1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Sarwer K, Lashari S, Rafaqat N, Maher, Raheem A, Rehman MU, Abbas SMI. Obstructive hypertrophic cardiomyopathy: from genetic insights to a multimodal therapeutic approach with mavacamten, aficamten, and beyond. Egypt Heart J 2024; 76:156. [PMID: 39645546 PMCID: PMC11625047 DOI: 10.1186/s43044-024-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND A cardiac condition marked by excessive growth of heart muscle cells, hypertrophic cardiomyopathy (HCM) is a complex genetic disorder characterized by left ventricular hypertrophy, microvascular ischemia, myocardial fibrosis, and diastolic dysfunction. Obstructive hypertrophic cardiomyopathy (oHCM), a subset of HCM, involves significant obstruction in the left ventricular outflow tract (LVOT), leading to symptoms like dyspnea, fatigue, and potentially life-threatening cardiac events. With advancements in genetic understanding and the introduction of novel pharmacologic agents, including cardiac myosin inhibitors like mavacamten and aficamten, there is a paradigm shift in the therapeutic approach to oHCM. MAIN BODY The underlying mechanisms of HCM are closely tied to genetic mutations affecting sarcomere proteins, particularly those encoded by the MYH7 and MYBPC3 genes. These mutations lead to disrupted sarcomere function, resulting in hypertrophic changes and LVOT obstruction. While genetic heterogeneity is a hallmark of HCM, clinical diagnosis relies heavily on imaging techniques such as Echocardiography and cardiac magnetic resonance imaging to assess the extent of hypertrophy and obstruction. Current pharmacological management of obstructive HCM (oHCM) focuses on alleviating symptoms rather than modifying disease progression. Beta-blockers and calcium channel blockers are primary treatment options, although their effectiveness varies among patients. Recent clinical trials have highlighted the potential of novel cardiac myosin inhibitors, including mavacamten and aficamten, in enhancing exercise capacity, reducing LVOT obstruction, and improving overall cardiac function. These innovative agents represent a significant breakthrough in targeting the fundamental pathophysiological mechanisms driving oHCM. A comprehensive literature review was conducted, utilizing top-tier databases such as PubMed, Scopus, and Google Scholar, to compile an authoritative and up-to-date overview of the current advancements in the field. This review sheds light on the updated 2024 American Heart Association (AHA) guidelines for HCM management, emphasizing the treatment cascade and tailored management for each stage of oHCM. By introducing a new paradigm for personalized medicine in oHCM, this research leverages advanced genomics, biomarkers, and imaging techniques to optimize treatment strategies. CONCLUSIONS The introduction of cardiac myosin inhibitors heralds a new era in the management of oHCM. By directly targeting the molecular mechanisms underpinning the disease, these novel therapies offer improved symptom relief and functional outcomes. Ongoing research into the genetic basis of HCM and the development of targeted treatments holds promise for further enhancing patient care. Future studies should continue to refine these therapeutic strategies and explore their long-term benefits and potential in diverse patient populations. This review makes a significant contribution to the field by synthesizing the most recent AHA guidelines, emphasizing the crucial role of tailored management strategies in optimizing outcomes for patients with oHCM, and promoting the incorporation of cutting-edge genomics and imaging modalities to enhance personalized care.
Collapse
Affiliation(s)
- Khadija Sarwer
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Saeeda Lashari
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Nida Rafaqat
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Maher
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Abdul Raheem
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan.
| | - Muneeb Ur Rehman
- CMH Lahore Medical College & IOD, Abdur Rehman Road, Lahore Cantt, Pakistan
| | - Syed Muhammad Iraj Abbas
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan
| |
Collapse
|
3
|
Diensthuber RP, Hartmann FK, Kathmann D, Franz P, Tsiavaliaris G. Switch-2 determines Mg 2+ADP-release kinetics and fine-tunes the duty ratio of Dictyostelium class-1 myosins. Front Physiol 2024; 15:1393952. [PMID: 38887318 PMCID: PMC11181000 DOI: 10.3389/fphys.2024.1393952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
Though myosins share a structurally conserved motor domain, single amino acid variations of active site elements, including the P-loop, switch-1 and switch-2, which act as nucleotide sensors, can substantially determine the kinetic signature of a myosin, i.e., to either perform fast movement or enable long-range transport and tension generation. Switch-2 essentially contributes to the ATP hydrolysis reaction and determines product release. With few exceptions, class-1 myosin harbor a tyrosine in the switch-2 consensus sequence DIYGFE, at a position where class-2 myosins and a selection of myosins from other classes have a substitution. Here, we addressed the role of the tyrosine in switch-2 of class-1 myosins as potential determinant of the duty ratio. We generated constitutively active motor domain constructs of two class-1 myosins from the social amoeba Dictyostelium discoideum, namely, Myo1E, a high duty ratio myosin and Myo1B, a low duty ratio myosin. In Myo1E we introduced mutation Y388F and in Myo1B mutation F387Y. The detailed functional characterization by steady-state and transient kinetic experiments, combined with in vitro motility and landing assays revealed an almost reciprocal relationship of a number of critical kinetic parameters and equilibrium constants between wild-type and mutants that dictate the lifetime of the strongly actin-attached states of myosin. The Y-to-F mutation increased the duty ratio of Moy1B by almost one order of magnitude, while the introduction of the phenylalanine in switch-2 of Myo1E transformed the myosin into a low duty ratio motor. These data together with structural considerations propose a role of switch-2 in fine-tuning ADP release through a mechanism, where the class-specific tyrosine together with surrounding residues contributes to the coordination of Mg2+ and ADP. Our results highlight the importance of conserved switch-2 residues in class-1 myosins for efficient chemo-mechanical coupling, revealing that switch-2 is important to adjust the duty ratio of the amoeboid class-1 myosins for performing movement, transport or gating functions.
Collapse
Affiliation(s)
| | | | | | | | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Wang L, Li L, Zhao D, Yuan H, Zhang H, Chen J, Pang D, Lu Y, Ouyang H. MYH7 R453C induced cardiac remodelling via activating TGF-β/Smad2/3, ERK1/2 and Nox4/ROS/NF-κB signalling pathways. Open Biol 2024; 14:230427. [PMID: 38862020 PMCID: PMC11286136 DOI: 10.1098/rsob.230427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a monogenic cardiac disorder commonly induced by sarcomere gene mutations. However, the mechanism for HCM is not well defined. Here, we generated transgenic MYH7 R453C and MYH6 R453C piglets and found both developed typical cardiac hypertrophy. Unexpectedly, we found serious fibrosis and cardiomyocyte loss in the ventricular of MYH7 R453C, not MYH6 R453C piglets, similar to HCM patients. Then, RNA-seq analysis and western blotting identified the activation of ERK1/2 and PI3K-Akt pathways in MYH7 R453C. Moreover, we observed an increased expression of fetal genes and an excess of reactive oxygen species (ROS) in MYH7 R453C piglet models, which was produced by Nox4 and subsequently induced inflammatory response. Additionally, the phosphorylation levels of Smad2/3, ERK1/2 and NF-kB p65 proteins were elevated in cardiomyocytes with the MYH7 R453C mutation. Furthermore, epigallocatechin gallate, a natural bioactive compound, could be used as a drug to reduce cell death by adjusting significant downregulation of the protein expression of Bax and upregulated Bcl-2 levels in the H9C2 models with MYH7 R453C mutation. In conclusion, our study illustrated that TGF-β/Smad2/3, ERK1/2 and Nox4/ROS pathways have synergistic effects on cardiac remodelling and inflammation in MYH7 R453C mutation.
