1
|
Liu Y, Li X, Jiang L, Ma J. Identification of age-related genes in rotator cuff tendon. Bone Joint Res 2024; 13:474-484. [PMID: 39253760 PMCID: PMC11384310 DOI: 10.1302/2046-3758.139.bjr-2023-0398.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Aims Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Methods Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs. Results We identified 49 genes in torn supraspinatus tendons associated with advancing age. Among them, five age-related genes showed DE in lesioned tendons compared to normal tendons. Functional analyses and previous studies have highlighted their specific enrichments in biological functions, such as muscle development (e.g. myosin heavy chain 3 (MYH3)), transcription regulation (e.g. CCAAT enhancer binding brotein delta (CEBPD)), and metal ion homeostasis (e.g. metallothionein 1X (MT1X)). Conclusion This study uncovered molecular aspects of tendon ageing and their potential links to RCT development, offering insights for targeted interventions. These findings enhance our understanding of the mechanisms of tendon degeneration, allowing potential strategies to be made for reducing the incidence of RCT.
Collapse
Affiliation(s)
- Yibin Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xing Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Jiang
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
- Department of the Heart Failure, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China, Guangzhou, Guangdong, China
| | - Jinjin Ma
- School of Medicine, South China University of Technology, Guangzhou, China
- Institute of Future Health, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
3
|
Avilla-Royo E, Gegenschatz-Schmid K, Grossmann J, Kockmann T, Zimmermann R, Snedeker JG, Ochsenbein-Kölble N, Ehrbar M. Comprehensive quantitative characterization of the human term amnion proteome. Matrix Biol Plus 2021; 12:100084. [PMID: 34765964 PMCID: PMC8572956 DOI: 10.1016/j.mbplus.2021.100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
We report an unprecedented quantitative high coverage of the human amnion proteome. We identified novel proteins that hold great promise for understanding fetal membrane biology. Together, this comprehensive proteome provides a basis for the evaluation of pre-term or diseased fetal membranes.
The loss of fetal membrane (FM) integrity and function at an early time point during pregnancy can have devastating consequences for the fetus and the newborn. However, biomaterials for preventive sealing and healing of FMs are currently non-existing, which can be partly attributed to the current fragmentary knowledge of FM biology. Despite recent advances in proteomics analysis, a robust and comprehensive description of the amnion proteome is currently lacking. Here, by an optimized protein sample preparation and offline fractionation before liquid chromatography coupled to mass spectrometry (LC-MS) analysis, we present a characterization of the healthy human term amnion proteome, which covers more than 40% of the previously reported transcripts in similar RNA sequencing datasets and, with more than 5000 identifications, greatly outnumbers previous reports. Together, beyond providing a basis for the study of compromised and preterm ruptured FMs, this comprehensive human amnion proteome is a stepping-stone for the development of novel healing-inducing biomaterials. The proteomic dataset has been deposited in the ProteomeXchange Consortium with the identifier PXD019410.
Collapse
Affiliation(s)
- Eva Avilla-Royo
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,Institute for Biomechanics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | | | - Jonas Grossmann
- Functional Genomics Center, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 792 Lausanne, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Roland Zimmermann
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, 8032 Zurich, Switzerland
| | - Jess Gerrit Snedeker
- Institute for Biomechanics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.,Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, 8032 Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
4
|
Tendon and multiomics: advantages, advances, and opportunities. NPJ Regen Med 2021; 6:61. [PMID: 34599188 PMCID: PMC8486786 DOI: 10.1038/s41536-021-00168-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Tendons heal by fibrosis, which hinders function and increases re-injury risk. Yet the biology that leads to degeneration and regeneration of tendons is not completely understood. Improved understanding of the metabolic nuances that cause diverse outcomes in tendinopathies is required to solve these problems. 'Omics methods are increasingly used to characterize phenotypes in tissues. Multiomics integrates 'omic datasets to identify coherent relationships and provide insight into differences in molecular and metabolic pathways between anatomic locations, and disease stages. This work reviews the current literature pertaining to multiomics in tendon and the potential of these platforms to improve tendon regeneration. We assessed the literature and identified areas where 'omics platforms contribute to the field: (1) Tendon biology where their hierarchical complexity and demographic factors are studied. (2) Tendon degeneration and healing, where comparisons across tendon pathologies are analyzed. (3) The in vitro engineered tendon phenotype, where we compare the engineered phenotype to relevant native tissues. (4) Finally, we review regenerative and therapeutic approaches. We identified gaps in current knowledge and opportunities for future study: (1) The need to increase the diversity of human subjects and cell sources. (2) Opportunities to improve understanding of tendon heterogeneity. (3) The need to use these improvements to inform new engineered and regenerative therapeutic approaches. (4) The need to increase understanding of the development of tendon pathology. Together, the expanding use of various 'omics platforms and data analysis resulting from these platforms could substantially contribute to major advances in the tendon tissue engineering and regenerative medicine field.
