1
|
Ganjoo A, Babu V. Recombinant Amidases: Recent Insights and its Applications in the Production of Industrially Important Fine Chemicals. Mol Biotechnol 2025; 67:910-924. [PMID: 38598092 DOI: 10.1007/s12033-024-01123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
The current research for the synthesis of industrially important fine chemicals is more inclined towards developing enzyme-based processes. The biotransformation reactions wherein microbial cells/enzymes are used, have become essential in making the process efficient, green, and economical. Amongst industrially important enzymes, amidase is one of the most versatile tools in biocatalysis and biotransformation reactions. It shows broad substrate specificity and sturdy functional characteristics because of its promiscuous nature. Further, advancement in the area led to the development of amidase recombinant systems, which are developed using biotechnology and enzyme engineering tools. Additionally, recombinant amidases may be instrumental in commercializing the synthesis of fine chemicals such as hydroxamic acids that have a significant pharmaceutical market. Hence, the present review focuses on highlighting and assimilating the tools and techniques used in developing recombinant systems followed by their applications.
Collapse
Affiliation(s)
- Ananta Ganjoo
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikash Babu
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Rotilio L, Bayer T, Meinert H, Teixeira LMC, Johansen MB, Sommerfeldt A, Petersen AR, Sandahl A, Keller MB, Holck J, Paiva P, Otzen DE, Bornscheuer UT, Wei R, Fernandes PA, Ramos MJ, Westh P, Morth JP. Structural and Functional Characterization of an Amidase Targeting a Polyurethane for Sustainable Recycling. Angew Chem Int Ed Engl 2025; 64:e202419535. [PMID: 39611359 DOI: 10.1002/anie.202419535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Global plastic production exceeded 400 million tons in 2022, urgently demanding improved waste management and recycling strategies for a circular plastic economy. While the enzymatic hydrolysis of polyethylene terephthalate (PET) has become feasible on industrial scales, efficient enzymes targeting other hydrolyzable plastic types, such as polyurethanes (PURs), are lacking. Recently, enzymes of the amidase signature (AS) family, capable of cleaving urethane bonds in a polyether-PUR analog and a linear polyester-PUR, have been identified. Herein, we present high-resolution crystal structures of the AS enzyme UMG-SP3 in three states: ligand-free, bound with a suicidal inhibitor mimicking the transition state, and bound with a monomeric PUR degradation product. Besides revealing the conserved core and catalytic triad akin to other AS family members, the UMG-SP3 structures show remarkable flexibility of loop regions. Particularly, Arg209 in loop 3 adopts two induced-fit conformations upon ligand binding. Through structure-guided kinetic studies and enzyme engineering, we mapped structural key elements that determine the enhanced hydrolysis of urethane and amide bonds in various small molecules, including a linear PUR fragment analog. Our findings contribute critical insights into urethanase activity, aiding PUR degradation campaigns and sustainable plastic recycling efforts in the future.
Collapse
Affiliation(s)
- Laura Rotilio
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Luis M C Teixeira
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Martin B Johansen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Andreas Sommerfeldt
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Allan R Petersen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Alexander Sandahl
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Danish Technological Institute, Kongsvang Alle 29, 8000, Aarhus, Denmark
| | - Malene B Keller
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Jesper Holck
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Pedro Paiva
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Daniel E Otzen
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Pedro A Fernandes
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Peter Westh
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - J Preben Morth
- EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
- Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Dayanara NL, Froelich J, Roome P, Perrin DM. Chemoselective, regioselective, and positionally selective fluorogenic stapling of unprotected peptides for cellular uptake and direct cell imaging. Chem Sci 2025; 16:584-595. [PMID: 39620082 PMCID: PMC11605703 DOI: 10.1039/d4sc04839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Peptide stapling reactions represent powerful methods for structuring native α-helices to improve their bioactivity in targeting protein-protein interactions (PPIs). In light of a growing need for regio- and positionally selective stapling methods involving natural amino acid residues in their unprotected states, we report a rapid, mild, and highly chemoselective three-component stapling reation using a class of molecular linchpins based on 2-arylketobenzaldehydes (ArKBCHOs) that create a fluorescent staple, hereafter referred to as a Fluorescent Isoindole Crosslink (FlICk). This methodology offers positional selectivity favouring i, i + 4 helical staples comprising a lysine and cysteine, in the presence of competing nucleophiles on unprotected peptides. In our efforts to further validate this chemistry, we have successfully shown in vitro cytotoxicity of a FlICk-ed peptide (IC50 = 5.10 ± 1.27 μM), equipotent to an olefin-stapled congener. In harnessing the innate fluorescence of the thiol-isoindole, we report new blue-green fluorophores, which arise as a consequence of stapling, with appreciable quantum yields that enable direct cellular imaging in the assessment of cell permeability, thus bridging therapeutic potential with cytological probe development.