Collapse
Affiliation(s)
- Lingyu Wang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Linquan Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Dazhong Zhao
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Huanyu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Jiahuan Chen
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
- Chongqing Research Institute, Jilin University, Chongqing401123, People's Republic of China
| | - Yi Lu
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun130062, People's Republic of China
- Chongqing Research Institute, Jilin University, Chongqing401123, People's Republic of China
| |
Collapse
|
5
|
Chakraborti A, Tardiff JC, Schwartz SD. Myosin-Catalyzed ATP Hydrolysis in the Presence of Disease-Causing Mutations: Mavacamten as a Way to Repair Mechanism. J Phys Chem B 2024; 128:4716-4727. [PMID: 38708944 PMCID: PMC11103257 DOI: 10.1021/acs.jpcb.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac β-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac β-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Naito S, Higo S, Kameda S, Ogawa S, Tabata T, Akazawa Y, Nakamura D, Nakamoto K, Sera F, Kuramoto Y, Asano Y, Hikoso S, Miyagawa S, Sakata Y. End-stage Hypertrophic Cardiomyopathy with Advanced Heart Failure in Patients Carrying MYH7 R453 Variants: A Case Series. Intern Med 2023; 62:3167-3173. [PMID: 36948619 PMCID: PMC10686745 DOI: 10.2169/internalmedicine.1497-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
The MYH7 R453 variant has been identified in inherited hypertrophic cardiomyopathy (HCM) and is associated with sudden death and a poor prognosis. The detailed clinical course of HCM with the MYH7 R453 variant, from a preserved to a reduced left ventricular ejection fraction, has not been reported. We identified the MYH7 R453C and R453H variants in three patients who progressively developed advanced heart failure requiring circulatory support and summarized the clinical course and echocardiographic parameters of these patients over the years. Because of the rapid disease progression, we consider genetic screening for patients with HCM imperative for future prognosis stratification.
Collapse
Affiliation(s)
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Satoshi Kameda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Shou Ogawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yasuhiro Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Daisuke Nakamura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Kei Nakamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Fusako Sera
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
- Clinical Genetic Counseling Room, National Cerebral and Cardiovascular Center, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Grinzato A, Auguin D, Kikuti C, Nandwani N, Moussaoui D, Pathak D, Kandiah E, Ruppel KM, Spudich JA, Houdusse A, Robert-Paganin J. Cryo-EM structure of the folded-back state of human β-cardiac myosin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536999. [PMID: 37131793 PMCID: PMC10153137 DOI: 10.1101/2023.04.15.536999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state. The off-state is equated with a folded-back structure known as the interacting head motif (IHM), which is a regulatory feature of all muscle myosins and class-2 non-muscle myosins. We report here the human β-cardiac myosin IHM structure to 3.6 Å resolution. The structure shows that the interfaces are hot spots of HCM mutations and reveals details of the significant interactions. Importantly, the structures of cardiac and smooth muscle myosin IHMs are dramatically different. This challenges the concept that the IHM structure is conserved in all muscle types and opens new perspectives in the understanding of muscle physiology. The cardiac IHM structure has been the missing puzzle piece to fully understand the development of inherited cardiomyopathies. This work will pave the way for the development of new molecules able to stabilize or destabilize the IHM in a personalized medicine approach. *This manuscript was submitted to Nature Communications in August 2022 and dealt efficiently by the editors. All reviewers received this version of the manuscript before 9 208 August 2022. They also received coordinates and maps of our high resolution structure on the 18 208 August 2022. Due to slowness of at least one reviewer, this contribution was delayed for acceptance by Nature Communications and we are now depositing in bioRxiv the originally submitted version written in July 2022 for everyone to see. Indeed, two bioRxiv contributions at lower resolution but adding similar concepts on thick filament regulation were deposited this week in bioRxiv, one of the contributions having had access to our coordinates. We hope that our data at high resolution will be helpful for all readers that appreciate that high resolution information is required to build accurate atomic models and discuss implications for sarcomere regulation and the effects of cardiomyopathy mutations on heart muscle function.
Collapse
Affiliation(s)
- Alessandro Grinzato
- CM01 beamline. European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Daniel Auguin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, UPRES EA 1207, INRA-USC1328, F-45067 Orléans, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Dihia Moussaoui
- BM29 BIOSAXS beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Eaazhisai Kandiah
- CM01 beamline. European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005 Paris, France
| |
Collapse
|
8
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
9
|
Yousaf M, Khan WA, Shahzad K, Khan HN, Ali B, Hussain M, Awan FR, Mustafa H, Sheikh FN. Genetic Association of Beta-Myosin Heavy-Chain Gene (MYH7) with Cardiac Dysfunction. Genes (Basel) 2022; 13:genes13091554. [PMID: 36140722 PMCID: PMC9498774 DOI: 10.3390/genes13091554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac dysfunction accelerates the risk of heart failure, and its pathogenesis involves a complex interaction between genetic and environmental factors. Variations in myosin affect contractile abilities of cardiomyocytes and cause structural and functional abnormalities in myocardium. The study aims to find the association of MYH7 rs121913642 (c.1594 T>C) and rs121913645 (c.667G>A) variants with cardiac dysfunction in the Punjabi Pakistani population. Patients with heart failure (n = 232) and healthy controls (n = 205) were enrolled in this study. MYH7 variant genotyping was performed using tetra ARMS-PCR. MYH7 rs121913642 TC genotype was significantly more prevalent in the patient group (p < 0.001). However, MYH7 rs121913645 genotype frequencies were not significantly different between the patient and control groups (p < 0.666). Regression analysis also revealed that the rs121913642 C allele increases the risk of cardiac failure by ~2 [OR:1.98, CI: 1.31−2.98, p < 0.001] in comparison to the T allele. High levels of the cardiac enzymes cardiac troponin I (cTnI) and CK-MB were observed in patients. There was also an increase in total cholesterol, LDL cholesterol, and uric acid in patients compared to the healthy control group (p < 0.001). In conclusion, the MYH7 gene variant rs121913642 is genetically associated with cardiac dysfunction and involved in the pathogenesis of HF.
