogenesis in ApoE-/- NPC correlates with their aberrant expression and phenotypes in neurons. Interestingly, the ApoE coding sequence, which contains many predicted miR-199a-5p binding sites, can repress miR-199a-5p without translating into protein. This suggests that ApoE maintains neurons integrity through the target-directed miRNA degradation of miR-199a-5p, imparting the H3K27me3-mediated repression of non-neuronal genes during differentiation.
Collapse
Affiliation(s)
- Jiazi Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Yow-Yong Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhen-Kai Ngian
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Suet-Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vinay Kumar Rao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Xianmin Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- RxCell Inc, Novato, CA 94945, USA
| | - Chin-Tong Ong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
6
|
Biochanin A Improves Memory Decline and Brain Pathology in Cuprizone-Induced Mouse Model of Multiple Sclerosis. Behav Sci (Basel) 2022; 12:bs12030070. [PMID: 35323389 PMCID: PMC8945046 DOI: 10.3390/bs12030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system characterized by the demyelination of nerves, neural degeneration, and axonal loss. Cognitive impairment, including memory decline, is a significant feature in MS affecting up to 70% of patients. Thereby, it substantially impacts patients’ quality of life. Biochanin A (BCA) is an o-methylated isoflavone with a wide variety of pharmacological activities, including antioxidant, anti-inflammatory, and neuroprotective activities. Thus, this study aimed to investigate the possible protective effects of BCA on memory decline in the cuprizone (CPZ) model of MS. Thirty Swiss albino male mice (SWR/J) were randomly divided into three groups (n = 10): control (normal chow + i.p. 1:9 mixture of DMSO and PBS), CPZ (0.2% w/w of CPZ mixed into chow + i.p. 1:9 mixture of DMSO and PBS), and CPZ + BCA (0.2% w/w of CPZ mixed into chow + i.p. 40 mg/kg of BCA). At the last week of the study (week 5), a series of behavioral tasks were performed. A grip strength test was performed to assess muscle weakness while Y-maze, novel object recognition task (NORT), and novel arm discrimination task (NADT) were performed to assess memory. Additionally, histological examination of the hippocampus and the prefrontal cortex (PFC) were conducted. BCA administration caused a significant increase in the grip strength compared with the CPZ group. Additionally, BCA significantly improved the mice’s spatial memory in the Y-maze and recognition memory in the NORT and the NADT compared with the CPZ group. Moreover, BCA mitigated neuronal damage in the PFC and the hippocampus after five weeks of administration. In conclusion, our data demonstrates the possible protective effect of BCA against memory deterioration in mice fed with CPZ for five weeks.
Collapse
|
7
|
Adult Hippocampal Neurogenesis in Alzheimer’s Disease: An Overview of Human and Animal Studies with Implications for Therapeutic Perspectives Aimed at Memory Recovery. Neural Plast 2022; 2022:9959044. [PMID: 35075360 PMCID: PMC8783751 DOI: 10.1155/2022/9959044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
The mammalian hippocampal dentate gyrus is a niche for adult neurogenesis from neural stem cells. Newborn neurons integrate into existing neuronal networks, where they play a key role in hippocampal functions, including learning and memory. In the ageing brain, neurogenic capability progressively declines while in parallel increases the risk for developing Alzheimer's disease (AD), the main neurodegenerative disorder associated with memory loss. Numerous studies have investigated whether impaired adult neurogenesis contributes to memory decline in AD. Here, we review the literature on adult hippocampal neurogenesis (AHN) and AD by focusing on both human and mouse model studies. First, we describe key steps of AHN, report recent evidence of this phenomenon in humans, and describe the specific contribution of newborn neurons to memory, as evinced by animal studies. Next, we review articles investigating AHN in AD patients and critically examine the discrepancies among different studies over the last two decades. Also, we summarize researches investigating AHN in AD mouse models, and from these studies, we extrapolate the contribution of molecular factors linking AD-related changes to impaired neurogenesis. Lastly, we examine animal studies that link impaired neurogenesis to specific memory dysfunctions in AD and review treatments that have the potential to rescue memory capacities in AD by stimulating AHN.