Collapse
|
5
|
Zhong W, Hou H, Liu T, Su S, Xi X, Liao Y, Xie R, Jin G, Liu X, Zhu L, Zhang H, Song X, Yang C, Sun T, Cao H, Wang B. Cartilage Oligomeric Matrix Protein promotes epithelial-mesenchymal transition by interacting with Transgelin in Colorectal Cancer. Am J Cancer Res 2020; 10:8790-8806. [PMID: 32754278 PMCID: PMC7392026 DOI: 10.7150/thno.44456] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose: The role of the cartilage oligomeric matrix protein (COMP) in epithelial-mesenchymal transition (EMT) in tumor progression has been studied, but its exact regulatory mechanism remains unknown. Methods: The interaction between COMP and the actin-binding protein transgelin (TAGLN) was identified by interaction protein prediction and co-immunoprecipitation and verified through the stochastic optical reconstruction microscopy (STORM) and duolink experiments. Western blot and immunofluorescence analyses were conducted to detect the changes in EMT-related markers after COMP overexpression and knockdown. Molecular docking and Biacore of the interaction interface of COMP/TAGLN revealed that Chrysin directly targeted COMP. The promotion of COMP and the Chrysin inhibition of EMT were detected through the cell migration, invasion, apoptosis, and xenotransplantation of nude mice. Results: COMP interacts with TAGLN in EMT in colorectal cancer to regulate cytoskeletal remodeling and promote malignant progression. COMP is highly expressed in highly malignant colorectal cancer and positively correlated with TAGLN expression. COMP knockdown can inhibit colorectal cancer metastasis and invasion, whereas COMP overexpression promotes EMT in colorectal cancer. Through virtual screening of the protein interaction interface, Chrysin, a flavonoid compound extracted from Oroxylum indicum, was found to have the highest docking score to the COMP/TAGLN complex. Chrysin inhibited COMP, thereby preventing EMT and the malignant progression of colorectal cancer. Conclusions: This study illustrated the role of COMP in EMT and suggested that COMP/TAGLN may be a potential tumor therapeutic target. Chrysin exhibits obvious antitumor effects. This work provides a preliminary antitumor therapy to target COMP or its interaction protein to inhibit EMT.
Collapse
|
6
|
Development of a Cartilage Oligomeric Matrix Protein Neo-Epitope Assay for the Detection of Intra-Thecal Tendon Disease. Int J Mol Sci 2020; 21:ijms21062155. [PMID: 32245107 PMCID: PMC7139564 DOI: 10.3390/ijms21062155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The diagnosis of tendon injury relies on clinical signs and diagnostic imaging but imaging is subjective and does not always correlate with clinical signs. A molecular marker would potentially offer a sensitive and specific diagnostic tool that could also provide objective assessment of healing for the comparison of different treatments. Cartilage Oligomeric Matrix Protein (COMP) has been used as a molecular marker for osteoarthritis in humans and horses but assays for the protein in tendon sheath synovial fluids have shown overlap between horses affected by tendinopathy and controls. We hypothesized that quantifying a COMP neoepitope would be more discriminatory of injury. COMP fragments were purified from synovial fluids of horses with intra-thecal tendon injuries and media from equine tendon explants, and mass spectrometry of a consistent and abundant fragment revealed a ~100 kDa COMP fragment with a new N-terminus at the 78th amino-acid (NH2-TPRVSVRP) located just outside the junctional region of the protein. A competitive inhibition ELISA based on a polyclonal antibody raised to this sequence yielded more than a 10-fold rise in the mean neoepitope levels for tendinopathy cases compared to controls (5.3 ± 1.3 µg/mL (n = 7) versus 58.8 ± 64.3 µg/mL (n = 13); p = 0.002). However, there was some cross-reactivity of the neoepitope polyclonal antiserum with intact COMP, which could be blocked by a peptide spanning the neoepitope. The modified assay demonstrated a lower concentration but a significant > 500-fold average rise with tendon injury (2.5 ± 2.2 ng/mL (n = 6) versus 1029.8 ± 2188.8 ng/ml (n = 14); p = 0.013). This neo-epitope assay therefore offers a potentially useful marker for clinical use.