Collapse
Affiliation(s)
- Memoona Yousaf
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Waqas Ahmed Khan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (W.A.K.); (H.M.); Tel.: +92-321-9331563 (W.A.K.)
| | - Khurrum Shahzad
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Institute of Clinical Chemistry, University Hospital Leipzig Institute of Clinical Chemistry Liebigstraße27, D-04103 Leipzig, Germany
| | - Haq Nawaz Khan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Basharat Ali
- Department of Family Medicine, University of Health Sciences, Lahore 42000, Pakistan
| | - Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Hamid Mustafa
- Department of Animal Breeding & Genetics, University of Veterinary and Animal Sciences, Lahore 42000, Pakistan
- Correspondence: (W.A.K.); (H.M.); Tel.: +92-321-9331563 (W.A.K.)
| | | |
Collapse
|
10
|
Demeekul K, Sukumolanan P, Panprom C, Thaisakun S, Roytrakul S, Petchdee S. Echocardiography and MALDI-TOF Identification of Myosin-Binding Protein C3 A74T Gene Mutations Involved Healthy and Mutated Bengal Cats. Animals (Basel) 2022; 12:ani12141782. [PMID: 35883329 PMCID: PMC9312240 DOI: 10.3390/ani12141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to identify the potential peptide candidates and expected proteins associated with MYBPC3-A74T gene mutations in Bengal cats and determine if peptidome profiles differ between healthy controls and cats with MYBPC3-A74T gene mutations. All animals were evaluated using echocardiography. DNA was isolated and followed by the screening test of MYBPC3 gene mutation. The MALDI-TOF mass spectrometry was conducted for analyzing the targeted peptide and protein patterns. The expected protein candidates were searched for within the NCBI database. Our results demonstrated that the MYBPC3-A74T gene mutation was dominant in Bengal cats but not in domestic shorthair cats. Correlations between baseline characteristics and echocardiographic parameters were discovered in Bengal cats. Mass spectrometry profiles of the candidate proteins were suspected to accompany the cat with the MYBPC3-A74T gene mutation, involving integral protein–membrane, organization of nucleus, DNA replication, and ATP-binding protein. Therefore, MYBPC3-A74T gene mutations occur frequently in Bengal cat populations. The high incidence of homozygotes for the mutation supports the causal nature of the MYBPC3-A74T mutation. In addition, peptidomics analysis was established for the first time under this condition to promise a complementary technique for the future clinical diagnosis of the MYBPC3-A74T mutation associated with physiological variables and cardiac morphology in cats.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Pratch Sukumolanan
- Veterinary Clinical Studies Program, Graduate School, Kasetsart University, Nakorn Pathom 73140, Thailand;
| | - Chattida Panprom
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (S.T.); (S.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (S.T.); (S.R.)
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom 73140, Thailand
- Correspondence: ; Tel.: +66-34-351-901-3
| |
Collapse
|
11
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
12
|
Kaviarasan V, Mohammed V, Veerabathiran R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 2022; 74:5. [PMID: 35061126 PMCID: PMC8782994 DOI: 10.1186/s43044-022-00240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition distinguished by structural and functional defects in the myocardium, which genetic and environmental factors can induce. HF is caused by various genetic factors that are both heterogeneous and complex. The incidence of HF varies depending on the definition and area, but it is calculated to be between 1 and 2% in developed countries. There are several factors associated with the progression of HF, ranging from coronary artery disease to hypertension, of which observed the most common genetic cause to be cardiomyopathy. The main objective of this study is to investigate heart failure and its association with cardiomyopathy with their genetic variants. The selected novel genes that have been linked to human inherited cardiomyopathy play a critical role in the pathogenesis and progression of HF. Research sources collected from the human gene mutation and several databases revealed that numerous genes are linked to cardiomyopathy and thus explained the hereditary influence of such a condition. Our findings support the understanding of the genetics aspect of HF and will provide more accurate evidence of the role of changing disease accuracy. Furthermore, a better knowledge of the molecular pathophysiology of genetically caused HF could contribute to the emergence of personalized therapeutics in future.
Collapse
Affiliation(s)
- Vaishak Kaviarasan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
13
|
Chakraborti A, Baldo AP, Tardiff JC, Schwartz SD. Investigation of the Recovery Stroke and ATP Hydrolysis and Changes Caused Due to the Cardiomyopathic Point Mutations in Human Cardiac β Myosin. J Phys Chem B 2021; 125:6513-6521. [PMID: 34105970 DOI: 10.1021/acs.jpcb.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cardiac β myosin undergoes the cross-bridge cycle as part of the force-generating mechanism of cardiac muscle. The recovery stroke is considered one of the key steps of the kinetic cycle as it is the conformational rearrangement required to position the active site residues for hydrolysis of ATP and interaction with actin. We explored the free-energy surface of the transition and investigated the effect of the genetic cardiomyopathy causing mutations R453C, I457T, and I467T on this step using metadynamics. This work extends previous studies on Dictyostelium myosin II with engineered mutations. Here, like previously, we generated an unbiased thermodynamic ensemble of reactive trajectories for the chemical step using transition path sampling. Our methodologies were able to predict the changes to the dynamics of the recovery stroke as well as predict the pathway of breakdown of ATP to ADP and HPO42- with the stabilization of the metaphosphate intermediate. We also observed clear differences between the Dictyostelium myosin II and human cardiac β myosin for ATP hydrolysis as well as predict the effect of the mutation I467T on the chemical step.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
A reverse stroke characterizes the force generation of cardiac myofilaments, leading to an understanding of heart function. Proc Natl Acad Sci U S A 2021; 118:2011659118. [PMID: 34088833 DOI: 10.1073/pnas.2011659118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Changes in the molecular properties of cardiac myosin strongly affect the interactions of myosin with actin that result in cardiac contraction and relaxation. However, it remains unclear how myosin molecules work together in cardiac myofilaments and which properties of the individual myosin molecules impact force production to drive cardiac contractility. Here, we measured the force production of cardiac myofilaments using optical tweezers. The measurements revealed that stepwise force generation was associated with a higher frequency of backward steps at lower loads and higher stall forces than those of fast skeletal myofilaments. To understand these unique collective behaviors of cardiac myosin, the dynamic responses of single cardiac and fast skeletal myosin molecules, interacting with actin filaments, were evaluated under load. The cardiac myosin molecules switched among three distinct conformational positions, ranging from pre- to post-power stroke positions, in 1 mM ADP and 0 to 10 mM phosphate solution. In contrast to cardiac myosin, fast skeletal myosin stayed primarily in the post-power stroke position, suggesting that cardiac myosin executes the reverse stroke more frequently than fast skeletal myosin. To elucidate how the reverse stroke affects the force production of myofilaments and possibly heart function, a simulation model was developed that combines the results from the single-molecule and myofilament experiments. The results of this model suggest that the reversal of the cardiac myosin power stroke may be key to characterizing the force output of cardiac myosin ensembles and possibly to facilitating heart contractions.