Collapse
|
8
|
Hossain MM, Belkadi A, Al-Haddad S, Richardson JR. Deltamethrin Exposure Inhibits Adult Hippocampal Neurogenesis and Causes Deficits in Learning and Memory in Mice. Toxicol Sci 2021; 178:347-357. [PMID: 32976580 DOI: 10.1093/toxsci/kfaa144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deficits in learning and memory are often associated with disruption of hippocampal neurogenesis, which is regulated by numerous processes, including precursor cell proliferation, survival, migration, and differentiation to mature neurons. Recent studies demonstrate that adult born neurons in the dentate gyrus (DG) in the hippocampus can functionally integrate into the existing neuronal circuitry and contribute to hippocampal-dependent learning and memory. Here, we demonstrate that relatively short-term deltamethrin exposure (3 mg/kg every 3 days for 1 month) inhibits adult hippocampal neurogenesis and causes deficits in learning and memory in mice. Hippocampal-dependent cognitive functions were evaluated using 2 independent hippocampal-dependent behavioral tests, the novel object recognition task and Morris water maze. We found that deltamethrin-treated mice exhibited profound deficits in novel object recognition and learning and memory in water maze. Deltamethrin exposure significantly decreased bromodeoxyuridine (BrdU)-positive cells (39%) and Ki67+ cells (47%) in the DG of the hippocampus, indicating decreased cellular proliferation. In addition, deltamethrin-treated mice exhibited a 44% decrease in nestin-expressing neural progenitor cells and a 38% reduction in the expression of doublecortin (DCX), an early neuronal differentiation marker. Furthermore, deltamethrin-exposed mice exhibited a 25% reduction in total number of granule cells in the DG. These findings indicate that relatively short-term exposure to deltamethrin causes significant deficits in hippocampal neurogenesis that is associated with impaired learning and memory.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Abdelmadjid Belkadi
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Sara Al-Haddad
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| |
Collapse
|
9
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
10
|
Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Mol Psychiatry 2021; 26:2740-2752. [PMID: 33879866 PMCID: PMC8056795 DOI: 10.1038/s41380-021-01105-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022]
Abstract
Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Collapse
Affiliation(s)
- Yuki Yasumoto
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jung Dae Kim
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sabrina Diano
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Liu H, Zhang H, Ma Y. Molecular mechanisms of altered adult hippocampal neurogenesis in Alzheimer's disease. Mech Ageing Dev 2021; 195:111452. [PMID: 33556365 DOI: 10.1016/j.mad.2021.111452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia globally. AD is a progressive neurodegenerative disorder, eventually manifesting as severe cognitive impairment. Adult hippocampal neurogenesis (AHN) occurs throughout adulthood and plays an important role in hippocampus-dependent learning and memory. The stages of AHN, predominantly comprising the proliferation, differentiation, survival, and maturation of newborn neurons, are affected to varying degrees in AD. However, the exact molecular mechanisms remain to be elucidated. Recent evidence suggests that the molecules involved in AD pathology contribute to the compromised AHN in AD. Notably, various interventions may have common signaling pathways that, once identified, could be harnessed to enhance adult neurogenesis. This in turn could putatively rescue cognitive deficits associated with impaired neurogenesis as observed in animal models of AD. In this manuscript, we review the current knowledge concerning AHN under normal physiological and AD pathological conditions and highlight the possible role of specific molecules in AHN alteration in AD. In addition, we summarize in vivo experiments with emphasis on the effect of the activation of certain key signalings on AHN in AD rodent models. We propose that these signaling targets and corresponding interventions should be considered when developing novel therapies for AD.
Collapse
Affiliation(s)
- Hang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Han Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey JM, Lines G, Kerins C, Mueller AK, Zetterberg H, Hardy J, Ryan NS, Fox NC, Lashley T, Wray S. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep 2021; 34:108615. [PMID: 33440141 PMCID: PMC7809623 DOI: 10.1016/j.celrep.2020.108615] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jackie M Casey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgie Lines
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caoimhe Kerins
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anika K Mueller
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
13
|
Apolipoprotein E4 exhibits intermediates with domain interaction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140535. [PMID: 32882410 DOI: 10.1016/j.bbapap.2020.140535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
ApoE4(C112R) is the strongest risk factor for Alzheimer's disease, while apoE3(C112) is considered normal. The C112R substitution is believed to alter the interactions between the N-terminal (NTD) and the C-terminal domain (CTD) leading to major functional differences. Here we investigate how the molecular property of the residue at position 112 affects domain interaction using an array of C112X substitutions with arginine, alanine, threonine, valine, leucine and isoleucine as 'X'. We attempt to determine the free energy of domain interaction (∆GINT) from stabilities of the NTD (∆GNTD) and CTD (∆GCTD) in the full-length apoE, and the stabilities of fragments of the NTD (∆GNTF) and CTD (∆GCTF), using the relationship, ∆GINT = ∆GNTD + ∆GCTD - ∆GNTF - ∆GCTF. We find that although ∆GNTD is strongly dependent on the C112X substitutions, ∆GNTD - ∆GNTF is small. Furthermore, ∆GCTD remains nearly the same as ∆GCTF. Therefore, ∆GINT is estimated to be small and similar for the apoE isoforms. However, stability of domain interaction monitored by urea dependent changes in interdomain Forster Resonance Energy Transfer (FRET) is found to be strongly dependent on C112X substitutions. ApoE4 exhibits the highest mid-point of denaturation of interdomain FRET. To resolve the apparently contradictory observations, we hypothesize that higher interdomain FRET in apoE4 in urea may involve 'intermediate' states. Enhanced fluorescence of bis-ANS and susceptibility to proteolytic cleavage support that apoE4, specifically, the NTD of apoE4 harbor 'intermediates' in both native and mildly denaturing conditions. The intermediates could hold key to the pathological functions of apoE4.