Collapse
|
7
|
Ekman S, Lindahl A, Rüetschi U, Jansson A, Björkman K, Abrahamsson-Aurell K, Björnsdóttir S, Löfgren M, Hultén LM, Skiöldebrand E. Effect of circadian rhythm, age, training and acute lameness on serum concentrations of cartilage oligomeric matrix protein (COMP) neo-epitope in horses. Equine Vet J 2019; 51:674-680. [PMID: 30739342 PMCID: PMC6767518 DOI: 10.1111/evj.13082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
Background Molecular serum markers that can identify early reversible osteoarthritis (OA) in horses are lacking. Objectives We studied serum concentrations of a novel cartilage oligomeric matrix protein (COMP) neo‐epitope in horses subjected to short‐term exercise and with acute lameness. The effects of circadian rhythm and age were also evaluated. Study design Longitudinal studies in healthy horses and cross‐sectional comparison of lame and non‐lame horses. Methods Sera were collected from five horses before and after short‐term interval exercise and during full‐day box rest. Sera from 32 acutely lame horses were used to evaluate age‐related effects. Independent samples from control horses (n = 41) and horses with acute lameness (n = 71) were included. COMP neo‐epitope concentrations were analysed using custom‐developed inhibition ELISAs validated for equine serum. The presence of COMP neo‐epitope was delineated in healthy and osteoarthritic articular cartilage with immunohistochemistry. Results COMP neo‐epitope concentrations decreased after speed training but returned to baseline levels post‐exercise. No correlations between age and serum COMP neo‐epitope concentrations were found (r = 0.0013). The mean (±s.d.) serum concentration of COMP neo‐epitope in independent samples from non‐lame horses was 0.84 ± 0.38 μg/mL, and for lame horses was 5.24 ± 1.83 μg/mL (P<0.001). Antibodies against COMP neo‐epitope did not stain normal articular cartilage, but intracytoplasmic staining was found in superficial chondrocytes of mild OA cartilage and in the extracellular matrix of moderately osteoarthritic cartilage. Main limitations ELISA was based on polyclonal antisera rather than a monoclonal antibody. There is a sex and breed bias within the groups of horses, also it could have been of value to include horses with septic arthritis and tendonitis and investigated joint differences. Conclusions This COMP neo‐epitope can be measured in sera, and results indicate that it could be a biomarker for pathologic fragmentation of cartilage in connection with acute joint lameness.
Collapse
Affiliation(s)
- S Ekman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - A Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Björkman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - S Björnsdóttir
- Agricultural University of Iceland, Hvanneyri, Borgarnes, Saudarkrokur, Iceland
| | - M Löfgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L Mattsson Hultén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
8
|
Andia I, Martin JI, Maffulli N. Advances with platelet rich plasma therapies for tendon regeneration. Expert Opin Biol Ther 2018; 18:389-398. [DOI: 10.1080/14712598.2018.1424626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Isabel Andia
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Jose Ignacio Martin
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Interventional Imaging. Department of Radiology, Cruces University Hospital, Barakaldo, Spain
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentristry, Salerno, Italy
- Barts and the London School of Medicine and Dentistry Centre for Sports and Exercise Medicine, Queen Mary University of London, London, England
| |
Collapse
|
9
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
10
|
Garvican ER, Salavati M, Smith RKW, Dudhia J. Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries. Connect Tissue Res 2017; 58:438-446. [PMID: 27726447 DOI: 10.1080/03008207.2016.1245726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The purpose of this study was to investigate the effect of normal synovial fluid (SF) on exposed endogenous tendon-derived cells (TDCs) and engrafted mesenchymal stem cells (MSCs) within the tendon extracellular matrix. METHODS Explants from equine superficial digital flexor (extra-synovial) and deep digital flexor tendons (DDFTs) from the compressed, intra-synovial and the tensile, extra-synovial regions were cultured in allogeneic or autologous SF-media. Human hamstring explants were cultured in allogeneic SF. Explant viability was assessed by staining. Proliferation of equine monolayer MSCs and TDCs in SF-media and co-culture with DDFT explants was determined by alamarblue®. Non-viable Native Tendon matrices (NNTs) were re-populated with MSCs or TDCs and cultured in SF-media. Immunohistochemical staining of tendon sections for the apoptotic proteins caspase-3, -8, and -9 was performed. RESULTS Contact with autologous or allogeneic SF resulted in rapid death of resident tenocytes in equine and human tendon. SF did not affect the viability of equine epitenon cells, or of MSCs and TDCs in the monolayer or indirect explant co-culture. MSCs and TDCs, engrafted into NNTs, died when cultured in SF. Caspase-3, -8, and -9 expression was the greatest in SDFT explants exposed to allogeneic SF. CONCLUSIONS The efficacy of cells administered intra-synovially for tendon lesion repair is likely to be limited, since once incorporated into the matrix, cells become vlnerable to the adverse effects of SF. These observations could account for the poor success rate of intra-synovial tendon healing following damage to the epitenon and contact with SF, common with most soft tissue intra-synovial pathologies.