Collapse
|
15
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the myocardium characterized by a hypertrophic left ventricle with a preserved or increased ejection fraction. Cardiac hypertrophy is often asymmetrical, which is associated with left ventricular outflow tract obstruction. Myocyte hypertrophy, disarray, and myocardial fibrosis constitute the histological features of HCM. HCM is a relatively benign disease but an important cause of sudden cardiac death in the young and heart failure in the elderly. Pathogenic variants (PVs) in genes encoding protein constituents of the sarcomeres are the main causes of HCM. PVs exhibit a gradient of effect sizes, as reflected in their penetrance and variable phenotypic expression of HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin binding protein C, respectively, are the two most common causal genes and responsible for ≈40% of all HCM cases but a higher percentage of HCM in large families. PVs in genes encoding protein components of the thin filaments are responsible for ≈5% of the HCM cases. Whereas pathogenicity of the genetic variants in large families has been firmly established, ascertainment causality of the PVs in small families and sporadic cases is challenging. In the latter category, PVs are best considered as probabilistic determinants of HCM. Deciphering the genetic basis of HCM has enabled routine genetic testing and has partially elucidated the underpinning mechanism of HCM as increased number of the myosin molecules that are strongly bound to actin. The discoveries have led to the development of mavacamten that targets binding of the myosin molecule to actin filaments and imparts beneficial clinical effects. In the coming years, the yield of the genetic testing is expected to be improved and the so-called missing causal gene be identified. The advances are also expected to enable development of additional specific therapies and editing of the mutations in HCM.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston
| |
Collapse
|
16
|
Stochastic allelic expression as trigger for contractile imbalance in hypertrophic cardiomyopathy. Biophys Rev 2020; 12:1055-1064. [PMID: 32661905 PMCID: PMC7429642 DOI: 10.1007/s12551-020-00719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disease, is caused by several mostly heterozygous mutations in sarcomeric genes. Hallmarks of HCM are cardiomyocyte and myofibrillar disarray and hypertrophy and fibrosis of the septum and the left ventricle. To date, a pathomechanism common to all mutations remains elusive. We have proposed that contractile imbalance, an unequal force generation of neighboring cardiomyocytes, may contribute to development of HCM hallmarks. At the same calcium concentration, we found substantial differences in force generation between individual cardiomyocytes from HCM patients with mutations in β-MyHC (β-myosin heavy chain). Variability among cardiomyocytes was significantly larger in HCM patients as compared with donor controls. We assume that this heterogeneity in force generation among cardiomyocytes may lead to myocardial disarray and trigger hypertrophy and fibrosis. We provided evidence that burst-like transcription of the MYH7-gene, encoding for β-MyHC, is associated with unequal fractions of mutant per wild-type mRNA from cell to cell (cell-to-cell allelic imbalance). This will presumably lead to unequal fractions of mutant per wild-type protein from cell to cell which may underlie contractile imbalance. In this review, we discuss molecular mechanisms of burst-like transcription with regard to contractile imbalance and disease development in HCM.
Collapse
|
17
|
Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, Sharma A, Agarwal R, Ewoldt JF, Cloonan P, Letendre J, Lun M, Olivotto I, Colan S, Ashley E, Jacoby D, Michels M, Redwood CS, Watkins HC, Day SM, Staples JF, Padrón R, Chopra A, Ho CY, Chen CS, Pereira AC, Seidman JG, Seidman CE. Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation 2020; 141:828-842. [PMID: 31983222 PMCID: PMC7077965 DOI: 10.1161/circulationaha.119.042339] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.
Collapse
Affiliation(s)
- Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
- Cardiovascular Medicine, Radcliffe Department of Medicine (C.N.T., C.S.R., H.C.W.), University of Oxford, UK
- Wellcome Centre for Human Genetics (C.N.T., H.C.W.), University of Oxford, UK
| | - Amanda C. Garfinkel
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor)-University of São Paulo Medical School, Brazil (G.V., A.C.P.)
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Giuliana Repetti
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Cientifìcas (IVIC), Caracas (L.A., R.P.)
| | - Arun Sharma
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Radhika Agarwal
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Jourdan F. Ewoldt
- Department of Biomedical Engineering, Boston University, MA (J.F.E., P.C., J.L., A.C., C.S.C.)
| | - Paige Cloonan
- Department of Biomedical Engineering, Boston University, MA (J.F.E., P.C., J.L., A.C., C.S.C.)
| | - Justin Letendre
- Department of Biomedical Engineering, Boston University, MA (J.F.E., P.C., J.L., A.C., C.S.C.)
| | - Mingyue Lun
- Department of Medicine, Division of Genetics (M.L.), Brigham and Women’s Hospital, Boston, MA
| | - Iacopo Olivotto
- Cardiomyopathy Unit and Genetic Unit, Careggi University Hospital, Florence, Italy (I.O.)
| | - Steve Colan
- Department of Cardiology, Boston Children’s Hospital, MA (S.C.)
| | - Euan Ashley
- Center for Inherited Cardiovascular Disease, Stanford University, CA (E.A.)
| | - Daniel Jacoby
- Department of Internal Medicine, Section of Cardiovascular Diseases, Yale School of Medicine, New Haven, CT (D.J.)
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands (M.M.)
| | - Charles S. Redwood
- Cardiovascular Medicine, Radcliffe Department of Medicine (C.N.T., C.S.R., H.C.W.), University of Oxford, UK
| | - Hugh C. Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine (C.N.T., C.S.R., H.C.W.), University of Oxford, UK
- Wellcome Centre for Human Genetics (C.N.T., H.C.W.), University of Oxford, UK
| | - Sharlene M. Day
- Department of Internal Medicine, University of Michigan, Ann Arbor (S.M.D.)
| | - James F. Staples
- Department of Biology, University of Western Ontario, London, Canada (J.F.S.)
| | - Raúl Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Cientifìcas (IVIC), Caracas (L.A., R.P.)
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester (R.P.)
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, MA (J.F.E., P.C., J.L., A.C., C.S.C.)
| | - Carolyn Y. Ho
- Cardiovascular Division (C.Y.H., C.E.S.), Brigham and Women’s Hospital, Boston, MA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, MA (J.F.E., P.C., J.L., A.C., C.S.C.)
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor)-University of São Paulo Medical School, Brazil (G.V., A.C.P.)
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (C.N.T., A.C.G., G.V., H.W., G.R., A.S., R.A., A.C.P., J.G.S., C.E.S.)
- Cardiovascular Division (C.Y.H., C.E.S.), Brigham and Women’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
18
|
Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J 2019; 39:3879-3892. [PMID: 29741611 PMCID: PMC6234851 DOI: 10.1093/eurheartj/ehy249] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Aims Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-β-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-βMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient βMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms. ![]()
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Katarzyna Lis-Slimak
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Puspita Katili
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Elizabeth Scott
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Mustafa Hassan
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - James G W Smith
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Philip M Williams
- Molecular Therapeutics and Formulation. School of Pharmacy, University of Nottingham, UK
| | - Daniel Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
19
|
Vera CD, Johnson CA, Walklate J, Adhikari A, Svicevic M, Mijailovich SM, Combs AC, Langer SJ, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties. J Biol Chem 2019; 294:17451-17462. [PMID: 31582565 DOI: 10.1074/jbc.ra119.010563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the β-cardiac myosin heavy chain gene (β-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any β-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 K app along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.