Collapse
Affiliation(s)
- Naysilla L Dayanara
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Juliette Froelich
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Pascale Roome
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| |
Collapse
|
4
|
Singh R, Shahul R, Kumar V, Yadav AK, Mehta PK. Microbial amidases: Characterization, advances and biotechnological applications. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:44-58. [PMID: 39811779 PMCID: PMC11732141 DOI: 10.1016/j.biotno.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The amidases (EC 3.5.1.4) are versatile hydrolase biocatalysts that have been the attention of academia and industries for stereo-selective synthesis and bioremediation. These are categorized based on the amino acid sequence and substrate specificity. Notably, the Signature amidase family is distinguished by a characteristic signature sequence, GGSS(S/G)GS, which encompasses highly conserved Ser-Ser-Lys catalytic residues, and the amidases belonging to this family typically demonstrate a broad substrate spectrum activity. The amidases classified within the nitrilase superfamily possess distinct Glu-Lys-Cys catalytic residues and exhibit activity towards small aliphatic substrates. Recent discoveries have underscored the potential role of amidases in the degradation of toxic amides present in polymers, insecticides, and food products. This expands the horizons for amidase-mediated biodegradation of amide-laden pollutants and fosters sustainable development alongside organic synthesis. The burgeoning global production facilities are expected to drive a heightened demand for this enzyme, attributable to its promising chemo-, regio-, and enantioselective hydrolysis capabilities for a variety of amides. Advances in protein engineering have enhanced the catalytic efficiency, structural stability, and substrate selectivity of amidases. Concurrently, the heterologous expression of amidase genes sourced from thermophiles has facilitated the development of highly stable amidases with significant industrial relevance. Beyond their biotransformation capabilities concerning amides, through amido-hydrolase and acyltransferase activities, recent investigations have illuminated the potential of amidase-mediated degradation of amide-containing pollutants in soil and aquatic environments. This review offers a comprehensive overview of recent advancements pertaining to microbial amidases (EC 3.5.1.4), focusing on aspects such as their distribution, gene mining methodologies, enzyme stability, protein engineering, reusability, and biocatalytic efficacy in organic synthesis and biodegradation.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Refana Shahul
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Vijay Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| |
Collapse
|
5
|
Denessiouk K, Denesyuk AI, Johnson MS, Uversky VN. Two groups and three classes of the conserved structural organization of nucleophile and non-canonical ElbowFlankOxy networks in different superfamily proteins. J Biomol Struct Dyn 2024:1-16. [PMID: 39546335 DOI: 10.1080/07391102.2024.2429798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024]
Abstract
The nucleophile elbow is a well-known structural motif, which exists in proteins with catalytic triads and contains a catalytic nucleophile and the first node of an oxyanion hole. Here, we show that structural similarities of proteins with the nucleophile elbow extend beyond simple nucleophile elbow motifs. The motifs are incorporated into larger conserved structural organizations, the ElbowFlankOxy networks, incorporating motifs and flanking residues and networks of conserved interactions. A detailed structural analysis shows two major types of ElbowFlankOxy networks, depending on the formation of the oxyanion hole. Additionally, the ElbowFlankOxy networks show three classes: Class 1-2-3, 3-1-2, and 2-3-1, defined by the order in which the catalytic nucleophile and key interacting residues are located in the amino acid sequence, giving rise to six ElbowFlankOxy network variations. This makes it possible to properly position homologous non-catalytic, non-standard, and unusual catalytic triad active sites of proteins with the nucleophile elbow within the fold classification.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Cooper AJL, Denton TT. ω-Amidase and Its Substrate α-Ketoglutaramate (the α-Keto Acid Analogue of Glutamine) as Biomarkers in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1660-1680. [PMID: 39523108 DOI: 10.1134/s000629792410002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate. We describe some properties of KGM, notably its occurrence as a lactam (2-hydroxy-5-oxoproline; 99.7% at pH 7.2), and its presence in normal tissues and body fluids. We note that the concentration of KGM is elevated in the cerebrospinal fluid of liver disease patients and that the urinary KGM/creatinine ratio is elevated in patients with an inborn error of the urea cycle and in patients with citrin deficiency. Recently, of the 607 urinary metabolites measured in a kidney disease study, KGM was noted to be one of five metabolites that was most significantly associated with uromodulin (a potential biomarker for tubular functional mass). Finally, we note that KGM is an intermediate in the breakdown of nicotine in certain organisms and is an important factor in nitrogen homeostasis in some microorganisms and plants. In conclusion, we suggest that biochemists and clinicians should consider KGM as (i) a key intermediate in nitrogen metabolism in all branches of life, and (ii) a biomarker, along with ω-amidase, in several diseases.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Travis T Denton
- LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090)
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| |
Collapse
|
7
|
Cederfelt D, Badgujar D, Au Musse A, Lohkamp B, Danielson UH, Dobritzsch D. The Allosteric Regulation of Β-Ureidopropionase Depends on Fine-Tuned Stability of Active-Site Loops and Subunit Interfaces. Biomolecules 2023; 13:1763. [PMID: 38136634 PMCID: PMC10741476 DOI: 10.3390/biom13121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The activity of β-ureidopropionase, which catalyses the last step in the degradation of uracil, thymine, and analogous antimetabolites, is cooperatively regulated by the substrate and product of the reaction. This involves shifts in the equilibrium of the oligomeric states of the enzyme, but how these are achieved and result in changes in enzyme catalytic competence has yet to be determined. Here, the regulation of human β-ureidopropionase was further explored via site-directed mutagenesis, inhibition studies, and cryo-electron microscopy. The active-site residue E207, as well as H173 and H307 located at the dimer-dimer interface, are shown to play crucial roles in enzyme activation. Dimer association to larger assemblies requires closure of active-site loops, which positions the catalytically crucial E207 stably in the active site. H173 and H307 likely respond to ligand-induced changes in their environment with changes in their protonation states, which fine-tunes the active-site loop stability and the strength of dimer-dimer interfaces and explains the previously observed pH influence on the oligomer equilibrium. The correlation between substrate analogue structure and effect on enzyme assembly suggests that the ability to favourably interact with F205 may distinguish activators from inhibitors. The cryo-EM structure of human β-ureidopropionase assembly obtained at low pH provides first insights into the architecture of its activated state. and validates our current model of the allosteric regulation mechanism. Closed entrance loop conformations and dimer-dimer interfaces are highly conserved between human and fruit fly enzymes.
Collapse
Affiliation(s)
- Daniela Cederfelt
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ayan Au Musse
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
- School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| |
Collapse
|
8
|
Naamala J, Subramanian S, Msimbira LA, Smith DL. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H. Front Microbiol 2023; 14:1206152. [PMID: 37700863 PMCID: PMC10493332 DOI: 10.3389/fmicb.2023.1206152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Recent Progress in the Production of Cyanide-Converting Nitrilases—Comparison with Nitrile-Hydrolyzing Enzymes. Catalysts 2023. [DOI: 10.3390/catal13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Nitrilases have a high potential for application in organic chemistry, environmental technology, and analytics. However, their industrial uses require that they are produced in highly active and robust forms at a reasonable cost. Some organic syntheses catalyzed by nitrilases have already reached a high level of technological readiness. This has been enabled by the large-scale production of recombinant catalysts. Despite some promising small-scale methods being proposed, the production of cyanide-converting nitrilases (cyanide hydratase and cyanide dihydratase) is lagging in this regard. This review focuses on the prospects of cyanide(di)hydratase-based catalysts. The current knowledge of these enzymes is summarized and discussed in terms of the origin and distribution of their sequences, gene expression, structure, assays, purification, immobilization, and uses. Progresses in the production of other nitrilase catalysts are also tackled, as it may inspire the development of the preparation processes of cyanide(di)hydratases.
Collapse
|
10
|
Dobritzsch D, Meijer J, Meinsma R, Maurer D, Monavari AA, Gummesson A, Reims A, Cayuela JA, Kuklina N, Benoist JF, Perrin L, Assmann B, Hoffmann GF, Bierau J, Kaindl AM, van Kuilenburg ABP. β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity. Mol Genet Metab 2022; 136:177-185. [PMID: 35151535 DOI: 10.1016/j.ymgme.2022.01.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023]
Abstract
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete β-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified β-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid in urine. Analysis of UPB1, encoding β-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased β-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional β-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish β-ureidopropionase patients, indicating that β-ureidopropionase deficiency may be more common than anticipated.