Collapse
Affiliation(s)
- Elaine R Garvican
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Mazdak Salavati
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Roger K W Smith
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| | - Jayesh Dudhia
- a Clinical Sciences and Services , The Royal Veterinary College , North Mymms , Hertfordshire , United Kingdom
| |
Collapse
|
11
|
Godinho MSC, Thorpe CT, Greenwald SE, Screen HRC. Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing. Sci Rep 2017; 7:9713. [PMID: 28855560 PMCID: PMC5577209 DOI: 10.1038/s41598-017-09995-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy.
Collapse
Affiliation(s)
- Marta S C Godinho
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Steve E Greenwald
- Blizard Institute, Barts and London School of Medicine and Dentistry, Turner Street, London, E1 11BB, United Kingdom
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.
| |
Collapse
|
12
|
A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue. PLoS One 2017; 12:e0177656. [PMID: 28542244 PMCID: PMC5436668 DOI: 10.1371/journal.pone.0177656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022] Open
Abstract
Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS. Employing two digestion protocols (trypsin and elastase), we analysed grain-sized tendon supraspinatus biopsies from older patients with torn tendons and from healthy, young controls. Our findings confirm measurable degradation of collagen fibrils and associated proteins in old and torn tendons, suggesting a significant loss of tissue organisation. A particularly marked reduction of cartilage oligomeric matrix protein (COMP) raises the possibility of using changes in levels of this glycoprotein as a marker of abnormal tissue, as previously suggested in horse models. Surprisingly, and despite using an elastase digestion for validation, elastin was not detected, suggesting that it is not highly abundant in human supraspinatus tendon as previously thought. Finally, we identified marked changes to the elastic fibre, fibrillin-rich niche and the pericellular matrix. Further investigation of these regions may yield other potential biomarkers and help to explain detrimental cellular processes associated with tendon ageing and tendinopathy.
Collapse
|
13
|
Skiöldebrand E, Ekman S, Mattsson Hultén L, Svala E, Björkman K, Lindahl A, Lundqvist A, Önnerfjord P, Sihlbom C, Rüetschi U. Cartilage oligomeric matrix protein neoepitope in the synovial fluid of horses with acute lameness: A new biomarker for the early stages of osteoarthritis. Equine Vet J 2017; 49:662-667. [PMID: 28097685 PMCID: PMC5573946 DOI: 10.1111/evj.12666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Background Clinical tools to diagnose the early changes of osteoarthritis (OA) that occur in the articular cartilage are lacking. Objectives We sought to identify and quantify a novel cartilage oligomeric matrix protein (COMP) neoepitope in the synovial fluid from the joints of healthy horses and those with different stages of OA. Study design In vitro quantitative proteomics and assay development with application in synovial fluids samples obtained from biobanks of well‐characterised horses. Methods Articular cartilage explants were incubated with or without interleukin‐1β for 25 days. Media were analysed via quantitative proteomics. Synovial fluid was obtained from either normal joints (n = 15) or joints causing lameness (n = 17) or with structural OA lesions (n = 7) and analysed for concentrations of the COMP neoepitope using a custom‐developed inhibition enzyme‐linked immunosorbent assay (ELISA). Explants were immunostained with polyclonal antibodies against COMP and the COMP neoepitopes. Results Semitryptic COMP peptides were identified and quantified in cell culture media from cartilage explants. A rabbit polyclonal antibody was raised against the neoepitope of the N‐terminal portion of one COMP fragment (sequence SGPTHEGVC). An inhibition ELISA was developed to quantify the COMP neoepitope in synovial fluid. The mean concentration of the COMP neoepitope significantly increased in the synovial fluid from the joints responsible for acute lameness compared with normal joints and the joints of chronically lame horses and in joints with chronic structural OA. Immunolabelling for the COMP neoepitope revealed a pericellular staining in the interleukin‐1β‐stimulated explants. Main limitations The ELISA is based on polyclonal antisera rather than a monoclonal antibody. Conclusions The increase in the COMP neoepitope in the synovial fluid from horses with acute lameness suggests that this neoepitope has the potential to be a unique candidate biomarker for the early molecular changes in articular cartilage associated with OA.