Collapse
Affiliation(s)
- Carlos D Vera
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Chloe A Johnson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Arjun Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | | | | | - Ariana C Combs
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Stephen J Langer
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Leslie A Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
20
|
Woody MS, Winkelmann DA, Capitanio M, Ostap EM, Goldman YE. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 2019; 8:49266. [PMID: 31526481 PMCID: PMC6748826 DOI: 10.7554/elife.49266] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (Pi), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 μs of actin binding by β-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.5 pN and proceeds directly to the stroke or detaches before releasing ATP hydrolysis products. The rates of these processes depend on the force. The time between binding and stroke is unaffected by 10 mM Pi which, along with other findings, indicates the stroke precedes phosphate release. After Pi release, Pi can rebind enabling reversal of the working stroke. Detecting these rapid events under physiological loads provides definitive indication of the dynamics by which actomyosin converts biochemical energy into mechanical work.
Collapse
Affiliation(s)
- Michael S Woody
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
21
|
Walklate J, Ujfalusi Z, Behrens V, King EJ, Geeves MA. A micro-volume adaptation of a stopped-flow system; use with μg quantities of muscle proteins. Anal Biochem 2019; 581:113338. [PMID: 31201789 DOI: 10.1016/j.ab.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Stopped-flow spectroscopy is a powerful method for measuring very fast biological and chemical reactions. The technique however is often limited by the volumes of reactants needed to load the system. Here we present a simple adaptation of commercial stopped-flow system that reduces the volume needed by a factor of 4 to ≈120 μl. After evaluation the volume requirements of the system we show that many standard myosin based assays can be performed using <100 μg of myosin. This adaptation both reduces the volume and therefore mass of protein required and also produces data of similar quality to that produced using the standard set up. The 100 μg of myosin required for these assays is less than that which can be isolated from 100 mg of muscle tissue. With this reduced quantity of myosin, assays using biopsy samples become possible. This will allow assays to be used to assist diagnoses, to examine the effects of post translational modifications on muscle proteins and to test potential therapeutic drugs using patient derived samples.
Collapse
Affiliation(s)
- J Walklate
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Zoltan Ujfalusi
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom; Department of Biophysics, University of Pécs, Medical School, Szigeti Street 12, H-7624, Pécs, Hungary
| | - Vincent Behrens
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Edward J King
- TgK Scientific Limited, 7 Long's Yard, St. Margaret's Street, Bradford on Avon, BA15 1DH, United Kingdom
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom.
| |
Collapse
|
22
|
Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Pflugers Arch 2019; 471:719-733. [PMID: 30740621 PMCID: PMC6475633 DOI: 10.1007/s00424-019-02260-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified mutations are found in the ventricular myosin heavy chain (β-MyHC). A common mechanism explaining how numerous mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-called super-relaxed state (SRX). The SRX was suggested to be related to the "interacting head motif," i.e., pairs of myosin heads folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such functional-hyper- and hypocontractile-changes are the basis of our previously proposed concept stating that contractile imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying β-MyHC-mutations, we found substantial contractile variability from cardiomyocyte to cardiomyocyte within a patient's myocardium, much higher than in controls. This was paralleled by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription, independent for mutant and wildtype MYH7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow the same disease mechanism.
Collapse
Affiliation(s)
- Theresia Kraft
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Judith Montag
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Hershkovitz T, Kurolap A, Ruhrman-Shahar N, Monakier D, DeChene ET, Peretz-Amit G, Funke B, Zucker N, Hirsch R, Tan WH, Baris Feldman H. Clinical diversity of MYH7-related cardiomyopathies: Insights into genotype-phenotype correlations. Am J Med Genet A 2018; 179:365-372. [PMID: 30588760 DOI: 10.1002/ajmg.a.61017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
MYH7-related disease (MRD) is the most common hereditary primary cardiomyopathy (CM), with pathogenic MYH7 variants accounting for approximately 40% of familial hypertrophic CMs. MRDs may also present as skeletal myopathies, with or without CM. Since pathogenic MYH7 variants result in highly variable clinical phenotypes, from mild to fatal forms of cardiac and skeletal myopathies, genotype-phenotype correlations are not always apparent, and translation of the genetic findings to clinical practice can be complicated. Data on genotype-phenotype correlations can help facilitate more specific and personalized decisions on treatment strategies, surveillance, and genetic counseling. We present a series of six MRD pedigrees with rare genotypes, encompassing various clinical presentations and inheritance patterns. This study provides new insights into the spectrum of MRD that is directly translatable to clinical practice.
Collapse
Affiliation(s)
- Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noa Ruhrman-Shahar
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Daniel Monakier
- Department of Cardiology, Rabin Medical Center, Beilinson Hospital, Petah Tikva and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabeth T DeChene
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gabriela Peretz-Amit
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Birgit Funke
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Nili Zucker
- Pediatric Cardiology Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Rafael Hirsch
- Institute of Cardiology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
25
|
Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. Nat Commun 2018; 9:4019. [PMID: 30275503 PMCID: PMC6167380 DOI: 10.1038/s41467-018-06191-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023] Open
Abstract
Hypertrophic cardiomyopathies (HCM) result from distinct single-point mutations in sarcomeric proteins that lead to muscle hypercontractility. While different models account for a pathological increase in the power output, clear understanding of the molecular basis of dysfunction in HCM is the mandatory next step to improve current treatments. Here, we present an optimized quasi-atomic model of the sequestered state of cardiac myosin coupled to X-ray crystallography and in silico analysis of the mechanical compliance of the lever arm, allowing the systematic study of a large set of HCM mutations and the definition of different mutation classes based on their effects on lever arm compliance, sequestered state stability, and motor functions. The present work reconciles previous models and explains how distinct HCM mutations can have disparate effects on the motor mechano-chemical parameters and yet lead to the same disease. The framework presented here can guide future investigations aiming at finding HCM treatments. Hypertrophic cardiomyopathy (HCM) is caused by point mutations in sarcomeric proteins. Here the authors develop an optimized model of the sequestered state of cardiac myosin and define the features affecting the lever arm compliance, allowing them to group mutations in classes and to elucidate the molecular mechanisms leading to cardiac dysfunction in HCM.
Collapse
|
26
|
Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy. J Hum Genet 2018; 63:989-996. [PMID: 29907873 DOI: 10.1038/s10038-018-0479-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/28/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) present a high risk for sudden cardiac death in pediatric patients. The aim of this study was to identify disease-associated genetic variants in Japanese patients with pediatric HCM and RCM. We analyzed 67 cardiomyopathy-associated genes in 46 HCM and 7 RCM patients diagnosed before 16 years of age using a next-generation sequencing system. We found that 78% of HCM and 71% of RCM patients carried disease-associated genetic variants. Disease-associated genetic variants were identified in 80% of HCM patients with a family history and in 77% of HCM patients with no apparent family history (NFH). MYH7 and/or MYBPC3 variants comprised 76% of HCM-associated variants, whereas troponin complex-encoding genes comprised 75% of the RCM-associated variants. In addition, 91% of HCM patients with implantable cardioverter-defibrillators and infant cases had NFH, and the 88% of HCM patients carrying disease-associated genetic variants were males who carried MYH7 or MYBPC3 variants. Moreover, two disease-associated LAMP2, one DES and one FHOD3 variants, were identified in HCM patients. In this study, pediatric HCM and RCM patients were found to carry disease-associated genetic variants at a high rate. Most of the variants were in MYH7 or MYPBC3 for HCM and TNNT2 or TNNI3 for RCM.