Collapse
Affiliation(s)
- Doreen Dobritzsch
- Uppsala University, Department of Chemistry-BMC, Biomedical Center, Uppsala, Sweden
| | - Judith Meijer
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Rutger Meinsma
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ardeshir A Monavari
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Temple Street, Dublin, Ireland
| | - Anders Gummesson
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Annika Reims
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Jorge A Cayuela
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Natalia Kuklina
- Drammen Hospital, Pediatric Department/Habilitation Center, Vestre Viken HF, Drammen, Norway
| | - Jean-François Benoist
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Laurence Perrin
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Birgit Assmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Jörgen Bierau
- Maastricht University Medical Centre, Department of Clinical Genetics, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children, Institute for Cell and Neurobiology, Berlin, Germany
| | - André B P van Kuilenburg
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
The structures of the C146A variant of the amidase from Pyrococcus horikoshii bound to glutaramide and acetamide suggest the basis of amide recognition. J Struct Biol 2022; 214:107859. [DOI: 10.1016/j.jsb.2022.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022]
|
13
|
Luo H, Wang G, Chen N, Fang Z, Xiao Y, Zhang M, Gerelt K, Qian Y, Lai R, Zhou Y. A Superefficient Ochratoxin A Hydrolase with Promising Potential for Industrial Applications. Appl Environ Microbiol 2022; 88:e0196421. [PMID: 34788069 PMCID: PMC8788665 DOI: 10.1128/aem.01964-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
As the most seriously controlled mycotoxin produced by Aspergillus spp. and Penicillium spp., ochratoxin A (OTA) results in various toxicological effects and widely contaminates agro-products. Biological detoxification is the highest priority regarding OTA in food and feed industry, but currently available detoxification enzymes have relatively low effectiveness in terms of time and cost. Here we show a superefficient enzyme, ADH3, identified from Stenotrophomonas acidaminiphila that has a strong ability to transform OTA into nontoxic ochratoxin-α by acting as an amidohydrolase. Recombinant ADH3 (1.2 μg/mL) completely degrades 50 μg/L OTA within 90 s, while the other most efficient OTA hydrolases available take several hours. The kinetic constant showed that rADH3 (Kcat/Km) catalytic efficiency was 56.7 to 35,000 times higher than those of previous hydrolases rAfOTase, rOTase, and commercial carboxypeptidase A (CPA). Protein structure-based assay suggested that ADH3 has a preference for hydrophobic residues to form a larger hydrophobic area than other detoxifying enzymes at the cavity of the catalytic sites, and this structure allows OTA easier access to the catalytic sites. In addition, ADH3 shows considerable temperature adaptability to exert hydrolytic function at the temperature down to 0°C or up to 70°C. Collectively, we report a superefficient OTA detoxifying enzyme with promising potential for industrial applications. IMPORTANCE Ochratoxin A (OTA) can result in various toxicological effects and widely contaminates agro-products and feedstuffs. OTA detoxifications by microbial strains and bio-enzymes are significant to food safety. Although previous studies showed OTA could be transformed through several pathways, the ochratoxin-α pathway is recognized as the most effective one. However, the most currently available enzymes are not efficient enough. Here, a superefficient hydrolase, ADH3, which can completely transform 50 μg/L OTA into ochratoxin-α within 90 s was screened and characterized. The hydrolase ADH3 shows considerable temperature adaptability (0 to 70°C) to exert the hydrolytic function. Findings of this study supplied an efficient OTA detoxifying enzyme and predicted the superefficient degradation mechanism, laying a foundation for future industrial applications.
Collapse
Affiliation(s)
- Han Luo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Nan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
| | - Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Khishigjargal Gerelt
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Yingying Qian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
14
|
Zhou S, Liu Y, Wang S, Wang L. Effective prediction of short hydrogen bonds in proteins via machine learning method. Sci Rep 2022; 12:469. [PMID: 35013487 PMCID: PMC8748993 DOI: 10.1038/s41598-021-04306-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms lie within 2.7 Å, exhibit prominent quantum mechanical characters and are connected to a wide range of essential biomolecular processes. However, exact determination of the geometry and functional roles of SHBs requires a protein to be at atomic resolution. In this work, we analyze 1260 high-resolution peptide and protein structures from the Protein Data Bank and develop a boosting based machine learning model to predict the formation of SHBs between amino acids. This model, which we name as machine learning assisted prediction of short hydrogen bonds (MAPSHB), takes into account 21 structural, chemical and sequence features and their interaction effects and effectively categorizes each hydrogen bond in a protein to a short or normal hydrogen bond. The MAPSHB model reveals that the type of the donor amino acid plays a major role in determining the class of a hydrogen bond and that the side chain Tyr-Asp pair demonstrates a significant probability of forming a SHB. Combining electronic structure calculations and energy decomposition analysis, we elucidate how the interplay of competing intermolecular interactions stabilizes the Tyr-Asp SHBs more than other commonly observed combinations of amino acid side chains. The MAPSHB model, which is freely available on our web server, allows one to accurately and efficiently predict the presence of SHBs given a protein structure with moderate or low resolution and will facilitate the experimental and computational refinement of protein structures.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
16
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
17
|
Conformational changes in Apolipoprotein N-acyltransferase (Lnt). Sci Rep 2020; 10:639. [PMID: 31959792 PMCID: PMC6971011 DOI: 10.1038/s41598-020-57419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/31/2019] [Indexed: 11/10/2022] Open
Abstract
Lipoproteins are important components of the cell envelope and are responsible for many essential cellular functions. They are produced by the post-translational covalent attachment of lipids that occurs via a sequential 3-step process controlled by three integral membrane enzymes. The last step of this process, unique to Gram-negative bacteria, is the N-acylation of the terminal cysteine by Apolipoprotein N-acyltransferase (Lnt) to form the final mature lipoprotein. Here we report 2 crystal forms of Lnt from Escherichia coli. In one form we observe a highly dynamic arm that is able to restrict access to the active site as well as a covalent modification to the active site cysteine consistent with the thioester acyl-intermediate. In the second form, the enzyme crystallized in an open conformation exposing the active site to the environment. In total we observe 3 unique Lnt molecules that when taken together suggest the movement of essential loops and residues are triggered by substrate binding that could control the interaction between Lnt and the incoming substrate apolipoprotein. The results provide a dynamic context for residues shown to be central for Lnt function and provide further insights into its mechanism.