Collapse
Affiliation(s)
- E Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden.,Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Ekman
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - E Svala
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden.,Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Björkman
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - A Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - A Lundqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P Önnerfjord
- Section for Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - C Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
14
|
|
15
|
Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment. Matrix Biol 2016; 63:11-22. [PMID: 27988350 DOI: 10.1016/j.matbio.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023]
Abstract
Mechanical damage at the time of joint injury and the ensuing inflammatory response associated with elevated levels of pro-inflammatory cytokines in the synovial fluid, are reported to contribute to the progression to osteoarthritis after injury. In this exploratory study, we used a targeted proteomics approach to follow the progression of matrix degradation in response to mechanical damage and cytokine treatment of human knee cartilage explants, and thereby to study potential molecular biomarkers. This proteomics approach allowed us to unambiguously identify and quantify multiple peptides and proteins in the cartilage medium and explants upon treatment with ±injurious compression ±cytokines, treatments that mimic the earliest events in post-traumatic OA. We followed degradation of different protein domains, e.g., G1/G2/G3 of aggrecan, by measuring representative peptides of matrix proteins released into the medium at 7 time points throughout the 21-day culture period. COMP neo-epitopes, which were previously identified in the synovial fluid of knee injury/OA patients, were also released by these human cartilage explants treated with cyt and cyt+inj. The absence of collagen pro-peptides and elevated levels of specific COMP and COL3A1 neo-epitopes after human knee trauma may be relevant as potential biomarkers for post-traumatic OA. This model system thereby enables study of the kinetics of cartilage degradation and the identification of biomarkers within cartilage explants and those released to culture medium. Discovery proteomics revealed that candidate proteases were identified after specific treatment conditions, including MMP1, MMP-3, MMP-10 and MMP-13.
Collapse
|
16
|
Dakin SG, Martinez FO, Yapp C, Wells G, Oppermann U, Dean BJF, Smith RDJ, Wheway K, Watkins B, Roche L, Carr AJ. Inflammation activation and resolution in human tendon disease. Sci Transl Med 2016; 7:311ra173. [PMID: 26511510 DOI: 10.1126/scitranslmed.aac4269] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate, or advanced disease, and inflammation was characterized through activation of pathways mediated by interferon (IFN), nuclear factor κB (NF-κB), glucocorticoid receptor, and signal transducer and activator of transcription 6 (STAT-6). Inflammation signatures revealed expression of genes and proteins induced by IFN and NF-κB in early-stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced-stage disease. The proresolving proteins FPR2/ALX and ChemR23 were increased in early-stage disease compared to intermediate- to advanced-stage disease. Patients who were pain-free after treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain after treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and IFN target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi lipoxin A4, a stable lipoxin isoform derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation.
Collapse
Affiliation(s)
- Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Fernando O Martinez
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK
| | - Clarence Yapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington OX3 7DQ, UK
| | - Graham Wells
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington OX3 7DQ, UK
| | - Benjamin J F Dean
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Richard D J Smith
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Lucy Roche
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington OX3 7LD, UK. NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
17
|
Dakin SG. A review of the healing processes in equine superficial digital flexor tendinopathy. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- S. G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; Botnar Research Centre; Nuffield Orthopaedic Centre; University of Oxford; UK
| |
Collapse
|
18
|
Goodier HCJ, Carr AJ, Snelling SJB, Roche L, Wheway K, Watkins B, Dakin SG. Comparison of transforming growth factor beta expression in healthy and diseased human tendon. Arthritis Res Ther 2016; 18:48. [PMID: 26883016 PMCID: PMC4756520 DOI: 10.1186/s13075-016-0947-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Background Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Methods Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. Results TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p < 0.01) in diseased compared to healthy tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p < 0.01). BMP-2, BMP-7 and CTGF mRNA remained unchanged with tendon disease. Conclusions We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Future studies should investigate the expression profile of fibrotic mediators in earlier stages of tendon disease to improve understanding of the targetable mechanisms underpinning tendon fibrosis.