Collapse
|
27
|
Ujfalusi Z, Vera CD, Mijailovich SM, Svicevic M, Yu EC, Kawana M, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Dilated cardiomyopathy myosin mutants have reduced force-generating capacity. J Biol Chem 2018; 293:9017-9029. [PMID: 29666183 PMCID: PMC5995530 DOI: 10.1074/jbc.ra118.001938] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/14/2018] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human β-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.
Collapse
Affiliation(s)
- Zoltan Ujfalusi
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- the Department of Biophysics, University of Pécs, Medical School, Szigeti Street 12, H-7624 Pécs, Hungary
| | - Carlos D Vera
- the BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | | | - Marina Svicevic
- the Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Masataka Kawana
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Kathleen M Ruppel
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - James A Spudich
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Michael A Geeves
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom,
| | - Leslie A Leinwand
- the BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309,
| |
Collapse
|
28
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
29
|
Montag J, Kowalski K, Makul M, Ernstberger P, Radocaj A, Beck J, Becker E, Tripathi S, Keyser B, Mühlfeld C, Wissel K, Pich A, van der Velden J, Dos Remedios CG, Perrot A, Francino A, Navarro-López F, Brenner B, Kraft T. Burst-Like Transcription of Mutant and Wildtype MYH7-Alleles as Possible Origin of Cell-to-Cell Contractile Imbalance in Hypertrophic Cardiomyopathy. Front Physiol 2018; 9:359. [PMID: 29686627 PMCID: PMC5900384 DOI: 10.3389/fphys.2018.00359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) has been related to many different mutations in more than 20 different, mostly sarcomeric proteins. While development of the HCM-phenotype is thought to be triggered by the different mutations, a common mechanism remains elusive. Studying missense-mutations in the ventricular beta-myosin heavy chain (β-MyHC, MYH7) we hypothesized that significant contractile heterogeneity exists among individual cardiomyocytes of HCM-patients that results from cell-to-cell variation in relative expression of mutated vs. wildtype β-MyHC. To test this hypothesis, we measured force-calcium-relationships of cardiomyocytes isolated from myocardium of heterozygous HCM-patients with either β-MyHC-mutation Arg723Gly or Arg200Val, and from healthy controls. From the myocardial samples of the HCM-patients we also obtained cryo-sections, and laser-microdissected single cardiomyocytes for quantification of mutated vs. wildtype MYH7-mRNA using a single cell RT-qPCR and restriction digest approach. We characterized gene transcription by visualizing active transcription sites by fluorescence in situ hybridization of intronic and exonic sequences of MYH7-pre-mRNA. For both mutations, cardiomyocytes showed large cell-to-cell variation in Ca++-sensitivity. Interestingly, some cardiomyocytes were essentially indistinguishable from controls what might indicate that they had no mutant β-MyHC while others had highly reduced Ca++-sensitivity suggesting substantial fractions of mutant β-MyHC. Single-cell MYH7-mRNA-quantification in cardiomyocytes of the same patients revealed high cell-to-cell variability of mutated vs. wildtype mRNA, ranging from essentially pure mutant to essentially pure wildtype MYH7-mRNA. We found 27% of nuclei without active transcription sites which is inconsistent with continuous gene transcription but suggests burst-like transcription of MYH7. Model simulations indicated that burst-like, stochastic on/off-switching of MYH7 transcription, which is independent for mutant and wildtype alleles, could generate the observed cell-to-cell variation in the fraction of mutant vs. wildtype MYH7-mRNA, a similar variation in β-MyHC-protein, and highly heterogeneous Ca++-sensitivity of individual cardiomyocytes. In the long run, such contractile imbalance in the myocardium may well induce progressive structural distortions like cellular and myofibrillar disarray and interstitial fibrosis, as they are typically observed in HCM.
Collapse
Affiliation(s)
- Judith Montag
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Kathrin Kowalski
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Mirza Makul
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Pia Ernstberger
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Ante Radocaj
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Julia Beck
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Edgar Becker
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Snigdha Tripathi
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Britta Keyser
- Hannover Medical School, Institute of Human Genetics, Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
| | - Kirsten Wissel
- Clinic for Laryngology, Rhinology and Otology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University, Amsterdam, Netherlands
| | | | - Andreas Perrot
- Cardiovascular Genetics, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonio Francino
- Hospital Clinic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Bernhard Brenner
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| | - Theresia Kraft
- Hannover Medical School, Institute of Molecular and Cell Physiology, Hannover, Germany
| |
Collapse
|
30
|
Brizendine RK, Sheehy GG, Alcala DB, Novenschi SI, Baker JE, Cremo CR. A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro. SCIENCE ADVANCES 2017; 3:eaao2267. [PMID: 29255801 PMCID: PMC5733112 DOI: 10.1126/sciadv.aao2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
In vitro motility assays, where purified myosin and actin move relative to one another, are used to better understand the mechanochemistry of the actomyosin adenosine triphosphatase (ATPase) cycle. We examined the relationship between the relative velocity (V) of actin and myosin and the number of available myosin heads (N) or [ATP] for smooth (SMM), skeletal (SKM), and cardiac (CMM) muscle myosin filaments moving over actin as well as V from actin filaments moving over a bed of monomeric SKM. These data do not fit well to a widely accepted model that predicts that V is limited by myosin detachment from actin (d/ton), where d equals step size and ton equals time a myosin head remains attached to actin. To account for these data, we have developed a mixed-kinetic model where V is influenced by both attachment and detachment kinetics. The relative contributions at a given V vary with the probability that a head will remain attached to actin long enough to reach the end of its flexible S2 tether. Detachment kinetics are affected by L/ton, where L is related to the tether length. We show that L is relatively long for SMM, SKM, and CMM filaments (59 ± 3 nm, 22 ± 9 nm, and 22 ± 2 nm, respectively). In contrast, L is shorter (8 ± 3 nm) when myosin monomers are attached to a surface. This suggests that the behavior of the S2 domain may be an important mechanical feature of myosin filaments that influences unloaded shortening velocities of muscle.