Collapse
|
18
|
Chuenchor W, Doukov TI, Chang KT, Resto M, Yun CS, Gerratana B. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD + synthetases. Nat Commun 2020; 11:16. [PMID: 31911602 PMCID: PMC6946656 DOI: 10.1038/s41467-019-13845-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
NAD+ synthetase is an essential enzyme of de novo and recycling pathways of NAD+ biosynthesis in Mycobacterium tuberculosis but not in humans. This bifunctional enzyme couples the NAD+ synthetase and glutaminase activities through an ammonia tunnel but free ammonia is also a substrate. Here we show that the Homo sapiens NAD+ synthetase (hsNadE) lacks substrate specificity for glutamine over ammonia and displays a modest activation of the glutaminase domain compared to tbNadE. We report the crystal structures of hsNadE and NAD+ synthetase from M. tuberculosis (tbNadE) with synthetase intermediate analogues. Based on the observed exclusive arrangements of the domains and of the intra- or inter-subunit tunnels we propose a model for the inter-domain communication mechanism for the regulation of glutamine-dependent activity and NH3 transport. The structural and mechanistic comparison herein reported between hsNadE and tbNadE provides also a starting point for future efforts in the development of anti-TB drugs.
Collapse
Affiliation(s)
- Watchalee Chuenchor
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tzanko I Doukov
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, 94025, USA
| | - Kai-Ti Chang
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Melissa Resto
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Chang-Soo Yun
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Barbara Gerratana
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
19
|
Vetrivel I, de Brevern AG, Cadet F, Srinivasan N, Offmann B. Structural variations within proteins can be as large as variations observed across their homologues. Biochimie 2019; 167:162-170. [PMID: 31560932 DOI: 10.1016/j.biochi.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Understanding the structural plasticity of proteins is key to understanding the intricacies of their functions and mechanistic basis. In the current study, we analyzed the available multiple crystal structures of the same protein for the structural differences. For this purpose we used an abstraction of protein structures referred as Protein Blocks (PBs) that was previously established. We also characterized the nature of the structural variations for a few proteins using molecular dynamics simulations. In both the cases, the structural variations were summarized in the form of substitution matrices of PBs. We show that certain conformational states are preferably replaced by other specific conformational states. Interestingly, these structural variations are highly similar to those previously observed across structures of homologous proteins (r2 = 0.923) or across the ensemble of conformations from NMR data (r2 = 0.919). Thus our study quantitatively shows that overall trends of structural changes in a given protein are nearly identical to the trends of structural differences that occur in the topologically equivalent positions in homologous proteins. Specific case studies are used to illustrate the nature of these structural variations.
Collapse
Affiliation(s)
- Iyanar Vetrivel
- Université de Nantes, UFIP UMR 6286 CNRS, UFR Sciences et Techniques, 2 Chemin de La Houssinière, Nantes, France
| | - Alexandre G de Brevern
- INSERM UMR_S 1134, DSIMB Team, Laboratory of Excellence, GR-Ex, Univ Paris Diderot, Univ Sorbonne Paris Cité, INTS, 6 Rue Alexandre Cabanel, Paris, France
| | - Frédéric Cadet
- University of Paris, UMR_S1134, BIGR, Inserm, F-75015, Paris, France; DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, F-97715, Saint-Denis, France; PEACCEL, Protein Engineering Accelerator, 6 Square Albin Cachot, Box 42, 75013, Paris, France
| | | | - Bernard Offmann
- Université de Nantes, UFIP UMR 6286 CNRS, UFR Sciences et Techniques, 2 Chemin de La Houssinière, Nantes, France.
| |
Collapse
|
20
|
Raghavan SS, Chee S, Li J, Poschmann J, Nagarajan N, Jia Wei S, Verma CS, Ghadessy FJ. Development and application of a transcriptional sensor for detection of heterologous acrylic acid production in E. coli. Microb Cell Fact 2019; 18:139. [PMID: 31426802 PMCID: PMC6699081 DOI: 10.1186/s12934-019-1185-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acrylic acid (AA) is a widely used commodity chemical derived from non-renewable fossil fuel sources. Alternative microbial-based production methodologies are being developed with the aim of providing “green” acrylic acid. These initiatives will benefit from component sensing tools that facilitate rapid and easy detection of in vivo AA production. Results We developed a novel transcriptional sensor facilitating in vivo detection of acrylic acid (AA). RNAseq analysis of Escherichia coli exposed to sub-lethal doses of acrylic acid identified a selectively responsive promoter (PyhcN) that was cloned upstream of the eGFP gene. In the presence of AA, eGFP expression in E. coli cells harbouring the sensing construct was readily observable by fluorescence read-out. Low concentrations of AA (500 μM) could be detected whilst the closely related lactic and 3-hydroxy propionic acids failed to activate the sensor. We further used the developed AA-biosensor for in vivo FACS-based screening and identification of amidase mutants with improved catalytic properties for deamination of acrylamide to acrylic acid. Conclusions The transcriptional AA sensor developed in this study will benefit strain, enzyme and pathway engineering initiatives targeting the efficient formation of bio-acrylic acid. Electronic supplementary material The online version of this article (10.1186/s12934-019-1185-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarada S Raghavan
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Sharon Chee
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Juntao Li
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, Inserm, CHU-Nantes, Nantes, France
| | - Niranjan Nagarajan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Siau Jia Wei
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Farid J Ghadessy
- p53 Laboratory Technology Development Group, A*STAR, 8A Biomedical Grove #06-06 Immunos, Singapore, 138648, Singapore.