Collapse
|
14
|
Eroli F, Johnell K, Latorre Leal M, Adamo C, Hilmer S, Wastesson JW, Cedazo-Minguez A, Maioli S. Chronic polypharmacy impairs explorative behavior and reduces synaptic functions in young adult mice. Aging (Albany NY) 2020; 12:10147-10161. [PMID: 32445552 PMCID: PMC7346056 DOI: 10.18632/aging.103315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
A major challenge in the health care system is the lack of knowledge about the possible harmful effects of multiple drug treatments in old age. The present study aims to characterize a mouse model of polypharmacy, in order to investigate whether long-term exposure to multiple drugs could lead to adverse outcomes. To this purpose we selected five drugs from the ten most commonly used by older adults in Sweden (metoprolol, paracetamol, aspirin, simvastatin and citalopram). Five-month-old wild type male mice were fed for eight weeks with control or polypharmacy diet. We report for the first time that young adult polypharmacy-treated mice showed a significant decrease in exploration and spatial working memory compared to the control group. This memory impairment was further supported by a significant reduction of synaptic proteins in the hippocampus of treated mice. These novel results suggest that already at young adult age, use of polypharmacy affects explorative behavior and synaptic functions. This study underlines the importance of investigating the potentially negative outcomes from concomitant administration of different drugs, which have been poorly explored until now. The mouse model proposed here has translatable findings and can be applied as a useful tool for future studies on polypharmacy.
Collapse
Affiliation(s)
- Francesca Eroli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - María Latorre Leal
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Chiara Adamo
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Sarah Hilmer
- Kolling Institute, Royal North Shore Hosptial and University of Sydney, Clinical Pharmacology and Aged Care, Sidney, Australia
| | - Jonas W Wastesson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| |
Collapse
|
15
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
16
|
Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, Bishop NA, Pan Y, Seo J, Lin YT, Su SC, Church GM, Tsai LH, Yankner BA. REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. Cell Rep 2020; 26:1112-1127.e9. [PMID: 30699343 PMCID: PMC6386196 DOI: 10.1016/j.celrep.2019.01.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular basis of the earliest neuronal changes that lead to Alzheimer’s disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD. Meyer et al. derive neural progenitors, neurons, and cerebral organoids from sporadic Alzheimer’s disease (SAD) and APOE4 gene-edited iPSCs. SAD and APOE4 expression alter the neural transcriptome and differentiation in part through loss of function of the transcriptional repressor REST. Thus, neural gene network dysregulation may lead to Alzheimer’s disease.