Collapse
|
31
|
|
32
|
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121:749-770. [PMID: 28912181 DOI: 10.1161/circresaha.117.311059] [Citation(s) in RCA: 803] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.).
| | - Eugene Braunwald
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.)
| |
Collapse
|
33
|
Guhathakurta P, Prochniewicz E, Roopnarine O, Rohde JA, Thomas DD. A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure. Biophys J 2017; 113:91-100. [PMID: 28700929 DOI: 10.1016/j.bpj.2017.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
We have used site-directed time-resolved fluorescence resonance energy transfer to determine the effect of a pathological mutation in the human ventricular essential light chain (hVELC) of myosin, on the structural dynamics of the actin-myosin complex. The hVELC modulates the function of actomyosin, through the interaction of its N-terminal extension with actin and its C-terminal lobe with the myosin heavy chain. Several mutations in hVELC are associated with hypertrophic cardiomyopathy (HCM). Some biochemical effects of these mutations are known, but further insight is needed about their effects on the structural dynamics of functioning actomyosin. Therefore, we introduced the HCM mutation E56G into a single-cysteine (C16) hVELC construct and substituted it for the VELC of bovine cardiac myosin subfragment 1. Using a donor fluorescent probe on actin (at C374) and an acceptor probe on C16 of hVELC, we performed time-resolved fluorescence resonance energy transfer, directly detecting structural changes within the bound actomyosin complex during function. The E56G mutation has no significant effect on actin-activated ATPase activity or actomyosin affinity in the presence of ATP, or on the structure of the strong-binding S complex in the absence of ATP. However, in the presence of saturating ATP, where both W (prepowerstroke) and S (postpowerstroke) structural states are observed, the mutant increases the mole fraction of the S complex (increasing the duty ratio), while shifting the structure of the remaining W complex toward that of S, indicating a structural redistribution toward the strongly bound (force-generating) complex. We propose that this effect is responsible for the hypercontractile phenotype induced by this HCM mutation in myosin.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - John A Rohde
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
34
|
Mijailovich SM, Nedic D, Svicevic M, Stojanovic B, Walklate J, Ujfalusi Z, Geeves MA. Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms. Biophys J 2017; 112:984-996. [PMID: 28297657 DOI: 10.1016/j.bpj.2017.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
Modeling the complete actin.myosin ATPase cycle has always been limited by the lack of experimental data concerning key steps of the cycle, because these steps can only be defined at very low ionic strength. Here, using human β-cardiac myosin-S1, we combine published data from transient and steady-state kinetics to model a minimal eight-state ATPase cycle. The model illustrates the occupancy of each intermediate around the cycle and how the occupancy is altered by changes in actin concentration for [actin] = 1-20Km. The cycle can be used to predict the maximal velocity of contraction (by motility assay or sarcomeric shortening) at different actin concentrations (which is consistent with experimental velocity data) and predict the effect of a 5 pN load on a single motor. The same exercise was repeated for human α-cardiac myosin S1 and rabbit fast skeletal muscle S1. The data illustrates how the motor domain properties can alter the ATPase cycle and hence the occupancy of the key states in the cycle. These in turn alter the predicted mechanical response of the myosin independent of other factors present in a sarcomere, such as filament stiffness and regulatory proteins. We also explore the potential of this modeling approach for the study of mutations in human β-cardiac myosin using the hypertrophic myopathy mutation R453C. Our modeling, using the transient kinetic data, predicts mechanical properties of the motor that are compatible with the single-molecule study. The modeling approach may therefore be of wide use for predicting the properties of myosin mutations.
Collapse
Affiliation(s)
- Srbolujub M Mijailovich
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Mechanical Engineering, Wentworth Institute of Technology, Boston, Massachusetts.
| | - Djordje Nedic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Marina Svicevic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Boban Stojanovic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jonathan Walklate
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Zoltan Ujfalusi
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| |
Collapse
|
35
|
Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 2017; 68:2871-2886. [PMID: 28007147 DOI: 10.1016/j.jacc.2016.08.079] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Over the last quarter-century, there has been tremendous progress in genetics research that has defined molecular causes for cardiomyopathies. More than a thousand mutations have been identified in many genes with varying ontologies, therein indicating the diverse molecules and pathways that cause hypertrophic, dilated, restrictive, and arrhythmogenic cardiomyopathies. Translation of this research to the clinic via genetic testing can precisely group affected patients according to molecular etiology, and identify individuals without evidence of disease who are at high risk for developing cardiomyopathy. These advances provide insights into the earliest manifestations of cardiomyopathy and help to define the molecular pathophysiological basis for cardiac remodeling. Although these efforts remain incomplete, new genomic technologies and analytic strategies provide unparalleled opportunities to fully explore the genetic architecture of cardiomyopathies. Such data hold the promise that mutation-specific pathophysiology will uncover novel therapeutic targets, and herald the beginning of precision therapy for cardiomyopathy patients.
Collapse
Affiliation(s)
- Michael A Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Stuart A Cook
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; National Heart Centre Singapore, Singapore; Duke-National University of Singapore, Singapore
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
36
|
Refaat MM, Fahed AC, Hassanieh S, Hotait M, Arabi M, Skouri H, Seidman JG, Seidman CE, Bitar FF, Nemer G. The Muscle-Bound Heart. Card Electrophysiol Clin 2016; 8:223-31. [PMID: 26920199 DOI: 10.1016/j.ccep.2015.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a familial cardiac disease manifested in a wide phenotype and diverse genotype and, thus, presenting unpredictable risks mainly on young adults. Extensive studies are being conducted to categorize patients and link phenotype with genotype for a better management and control of the disease with all its complications. Because the full mechanisms behind HCM are still not revealed, therapeutics are not definitive. Further research is to be conducted for the generation of a complete picture and directed therapy for HCM.
Collapse
Affiliation(s)
- Marwan M Refaat
- Cardiac Electrophysiology, Cardiology, Department of Internal Medicine, American University of Beirut Faculty of Medicine and Medical Center, PO Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, PO Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Department of Internal Medicine, American University of Beirut, Beirut, Lebanon.
| | - Akl C Fahed
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sylvana Hassanieh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Mostafa Hotait
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Skouri
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Division of Cardiology, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Fadi F Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
37
|
Spudich JA, Aksel T, Bartholomew SR, Nag S, Kawana M, Yu EC, Sarkar SS, Sung J, Sommese RF, Sutton S, Cho C, Adhikari AS, Taylor R, Liu C, Trivedi D, Ruppel KM. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin. ACTA ACUST UNITED AC 2016; 219:161-7. [PMID: 26792326 DOI: 10.1242/jeb.125930] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tural Aksel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sadie R Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Choe Yu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jongmin Sung
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth F Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carol Cho
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Taylor
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darshan Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Walklate J, Ujfalusi Z, Geeves MA. Myosin isoforms and the mechanochemical cross-bridge cycle. ACTA ACUST UNITED AC 2016; 219:168-74. [PMID: 26792327 DOI: 10.1242/jeb.124594] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At the latest count the myosin family includes 35 distinct groups, all of which have the conserved myosin motor domain attached to a neck or lever arm, followed by a highly variable tail or cargo binding region. The motor domain has an ATPase activity that is activated by the presence of actin. One feature of the myosin ATPase cycle is that it involves an association/dissociation with actin for each ATP hydrolysed. The cycle has been described in detail for a large number of myosins from different classes. In each case the cycle is similar, but the balance between the different molecular events in the cycle has been altered to produce a range of very different mechanical activities. Myosin may spend most of the ATPase cycle attached to actin (high duty ratio), as in the processive myosin (e.g. myosin V) or the strain-sensing myosins (e.g. myosin 1c). In contrast, most muscle myosins spend 80% of their ATPase cycle detached from actin. Within the myosin IIs found in human muscle, there are 11 different sarcomeric myosin isoforms, two smooth muscle isoforms as well as three non-muscle isoforms. We have been exploring how the different myosin isoforms have adapted the cross-bridge cycle to generate different types of mechanical activity and how this goes wrong in inherited myopathies. The ideas are outlined here.