| |
Collapse
|
21
|
Mulelu AE, Kirykowicz AM, Woodward JD. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun Biol 2019; 2:260. [PMID: 31341959 PMCID: PMC6637149 DOI: 10.1038/s42003-019-0505-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Nitrilases are helical enzymes that convert nitriles to acids and/or amides. All plants have a nitrilase 4 homolog specific for ß-cyanoalanine, while in some plants neofunctionalization has produced nitrilases with altered specificity. Plant nitrilase substrate size and specificity correlate with helical twist, but molecular details of this relationship are lacking. Here we determine, to our knowledge, the first close-to-atomic resolution (3.4 Å) cryo-EM structure of an active helical nitrilase, the nitrilase 4 from Arabidopsis thaliana. We apply site-saturation mutagenesis directed evolution to three residues (R95, S224, and L169) and generate a mutant with an altered helical twist that accepts substrates not catalyzed by known plant nitrilases. We reveal that a loop between α2 and α3 limits the length of the binding pocket and propose that it shifts position as a function of helical twist. These insights will allow us to start designing nitrilases for chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Andani E. Mulelu
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Angela M. Kirykowicz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Jeremy D. Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
22
|
El Arnaout T, Soulimane T. Targeting Lipoprotein Biogenesis: Considerations towards Antimicrobials. Trends Biochem Sci 2019; 44:701-715. [PMID: 31036406 DOI: 10.1016/j.tibs.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Decades have passed without approval of a new antibiotic class. Several companies have recently halted related discovery efforts because of multiple obstacles. One promising route under research is to target the lipoprotein maturation pathway in light of major recent findings and the virulence roles of lipoproteins. To support the future design of selective drugs, considerations and priority-setting are established for the main lipoprotein processing enzymes (Lgt, LspA, and Lnt) based on microbiology, biochemistry, structural biology, chemical design, and pharmacology. Although not all bacterial species will be similarly impacted by drug candidates, several advantages make LspA a top target to pursue in the development of novel antibiotics effective against bacteria that are resistant to existing drugs.
Collapse
Affiliation(s)
- Toufic El Arnaout
- Kappa Crystals Ltd, Dublin, Ireland; School of Food Science and Environmental Health, Technological University (TU) Dublin City Campus, TU, Dublin, Dublin, Ireland.
| | - Tewfik Soulimane
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
23
|
Martínez-Rodríguez S, Conejero-Muriel M, Gavira JA. A novel cysteine carbamoyl-switch is responsible for the inhibition of formamidase, a nitrilase superfamily member. Arch Biochem Biophys 2019; 662:151-159. [PMID: 30528776 DOI: 10.1016/j.abb.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022]
Abstract
Formamidases (EC 3.5.1.49) and amidases (EC 3.5.1.4) are paralogous cysteine-dependent enzymes which catalyze the conversion of amide substrates to ammonia and the corresponding carboxylic acid. Both enzymes have been suggested as an alternative pathway for ammonia production during urea shortage. Urea was proved key in the transcriptional regulation of formamidases/amidases, connecting urea level to amide metabolism. In addition, different amidases have also been shown to be inhibited by urea, pointing to urea-regulation at the enzymatic level. Although amidases have been widely studied due to its biotechnological application in the hydrolysis of aliphatic amides, up to date, only two formamidases have been extensively characterized, belonging to Helicobacter pylori (HpyAmiF) and Bacillus cereus (BceAmiF). In this work, we report the first structure of an acyl-intermediate of BceAmiF. We also report the inhibition of BceAmiF by urea, together with mass spectrometry studies confirming the S-carbamoylation of BceAmiF after urea treatment. X-ray studies of urea-soaked BceAmiF crystals showed short- and long-range rearrangements affecting oligomerization interfaces. Since cysteine-based switches are known to occur in the regulation of different metabolic and signaling pathways, our results suggest a novel S-carbamoylation-switch for the regulation of BceAmiF. This finding could relate to previous observations of unexplained modifications in the catalytic cysteine of different nitrilase superfamily members and therefore extending this regulation mechanism to the whole nitrilase superfamily.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada (Campus de Melilla), 52071, Melilla, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, 18100, Granada, Spain.