Collapse
Affiliation(s)
- Katharina Meyer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather M Feldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Lu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Derek Drake
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine T Lim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nicholas A Bishop
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Pan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinsoo Seo
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuan-Ta Lin
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan C Su
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Prajapati SK, Singh N, Garabadu D, Krishnamurthy S. A novel stress re-stress model: modification of re-stressor cue induces long-lasting post-traumatic stress disorder-like symptoms in rats. Int J Neurosci 2020; 130:941-952. [DOI: 10.1080/00207454.2019.1711078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Neha Singh
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Debapriya Garabadu
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| |
Collapse
|
18
|
Goetghebeur PJ, Wesnes KA, Targum SD. D-Cycloserine Improves Difficult Discriminations in a Pattern Separation Task in Alzheimer’s Disease Patients with Dementia. J Alzheimers Dis 2019; 69:377-383. [DOI: 10.3233/jad-181094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Keith A. Wesnes
- Wesnes Cognition Ltd, Streatley on Thames, UK
- Medical School, University of Exeter, Exeter, UK
- Department of Psychology, Northumbria University, Newcastle, UK
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| | | |
Collapse
|
19
|
Zhu F, Nair RR, Fisher EMC, Cunningham TJ. Humanising the mouse genome piece by piece. Nat Commun 2019; 10:1845. [PMID: 31015419 PMCID: PMC6478830 DOI: 10.1038/s41467-019-09716-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
To better understand human health and disease, researchers create a wide variety of mouse models that carry human DNA. With recent advances in genome engineering, the targeted replacement of mouse genomic regions with orthologous human sequences has become increasingly viable, ranging from finely tuned humanisation of individual nucleotides and amino acids to the incorporation of many megabases of human DNA. Here, we examine emerging technologies for targeted genomic humanisation, we review the spectrum of existing genomically humanised mouse models and the insights such models have provided, and consider the lessons learned for designing such models in the future. Generation of transgenic mice has become routine in studying gene function and disease mechanisms, but often this is not enough to fully understand human biology. Here, the authors review the current state of the art of targeted genomic humanisation strategies and their advantages over classic approaches.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | | |
Collapse
|
20
|
Female mice with apolipoprotein E4 domain interaction demonstrated impairments in spatial learning and memory performance and disruption of hippocampal cyto-architecture. Neurobiol Learn Mem 2019; 161:106-114. [PMID: 30954674 DOI: 10.1016/j.nlm.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
We have previously reported cognitive impairments in both young and old mice, particularly in female mice expressing mouse Arg-61 apoE, with a point mutation to mimic the domain interaction feature of human apoE4, as compared to the wildtype mouse (C57BL/6J) apoE. In this study, we further evaluated water maze performance in the female Arg-61 mice at an additional time point and then investigated related hippocampal cyto-architecture in these young female Arg-61 apoE mice vs. the wildtype mice. The results of behavioral performance consistently support our previous report that the young female Arg-61 apoE showed cognitive impairment versus C57BL/6J at the same age. The cyto-architectural results showed that volume of the granular cell layer (GCL) was significantly larger in both 5- and 10-month old Arg-61 apoE mice versus C57BL/6J mice. While the number of newborn calretinin-positive neurons was greater in the sub-granular zone (SGZ) in 5-month old Arg-61 mice, this number dropped significantly in 10-month old Arg-61 mice to a lower level than in age-matched C57BL/6J mice. In addition, the amyloid β species was significantly higher in 5-month old Arg-61 mice versus age-matched C57BL/6J mice. In conclusion, impaired cognitive functions in female Arg-61 apoE mice appear correlated with larger GCL volume and higher calretinin-positive cell number and suggest a compensatory cellular response that may be related to amyloid beta perturbations early in life. Therefore this study suggests a novel cyto-architectural mechanism of apoE4-dependent pathologies and increased susceptibility of APOEε4 subjects to Alzheimer's disease.
Collapse
|
21
|
Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 Agonist Reverses the ApoE4-Driven Cognitive and Brain Pathologies. J Alzheimers Dis 2018; 54:1219-1233. [PMID: 27567858 DOI: 10.3233/jad-160467] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aβ42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively. We presently utilized CS-6253, a peptide shown to directly activate ABCA1 in vitro, and examined the extent to which it can affect the degree of lipidation of apoE4 in vivo and counteract the associated brain and behavioral pathologies. This revealed that treatment of young apoE4-targeted replacement mice with CS-6253 increases the lipidation of apoE4. This was associated with a reversal of the apoE4-driven Aβ42 accumulation and tau hyperphosphorylation in hippocampal neurons, as well as of the synaptic impairments and cognitive deficits. These findings suggest that the pathological effects of apoE4 in vivo are associated with decreased activation of ABCA1 and impaired lipidation of apoE4 and that the downstream brain-related pathology and cognitive deficits can be counteracted by treatment with the ABCA1 agonist CS-6253. These findings have important clinical ramifications and put forward ABCA1 as a promising target for apoE4-related treatment of AD.