Collapse
Affiliation(s)
- Henry C J Goodier
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Lucy Roche
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
19
|
Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 2016; 6:20455. [PMID: 26842662 PMCID: PMC4740843 DOI: 10.1038/srep20455] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Tendon is a simple aligned fibre composite, consisting of collagen-rich fascicles surrounded by a softer interfascicular matrix (IFM). The composition and interactions between these material phases are fundamental in ensuring tissue mechanics meet functional requirements. However the IFM is poorly defined, therefore tendon structure-function relationships are incompletely understood. We hypothesised that the IFM has a more complex proteome, with faster turnover than the fascicular matrix (FM). Using laser-capture microdissection and mass spectrometry, we demonstrate that the IFM contains more proteins, and that many proteins show differential abundance between matrix phases. The IFM contained more protein fragments (neopeptides), indicating greater matrix degradation in this compartment, which may act to maintain healthy tendon structure. Protein abundance did not alter with ageing, but neopeptide numbers decreased in the aged IFM, indicating decreased turnover which may contribute to age-related tendon injury. These data provide important insights into how differences in tendon composition and turnover contribute to tendon structure-function relationships and the effects of ageing.
Collapse
|
20
|
Peffers MJ, Thornton DJ, Clegg PD. Characterization of neopeptides in equine articular cartilage degradation. J Orthop Res 2016; 34:106-20. [PMID: 26124002 PMCID: PMC4737130 DOI: 10.1002/jor.22963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is characterized by a loss of extracellular matrix that leads to cartilage degradation and joint space narrowing. Specific proteases, including the aggrecanases ADAMTS-4 and matrix metalloproteinase 3, are important in initiating and promoting cartilage degradation in osteoarthritis. This study investigated protease-specific and disease-specific cleavage patterns of particular extracellular matrix proteins by comparing new peptide fragments, neopeptides, in specific exogenous protease-driven digestion of a crude cartilage proteoglycan extract and an in-vitro model of early osteoarthritis. Additionally, equine cartilage explants were treated with interleukin-1 and the media collected. Proteolytic cleavage products following trypsin digestion were then identified using tandem mass spectrometry. Complete sequences of proteolytically cleaved neopeptides were determined for the major cartilage proteoglycans aggrecan, biglycan, decorin, fibromodulin plus cartilage oligomeric matrix protein. The generation of neopeptides varied with enzyme specificity; however, some peptides were common to all samples. Previous known and novel cleavage sites were identifies. The identification of novel peptide fragments provides a platform for the development of antibodies that could assist in the identification of biomarkers for osteoarthritis (OA), as well as the identification of basic biochemical processes underlying OA.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, LeahurstChester High RoadNestonWirralCH64 7TEUK
| | - David James Thornton
- Wellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesMichael Smith BuildingOxford RoadManchesterM13 9PTUK
| | - Peter David Clegg
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, LeahurstChester High RoadNestonWirralCH64 7TEUK
| |
Collapse
|
21
|
Garvican ER, Dudhia J, Alves AL, Clements LE, Plessis FD, Smith RKW. Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces in vitro: a potential beneficial therapeutic effect. Regen Med 2015; 9:295-308. [PMID: 24935042 DOI: 10.2217/rme.14.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Injury of tendons contained within a synovial environment, such as joint, bursa or tendon sheath, frequently fails to heal and releases matrix proteins into the synovial fluid, driving inflammation. This study investigated the effectiveness of cells to seal tendon surfaces and provoke matrix synthesis as a possible effective injectable therapy. MATERIALS & METHODS Equine flexor tendon explants were cultured overnight in suspensions of bone marrow and synovium-derived mesenchymal stems cells and, as controls, two sources of fibroblasts, derived from tendon and skin, which adhered to the explants. Release of the most abundant tendon extracellular matrix proteins into the media was assayed, along with specific matrix proteins synthesis by real-time PCR. RESULTS Release of extracellular matrix proteins was influenced by the coating cell type. Fibroblasts from skin and tendon appeared less capable of preventing the release of matrix proteins than mesenchymal stems cells. CONCLUSION The source of cell is an important consideration for cell therapy.