| | | | | |
Collapse
|
24
|
Woodward JD, Trompetter I, Sewell BT, Piotrowski M. Substrate specificity of plant nitrilase complexes is affected by their helical twist. Commun Biol 2018; 1:186. [PMID: 30417123 PMCID: PMC6214922 DOI: 10.1038/s42003-018-0186-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023] Open
Abstract
Nitrilases are oligomeric, helix-forming enzymes from plants, fungi and bacteria that are involved in the metabolism of various natural and artificial nitriles. These biotechnologically important enzymes are often specific for certain substrates, but directed attempts at modifying their substrate specificities by exchanging binding pocket residues have been largely unsuccessful. Thus, the basis for their selectivity is still unknown. Here we show, based on work with two highly similar nitrilases from the plant Capsella rubella, that modifying nitrilase helical twist, either by exchanging an interface residue or by imposing a different twist, without altering any binding pocket residues, changes substrate preference. We reveal that helical twist and substrate size correlate and when binding pocket residues are exchanged between two nitrilases that show the same twist but different specificities, their specificities change. Based on these findings we propose that helical twist influences the overall size of the binding pocket.
Collapse
Affiliation(s)
- Jeremy D Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Inga Trompetter
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - B Trevor Sewell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
25
|
Crystal structure and pH-dependent allosteric regulation of human β-ureidopropionase, an enzyme involved in anticancer drug metabolism. Biochem J 2018; 475:2395-2416. [PMID: 29976570 DOI: 10.1042/bcj20180222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
β-Ureidopropionase (βUP) catalyzes the third step of the reductive pyrimidine catabolic pathway responsible for breakdown of uracil-, thymine- and pyrimidine-based antimetabolites such as 5-fluorouracil. Nitrilase-like βUPs use a tetrad of conserved residues (Cys233, Lys196, Glu119 and Glu207) for catalysis and occur in a variety of oligomeric states. Positive co-operativity toward the substrate N-carbamoyl-β-alanine and an oligomerization-dependent mechanism of substrate activation and product inhibition have been reported for the enzymes from some species but not others. Here, the activity of recombinant human βUP is shown to be similarly regulated by substrate and product, but in a pH-dependent manner. Existing as a homodimer at pH 9, the enzyme increasingly associates to form octamers and larger oligomers with decreasing pH. Only at physiological pH is the enzyme responsive to effector binding, with N-carbamoyl-β-alanine causing association to more active higher molecular mass species, and β-alanine dissociation to inactive dimers. The parallel between the pH and ligand-induced effects suggests that protonation state changes play a crucial role in the allosteric regulation mechanism. Disruption of dimer-dimer interfaces by site-directed mutagenesis generated dimeric, inactive enzyme variants. The crystal structure of the T299C variant refined to 2.08 Å resolution revealed high structural conservation between human and fruit fly βUP, and supports the hypothesis that enzyme activation by oligomer assembly involves ordering of loop regions forming the entrance to the active site at the dimer-dimer interface, effectively positioning the catalytically important Glu207 in the active site.
Collapse
|
26
|
Cheng W, Doyle DA, El Arnaout T. The N-acyltransferase Lnt: Structure-function insights from recent simultaneous studies. Int J Biol Macromol 2018; 117:870-877. [PMID: 29859843 DOI: 10.1016/j.ijbiomac.2018.05.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Bacterial lipoproteins have been researched for decades due to their roles in a large number of biological functions. There were no structures of their main three membrane processing enzymes, until 2016 for Lgt and LspA, and then 2017 for Lnt with not one but three simultaneous, independent publications. We have analyzed the recent findings for this apolipoprotein N-acyltransferase Lnt, with comparisons between the novel structures, and with soluble nitrilases, to determine the significance of unique features in terms of substrate's recognition and binding mechanism influenced by exclusive residues, two transmembrane helices, and a flexible loop.
Collapse
Affiliation(s)
- Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Declan A Doyle
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Toufic El Arnaout
- School of Food Science and Environmental Health, Dublin Institute of Technology, Marlborough St, Dublin 1, Ireland.