Collapse
Affiliation(s)
- Anat Boehm-Cagan
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Bar
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - John K Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | | | - Daniel M Michaelson
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Adeosun SO, Hou X, Zheng B, Melrose HL, Mosley T, Wang JM. Human LRRK2 G2019S mutation represses post-synaptic protein PSD95 and causes cognitive impairment in transgenic mice. Neurobiol Learn Mem 2017; 142:182-189. [PMID: 28487191 DOI: 10.1016/j.nlm.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND LRRK2 G2019S mutation is associated with increased kinase activity and is the most common mutation associated with late-onset PD. However, the transgenic mouse model has not recapitulated cardinal PD-related motor phenotypes. Non-motor symptoms of PD including cognitive impairments are very common and may appear earlier than the motor symptoms. The objective of this study was to determine whether human LRRK2 with G2019S mutation causes hippocampus-dependent cognitive deficits in mice. RESULTS Male (LRRK2-G2019S) LRRK2-Tg mice showed impairments in the early portion of the Two-day radial arm water maze acquisition trial as well as in the reversal learning on the third day. However, their performance was similar to Non-Tg controls in the probe trial. LRRK2-Tg mice also displayed impairments in the novel arm discrimination test but not in the spontaneous alternation test in Y-maze. Interestingly, there was no statistically significant locomotor impairment during any of these cognitive test, nor in the locomotor tests including open field, accelerating rotarod and pole tests. Expression of the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin was lower in hippocampal homogenates of LRRK2-Tg mice. CONCLUSION Consistent with previous reports in human LRRK2 G2019S carriers, the current data suggests that cognitive dysfunctions are present in LRRK2-Tg mice even in the absence of locomotor impairment. LRRK2 G2019S mutation represses the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin. This study also suggests that mild cognitive impairment may appear earlier than motor dysfunctions in LRRK2-G2019S mutation carriers.
Collapse
Affiliation(s)
- Samuel O Adeosun
- Department of Pathology, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, United States.
| | - Xu Hou
- Department of Pathology, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, United States.
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, United States.
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, United States.
| | - Thomas Mosley
- Department of Medicine, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, United States.
| | - Jun Ming Wang
- Department of Pathology, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, United States.
| |
Collapse
|
23
|
Muhie S, Gautam A, Chakraborty N, Hoke A, Meyerhoff J, Hammamieh R, Jett M. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl Psychiatry 2017; 7:e1135. [PMID: 28534873 PMCID: PMC5534959 DOI: 10.1038/tp.2017.91] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
A social-stress mouse model was used to simulate features of post-traumatic stress disorder (PTSD). The model involved exposure of an intruder (male C57BL/6) mouse to a resident aggressor (male SJL) mouse for 5 or 10 consecutive days. Transcriptome changes in brain regions (hippocampus, amygdala, medial prefrontal cortex and hemibrain), blood and spleen as well as epigenome changes in the hemibrain were assayed after 1- and 10-day intervals following the 5-day trauma or after 1- and 42-day intervals following the 10-day trauma. Analyses of differentially expressed genes (common among brain, blood and spleen) and differentially methylated promoter regions revealed that neurogenesis and synaptic plasticity pathways were activated during the early responses but were inhibited after the later post-trauma intervals. However, inflammatory pathways were activated throughout the observation periods, except in the amygdala in which they were inhibited only at the later post-trauma intervals. Phenotypically, inhibition of neurogenesis was corroborated by impaired Y-maze behavioral responses. Sustained neuroinflammation appears to drive the development and maintenance of behavioral manifestations of PTSD, potentially via its inhibitory effect on neurogenesis and synaptic plasticity. By contrast, peripheral inflammation seems to be directly responsible for tissue damage underpinning somatic comorbid pathologies. Identification of overlapping, differentially regulated genes and pathways between blood and brain suggests that blood could be a useful and accessible brain surrogate specimen for clinical translation.
Collapse
Affiliation(s)
- S Muhie
- The Geneva Foundation, Frederick, MD, USA,Advanced Academics Programs, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - A Gautam
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA
| | | | - A Hoke
- The Geneva Foundation, Frederick, MD, USA
| | | | - R Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA
| | - M Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA,Integrative Systems Biology, US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010, USA. E-mail:
| |
Collapse
|
24
|
Gordon D, Londono D, Patel P, Kim W, Finch SJ, Heiman GA. An Analytic Solution to the Computation of Power and Sample Size for Genetic Association Studies under a Pleiotropic Mode of Inheritance. Hum Hered 2017; 81:194-209. [PMID: 28315880 DOI: 10.1159/000457135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Our motivation here is to calculate the power of 3 statistical tests used when there are genetic traits that operate under a pleiotropic mode of inheritance and when qualitative phenotypes are defined by use of thresholds for the multiple quantitative phenotypes. Specifically, we formulate a multivariate function that provides the probability that an individual has a vector of specific quantitative trait values conditional on having a risk locus genotype, and we apply thresholds to define qualitative phenotypes (affected, unaffected) and compute penetrances and conditional genotype frequencies based on the multivariate function. We extend the analytic power and minimum-sample-size-necessary (MSSN) formulas for 2 categorical data-based tests (genotype, linear trend test [LTT]) of genetic association to the pleiotropic model. We further compare the MSSN of the genotype test and the LTT with that of a multivariate ANOVA (Pillai). We approximate the MSSN for statistics by linear models using a factorial design and ANOVA. With ANOVA decomposition, we determine which factors most significantly change the power/MSSN for all statistics. Finally, we determine which test statistics have the smallest MSSN. In this work, MSSN calculations are for 2 traits (bivariate distributions) only (for illustrative purposes). We note that the calculations may be extended to address any number of traits. Our key findings are that the genotype test usually has lower MSSN requirements than the LTT. More inclusive thresholds (top/bottom 25% vs. top/bottom 10%) have higher sample size requirements. The Pillai test has a much larger MSSN than both the genotype test and the LTT, as a result of sample selection. With these formulas, researchers can specify how many subjects they must collect to localize genes for pleiotropic phenotypes.