Collapse
Affiliation(s)
| | - Zoltan Ujfalusi
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
39
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
40
|
Walklate J, Vera C, Bloemink MJ, Geeves MA, Leinwand L. The Most Prevalent Freeman-Sheldon Syndrome Mutations in the Embryonic Myosin Motor Share Functional Defects. J Biol Chem 2016; 291:10318-31. [PMID: 26945064 PMCID: PMC4858979 DOI: 10.1074/jbc.m115.707489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/12/2022] Open
Abstract
The embryonic myosin isoform is expressed during fetal development and rapidly down-regulated after birth. Freeman-Sheldon syndrome (FSS) is a disease associated with missense mutations in the motor domain of this myosin. It is the most severe form of distal arthrogryposis, leading to overcontraction of the hands, feet, and orofacial muscles and other joints of the body. Availability of human embryonic muscle tissue has been a limiting factor in investigating the properties of this isoform and its mutations. Using a recombinant expression system, we have studied homogeneous samples of human motors for the WT and three of the most common FSS mutants: R672H, R672C, and T178I. Our data suggest that the WT embryonic myosin motor is similar in contractile speed to the slow type I/β cardiac based on the rate constant for ADP release and ADP affinity for actin-myosin. All three FSS mutations show dramatic changes in kinetic properties, most notably the slowing of the apparent ATP hydrolysis step (reduced 5–9-fold), leading to a longer lived detached state and a slowed Vmax of the ATPase (2–35-fold), indicating a slower cycling time. These mutations therefore seriously disrupt myosin function.
Collapse
Affiliation(s)
- Jonathan Walklate
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Carlos Vera
- the Department of Molecular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Marieke J Bloemink
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Michael A Geeves
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Leslie Leinwand
- the Department of Molecular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
41
|
Heissler SM, Sellers JR. Four things to know about myosin light chains as reporters for non-muscle myosin-2 dynamics in live cells. Cytoskeleton (Hoboken) 2016; 72:65-70. [PMID: 25712372 DOI: 10.1002/cm.21212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
The interplay between non-muscle myosins-2 and filamentous actin results in cytoplasmic contractility which is essential for eukaryotic life. Concomitantly, there is tremendous interest in elucidating the physiological function and temporal localization of non-muscle myosin-2 in cells. A commonly used method to study the function and localization of non-muscle myosin-2 is to overexpress a fluorescent protein (FP)-tagged version of the regulatory light chain (RLC) which binds to the myosin-2 heavy chain by mass action. Caveats about this approach include findings from recent studies indicating that the RLC does not bind exclusively to the non-muscle myosin-2 heavy chain. Rather, it can also associate with the myosin heavy chains of several other classes as well as other targets than myosin. In addition, the presence of the FP moiety may compromise myosin's enzymatic and mechanical performance. This and other factors to be discussed in this commentary raise questions about the possible complications in using FP-RLC as a marker for the dynamic localization and regulatory aspects of non-muscle myosin-2 motor functions in cell biological experiments.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
42
|
Direct real-time detection of the structural and biochemical events in the myosin power stroke. Proc Natl Acad Sci U S A 2015; 112:14272-7. [PMID: 26578772 DOI: 10.1073/pnas.1514859112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose. This result supports a model for muscle contraction in which power output and efficiency are tuned by the distribution of myosin structural states. This technology should have wide application to other systems in which questions about the temporal coupling of allosteric structural and biochemical transitions remain unanswered.
Collapse
|
43
|
Nag S, Sommese RF, Ujfalusi Z, Combs A, Langer S, Sutton S, Leinwand LA, Geeves MA, Ruppel KM, Spudich JA. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. SCIENCE ADVANCES 2015; 1:e1500511. [PMID: 26601291 PMCID: PMC4646805 DOI: 10.1126/sciadv.1500511] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/17/2015] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.
Collapse
Affiliation(s)
- Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth F. Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zoltan Ujfalusi
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Ariana Combs
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Stephen Langer
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
45
|
Aksel T, Choe Yu E, Sutton S, Ruppel KM, Spudich JA. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep 2015; 11:910-920. [PMID: 25937279 PMCID: PMC4431957 DOI: 10.1016/j.celrep.2015.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system's force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin's ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and β-cardiac myosin isoforms and those of β-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and β-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases β-cardiac myosin force generation.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Choe Yu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
47
|
Abstract
Heart failure is highly influenced by heritability, and nearly 100 genes link to familial cardiomyopathy. Despite the marked genetic diversity that underlies these complex cardiovascular phenotypes, several key genes and pathways have emerged. Hypertrophic cardiomyopathy is characterized by increased contractility and a greater energetic cost of cardiac output. Dilated cardiomyopathy is often triggered by mutations that disrupt the giant protein titin. The energetic consequences of these mutations offer molecular targets and opportunities for new drug development and gene correction therapies.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
48
|
Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J 2014; 106:1236-49. [PMID: 24655499 PMCID: PMC3985504 DOI: 10.1016/j.bpj.2014.02.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 01/10/2023] Open
Abstract
With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects ∼1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
49
|
Adamek N, Geeves MA. Use of pyrene-labelled actin to probe actin-myosin interactions: kinetic and equilibrium studies. ACTA ACUST UNITED AC 2014; 105:87-104. [PMID: 25095992 DOI: 10.1007/978-3-0348-0856-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Studying the dynamics of the interaction between actin and myosin and how this is modulated by ATP and other nucleotides is fundamental to any understanding of myosin motor protein activity. The fluorescent label pyrene, covalently attached to actin (at Cys 374), has been one of the most useful optical probes to report myosin binding to actin. The unique spectral features of pyrene make it sensitive to changes in the microenvironment of the probe and allow to monitor processes such as conformational changes and protein-protein interactions. Here we describe how to make and use pyrene-labelled actin and describe a set of fluorescence stopped-flow measurements that allow the actin-myosin interaction to be explored at protein concentrations from μM to nM for many of the known myosin motors.
Collapse
Affiliation(s)
- Nancy Adamek
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | |
Collapse
|
50
|
Månsson A. Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies. Front Physiol 2014; 5:350. [PMID: 25309450 PMCID: PMC4163974 DOI: 10.3389/fphys.2014.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g., in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray, and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g., hypertension), mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: (1) contractile instabilities within each sarcomere (with more than one stable velocity for a given load), (2) different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University Kalmar, Sweden
| |
Collapse
|