| |
Collapse
|
27
|
Cerqueira NMFSA, Moorthy H, Fernandes PA, Ramos MJ. The mechanism of the Ser-(cis)Ser-Lys catalytic triad of peptide amidases. Phys Chem Chem Phys 2017; 19:12343-12354. [PMID: 28453015 DOI: 10.1039/c7cp00277g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report a theoretical investigation of the catalytic mechanism of peptide amidases that involve a Ser-(cis)Ser-Lys catalytic triad. Previous suggestions propose that these enzymes should follow a distinct catalytic mechanism from the one that is present in the classic Ser-His-Asp catalytic triad. The theoretical and computational results obtained in this work indicate the opposite idea, showing that both mechanisms are very similar and only few differences are observed between both reactions. The results reveal that the different alignment of the Ser-(cis)Ser-Lys catalytic triad in relation to the classical Ser-His-Asp triad may provide a better stabilisation of the reaction intermediates, and therefore make these enzymes catalytically more efficient. The catalytic mechanism has been determined at the M06-2X/6-311++G**//B3LYP/6-31G* level of theory and requires five sequential steps instead of the two that are generally proposed: (i) nucleophilic attack of serine on the carbonyl group of the substrate, forming the first tetrahedral intermediate, (ii) formation of an acyl-enzyme complex, (ii) release of an ammonia product, (iv) nucleophilic attack of a water molecule forming the second tetrahedral intermediate, and (iv) the release of the product of the reaction, the carboxylic acid. The computational results suggest that the rate-limiting step is the first one that requires an activation free energy of 15.93 kcal mol-1. This result agrees very well with the available experimental data that predict a reaction rate of 2200 s-1, which corresponds to a free energy barrier of 14 kcal mol-1.
Collapse
Affiliation(s)
- N M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | | | | | | |
Collapse
|
28
|
Park JM, Trevor Sewell B, Benedik MJ. Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 2017; 101:3029-3042. [PMID: 28265723 DOI: 10.1007/s00253-017-8204-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - B Trevor Sewell
- Structural Biology Research Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA.
| |
Collapse
|
29
|
Grøftehauge MK, Truan D, Vasil A, Denny PW, Vasil ML, Pohl E. Crystal Structure of a Hidden Protein, YcaC, a Putative Cysteine Hydrolase from Pseudomonas aeruginosa, with and without an Acrylamide Adduct. Int J Mol Sci 2015; 16:15971-84. [PMID: 26184183 PMCID: PMC4519933 DOI: 10.3390/ijms160715971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022] Open
Abstract
As part of the ongoing effort to functionally and structurally characterize virulence factors in the opportunistic pathogen Pseudomonas aeruginosa, we determined the crystal structure of YcaC co-purified with the target protein at resolutions of 2.34 and 2.56 Å without a priori knowledge of the protein identity or experimental phases. The three-dimensional structure of YcaC adopts a well-known cysteine hydrolase fold with the putative active site residues conserved. The active site cysteine is covalently bound to propionamide in one crystal form, whereas the second form contains an S-mercaptocysteine. The precise biological function of YcaC is unknown; however, related prokaryotic proteins have functions in antibacterial resistance, siderophore production and NADH biosynthesis. Here, we show that YcaC is exceptionally well conserved across both bacterial and fungal species despite being non-ubiquitous. This suggests that whilst YcaC may not be part of an integral pathway, the function could confer a significant evolutionary advantage to microbial life.
Collapse
Affiliation(s)
- Morten K Grøftehauge
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| | - Daphne Truan
- Swiss Light Source, Paul Scherrer Institute, Villigen CH-5232, Switzerland.
| | - Adriana Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Paul W Denny
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
- School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, UK.
| | - Michael L Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Ehmke Pohl
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
30
|
Sosedov O, Stolz A. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microbiol Biotechnol 2014; 99:2623-35. [DOI: 10.1007/s00253-014-6061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
31
|
Purification and characterization of a thermostable aliphatic amidase from the hyperthermophilic archaeon Pyrococcus yayanosii CH1. Extremophiles 2014; 18:429-40. [PMID: 24430467 DOI: 10.1007/s00792-014-0628-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Amidases catalyze the hydrolysis of amides to free carboxylic acids and ammonia. Hyperthermophilic archaea are a natural reservoir of various types of thermostable enzymes. Here, we report the purification and characterization of an amidase from Pyrococcus yayanosii CH1, the first representative of a strict-piezophilic hyperthermophilic archaeon that originated from a deep-sea hydrothermal vent. An open reading frame that encoded a putative member of the nitrilase protein superfamily was identified. We cloned and overexpressed amiE in Escherichia coli C41 (DE3). The purified AmiE enzyme displayed maximal activity at 85 °C and pH 6.0 (NaH2PO4-Na2HPO4) with acetamide as the substrate and showed activity over the pH range of 4-8 and the temperature range of 4-95 °C. AmiE is a dimer and active on many aliphatic amide substrates, such as formamide, acetamide, hexanamide, acrylamide, and L-glutamine. Enzyme activity was induced by 1 mM Ca(2+), 1 mM Al(3+), and 1-10 mM Mg(2+), but strongly inhibited by Zn(2+), Cu(2+), Ni(2+), and Fe(3+). The presence of acetone and ethanol significantly decreased the enzymatic activity. Neither 5% methanol nor 5% isopropanol had any significant effect on AmiE activity (99 and 96% retained, respectively). AmiE displayed amidase activity although it showed high sequence homology (78% identity) with the known nitrilase from Pyrococcus abyssi. AmiE is the most characterized archaeal thermostable amidase in the nitrilase superfamily. The thermostability and pH-stability of AmiE will attract further studies on its potential industrial applications.
Collapse
|