Collapse
Affiliation(s)
- Derek Gordon
- Department of Genetics, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
25
|
Current Opinion on the Role of Neurogenesis in the Therapeutic Strategies for Alzheimer Disease, Parkinson Disease, and Ischemic Stroke; Considering Neuronal Voiding Function. Int Neurourol J 2016; 20:276-287. [PMID: 28043116 PMCID: PMC5209581 DOI: 10.5213/inj.1632776.388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Neurological diseases such as Alzheimer, Parkinson, and ischemic stroke have increased in occurrence and become important health issues throughout the world. There is currently no effective therapeutic strategy for addressing neurological deficits after the development of these major neurological disorders. In recent years, it has become accepted that adult neural stem cells located in the subventricular and subgranular zones have the ability to proliferate and differentiate in order to replace lost or damaged neural cells. There have been many limitations in the clinical application of both endogenous and exogenous neurogenesis for neurological disorders. However, many studies have investigated novel mechanisms in neurogenesis and have shown that these limitations can potentially be overcome with appropriate stimulation and various approaches. We will review concepts related to possible therapeutic strategies focused on the perspective of neurogenesis for the treatment of patients diagnosed with Alzheimer disease, Parkinson disease, and ischemic stroke based on current reports.
Collapse
|
26
|
Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:92-106. [PMID: 29067321 PMCID: PMC5651376 DOI: 10.1016/j.trci.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Combination therapy approaches may be necessary to address the many facets of pathologic change in the brain in Alzheimer's disease (AD). The drugs leptin and pioglitazone have previously been shown individually to have neuroprotective and anti-inflammatory actions, respectively, in animal models. METHODS We studied the impact of combined leptin and pioglitazone treatment in 6-month-old APP/PS1 (APPswe/PSEN1dE9) transgenic AD mouse model. RESULTS We report that an acute 2-week treatment with combined leptin and pioglitazone resulted in a reduction of spatial memory deficits (Y maze) and brain β-amyloid levels (soluble β-amyloid and amyloid plaque burden) relative to vehicle-treated animals. Combination treatment was also associated with amelioration in plaque-associated neuritic pathology and synapse loss, and also a significantly reduced neocortical glial response. DISCUSSION Combination therapy with leptin and pioglitazone ameliorates pathologic changes in APP/PS1 mice and may represent a potential treatment approach for AD.
Collapse
Affiliation(s)
- Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Meng I Chuah
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
27
|
Mahgoub M, Adachi M, Suzuki K, Liu X, Kavalali ET, Chahrour MH, Monteggia LM. MeCP2 and histone deacetylases 1 and 2 in dorsal striatum collectively suppress repetitive behaviors. Nat Neurosci 2016; 19:1506-1512. [PMID: 27668390 PMCID: PMC5083208 DOI: 10.1038/nn.4395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/25/2016] [Indexed: 02/08/2023]
Abstract
Class I histone deacetylases (HDACs), HDAC1 and HDAC2 often associate together in protein complexes with transcriptional factors such as methyl-CpG-binding protein 2 (MeCP2). Given their high degree of sequence identity, we examined the functional redundancy of HDAC1 and HDAC2 in mature brain. We demonstrate that postnatal forebrain-specific deletion of both HDAC1 and HDAC2 in mice impacts neuronal survival and results in an excessive grooming phenotype caused by dysregulation of the obsessive-compulsive disorder-implicated gene SAP90/PSD-95-associated protein 3 (SAPAP3) in striatum. Moreover, HDAC1- and HDAC2-dependent regulation of SAPAP3 expression requires Mecp2, the gene involved in the pathophysiology of Rett syndrome. We show that postnatal forebrain-specific deletion of Mecp2 causes excessive grooming, which is rescued by restoring striatal Sapap3 expression. Our results provide novel insight into the upstream regulation of SAPAP3, and establish the essential role of striatal HDAC1, HDAC2, and MeCP2 for suppression of repetitive behaviors.