Collapse
Affiliation(s)
- Elaine R Garvican
- The Royal Veterinary College, Department of Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Our friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.
Collapse
|
23
|
A tribute to Dick Heinegård. Matrix Biol 2014; 39:2-4. [PMID: 25172829 PMCID: PMC5477231 DOI: 10.1016/j.matbio.2014.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This issue of Matrix Biology commemorates the memory of Dick Heinegård and his exceptional contributions to identify extracellular matrix molecules and their interactions that form cartilage matrices. This tribute to him demonstrates the development of his cartilage matrix model and how this model relates to the articles in this Matrix Biology Cartilage issue.
Collapse
|
24
|
Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TKJ, Screen HRC, Clegg PD. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation. J Biol Chem 2014; 289:25867-78. [PMID: 25077967 PMCID: PMC4162187 DOI: 10.1074/jbc.m114.566554] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging.
Collapse
Affiliation(s)
- Mandy J Peffers
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| | - Chavaunne T Thorpe
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, and
| | - John A Collins
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| | - Robin Eong
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, School of Life Sciences, Ngee Ann Polytechnic, Singapore 599489
| | - Timothy K J Wei
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE, School of Life Sciences, Ngee Ann Polytechnic, Singapore 599489
| | - Hazel R C Screen
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, and
| | - Peter D Clegg
- From the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| |
Collapse
|
25
|
Berardi AC, Oliva F, Berardocco M, la Rovere M, Accorsi P, Maffulli N. Thyroid hormones increase collagen I and cartilage oligomeric matrix protein (COMP) expression in vitro human tenocytes. Muscles Ligaments Tendons J 2014; 4:285-291. [PMID: 25489544 PMCID: PMC4241417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND we previously demonstrated the presence of high levels of thyroid hormones (THs) receptors isoforms in healthy tendons, their protective action during tenocyte apoptosis, and the capability to enhance tenocyte proliferation in vitro. In the present study we tested the ability of THs to influence ECM protein tenocyte secretion in an in vitro system. METHODS primary tenocyte-like cells were cultivated for 1, 7 and 14 days in the presence of T3 or T4 individually or in combination with ascorbic acid (AA). RESULTS THs (T3 or T4) in synergism with AA increase significantly the total collagen production after 14 days. THs in synergism with AA increase significantly the expression of collagen I,biglycan and COMP, after some days. CONCLUSION THs play a role on the extra cellular matrix of tendons, enhancing in vitro the production of several proteins such as collagen I, biglycan and COMP. THs receptors are active on human tenocytes, and can play a role in tendon ailments.
Collapse
Affiliation(s)
- Anna C. Berardi
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome “Tor Vergata”, School of Medicine, Rome, Italy
| | - Martina Berardocco
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Marina la Rovere
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Patrizia Accorsi
- UOC Immunohematology and Transfusion Medicine Laboratories, Spirito Santo Hospital, Pescara, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy; and Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Institute of Health Sciences Education, Centre for Sports and Exercise, London, UK
| |
Collapse
|
26
|
Dakin SG, Dudhia J, Smith RKW. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol 2014; 158:121-7. [PMID: 24556326 PMCID: PMC3991845 DOI: 10.1016/j.vetimm.2014.01.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Abstract
Injuries to the superficial digital flexor tendon (SDFT) are an important cause of morbidity and mortality in equine athletes, but the healing response is poorly understood. One important drive for the healing of connective tissues is the inflammatory cascade, but the role of inflammation in tendinopathy has been contentious in the literature. This article reviews the processes involved in the healing of tendon injuries in natural disease and experimental models. The importance of inflammatory processes known to be active in tendon disease is discussed with particular focus on recent findings related specifically to the horse. Whilst inflammation is necessary for debridement after injury, persistent inflammation is thought to drive fibrosis, a perceived adverse consequence of tendon healing. Therefore the ability to resolve inflammation by the resident cell populations in tendons at an appropriate time would be crucial for successful outcome. This review summarises new evidence for the importance of resolution of inflammation after tendon injury. Given that many anti-inflammatory drugs suppress both inflammatory and resolving components of the inflammatory response, prolonged use of these drugs may be contraindicated as a therapeutic approach. We propose that these findings have profound implications not only for current treatment strategies but also for the possibility of developing novel therapeutic approaches involving modulation of the inflammatory process.
Collapse
Affiliation(s)
- Stephanie G Dakin
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Jayesh Dudhia
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Roger K W Smith
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|