Collapse
Affiliation(s)
- Melissa Mahgoub
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Megumi Adachi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kanzo Suzuki
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xihui Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa M Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Dowell NG, Evans SL, Tofts PS, King SL, Tabet N, Rusted JM. Structural and resting-state MRI detects regional brain differences in young and mid-age healthy APOE-e4 carriers compared with non-APOE-e4 carriers. NMR IN BIOMEDICINE 2016; 29:614-624. [PMID: 26929040 DOI: 10.1002/nbm.3502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The presence of the e4 allele of the apolipoprotein E (APOE) gene is the best-known genetic risk factor for Alzheimer's disease. In this study, we investigated the link between functional and behavioural differences and regional brain volume and cortical thickness differences in those who carry the e4 allele (e4+) and those who only carry the e3 allele (e3/e3). We studied these genotype populations in two age groups: a young group (average age, 21 years) and a mid-age group (average age, 50 years). High-resolution T1 -weighted MRI scans were analysed with Freesurfer to measure regional white matter brain volume and cortical thickness differences between genotype groups at each age. These data were correlated with behavioural findings in the same cohort. Resting-state MRI was also conducted to identify differences in underlying brain functional connectivity. We found that there was a positive correlation between the thickness of the parahippocampal cortex in young e4+ individuals and performance on an episodic memory task. Young e4+ individuals also showed a positive correlation between white matter volume in the left anterior cingulate and performance on a covert attention task. At mid-age, e4+ individuals had structural differences relative to e3/e3 individuals in these areas: the parahippocampal cortex was thicker and white matter volume in the left anterior cingulate was greater than in e3/e3 individuals. We discuss the possibility that an over-engagement with these regions by e4+ individuals in youth may have a neurogenic effect that is observable later in life. The cuneus appears to be an important region for APOE-driven differences in the brain, with greater functional connectivity among young e3/e3 individuals and greater white matter volume in young e4+ individuals.
Collapse
Affiliation(s)
| | - Simon L Evans
- School of Psychology, University of Sussex, Brighton, UK
| | - Paul S Tofts
- Brighton and Sussex Medical School, Brighton, UK
| | - Sarah L King
- School of Psychology, University of Sussex, Brighton, UK
| | - Naji Tabet
- Brighton and Sussex Medical School, Brighton, UK
| | | |
Collapse
|
29
|
Hou X, Adeosun SO, Zhang Q, Barlow B, Brents M, Zheng B, Wang J. Differential contributions of ApoE4 and female sex to BACE1 activity and expression mediate Aβ deposition and learning and memory in mouse models of Alzheimer's disease. Front Aging Neurosci 2015; 7:207. [PMID: 26582141 PMCID: PMC4628114 DOI: 10.3389/fnagi.2015.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, disproportionately affects women in both prevalence and severity. This increased vulnerability to AD in women is strongly associated with age-related ovarian hormone loss and apolipoprotein E 4 allele (ApoE4), the most important genetic risk factor for sporadic AD. Up to date, the mechanism involved in the interaction between ApoE4 and sex/gender in AD is still unclear. This study evaluated the sex-dependent ApoE4 effects on learning and memory, Aβ deposition and potential mechanisms, using mice bearing both sporadic (ApoE4) and familial (APPSwe, PS1M146V, tauP301L; 3xTg) AD risk factors and compared with sex- and age-matched 3xTg or nonTg mice. Compared to nonTg mice, transgenic mice of both sexes showed spatial learning and memory deficits in the radial arm water maze and novel arm discrimination tests at 20 months of age. However, at 10 months, only ApoE4/3xTg mice showed significant learning and memory impairment. Moreover, molecular studies of hippocampal tissue revealed significantly higher protein levels of Aβ species, β-site APP cleavage enzyme (BACE1) and Sp1, a transcription factor of BACE1, in female ApoE4/3xTg when compared with female nonTg, female 3xTg, and male ApoE4/3xTg mice. Significantly increased BACE1 enzymatic activities were observed in both male and female mice carrying ApoE4; however, only the females showed significant higher BACE1 expressions. Together, these data suggest that ApoE4 allele is associated with increased BACE1 enzymatic activity, while female sex plays an important role in increasing BACE1 expression. The combination of both provides a molecular basis for high Aβ pathology and the resultant hippocampus-dependent learning and memory deficits in female ApoE4 carriers.
Collapse
Affiliation(s)
- Xu Hou
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA
| | - Samuel O Adeosun
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Qinli Zhang
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Brett Barlow
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Melissa Brents
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Junming Wang
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA ; Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA ; Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson MS, USA ; Center of Memory Impairment and Neurodegenerative Dementia, University of Mississippi Medical Center, Jackson MS, USA
| |
Collapse
|
30
|
Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 2015; 135:70-82. [DOI: 10.1016/j.pbb.2015.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
31
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
32
|
Conway V, Larouche A, Alata W, Vandal M, Calon F, Plourde M. Apolipoprotein E isoforms disrupt long-chain fatty acid distribution in the plasma, the liver and the adipose tissue of mice. Prostaglandins Leukot Essent Fatty Acids 2014; 91:261-7. [PMID: 25301204 DOI: 10.1016/j.plefa.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022]
Abstract
Evidences suggest that omega-3 fatty acid (n-3 PUFA) metabolism is imbalanced in apolipoprotein E epsilon 4 isoform carriers (APOE4). This study aimed to investigate APOE genotype-dependant modulation of FA profiles, protein and enzyme important to fatty acid (FA) metabolism in the adipose tissue, the liver and the plasma using human APOE-targeted replacement mouse-model (N=37). FA transport (FATP) and binding (FABP) protein levels in tissues and concentrations of liver carnitine palmitoyltransferase 1 (CPT1) were performed. N-3 PUFA concentration was >45% lower in the adipose tissue and liver of APOE4 mice compared to APOE3 mice. In APOE4 mice, there were higher levels of FATP and FABP in the liver and higher FATP in the adipose tissue compared to APOE2 mice. There was a trend towards higher CPT1 concentrations in APOE4 mice compared to APOE3 mice. Therefore, since APOE-isoform differences were not always in line with the unbalanced n-3 PUFA profiles in organs, other proteins may be involved in maintaining n-3 PUFA homeostasis in mice with different APOE-isoforms.
Collapse
Affiliation(s)
- Valérie Conway
- Research Center on Aging, Health and Social Services Center, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada J1H 4C4; Departement of Medicine, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Annie Larouche
- Research Center on Aging, Health and Social Services Center, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada J1H 4C4
| | - Wael Alata
- Faculty of pharmacy, Université Laval and CHU-Q Research Centre, Québec, Canada
| | - Milène Vandal
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada; Faculty of pharmacy, Université Laval and CHU-Q Research Centre, Québec, Canada
| | - Frédéric Calon
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada; Faculty of pharmacy, Université Laval and CHU-Q Research Centre, Québec, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Center, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada J1H 4C4; Departement of Medicine, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada.
| |
Collapse
|
33
|
Hamisha KN, Tfilin M, Yanai J, Turgeman G. Mesenchymal stem cells can prevent alterations in behavior and neurogenesis induced by Aß25-35 administration. J Mol Neurosci 2014; 55:1006-13. [PMID: 25384918 DOI: 10.1007/s12031-014-0457-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are known to enhance neurogenesis in the dentate gyrus, as well as to modulate immune cell activity and inflammation. Easily obtained and expanded from the bone marrow and other tissues, MSCs have been proposed as candidates for stem cell therapy in various neurodegenerartive diseases. In the present study, we sought to explore these therapeutic properties of MSC on Aß25-35-induced pathology when coadministered together. Apparently, coadministration of MSC prevented mild cognitive deficits observed following Aß administration alone, by promoting microglial activation and rapid clearance of injected Aß aggregates. Surprisingly, increased hippocampal neurogenesis was observed in the Aß-injected animals and was normal in MSC-coadministered animals just as in control animals. The observed increase in neurogenesis can be explained as a compensating mechanism responsible for the mild and temporary cognitive deficits observed in the Morris water maze assay in Aß-injected animals. Interestingly, MSC engrafted not only to the hippocampus but were also detected in the choroid plexus. We thus conclude that MSC may act in multiple pathways to protect the CNS from Aß pathology, while neurogenesis is a possible compensating mechanism; it is not always activated by MSC, which in turn may interact with local immune cells to regulate Aß accumulation.
Collapse
Affiliation(s)
- Keren Nicole Hamisha
- Department of Molecular Biology, Laboratory of Stem Cell Research, Milken Campus, Ariel University, Ariel, 40700, Israel
| | | | | | | |
Collapse
|
34
|
Lopez MF, Krastins B, Ning M. The role of apolipoprotein E in neurodegeneration and cardiovascular disease. Expert Rev Proteomics 2014; 11:371-81. [DOI: 10.1586/14789450.2014.901892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|