1
|
Minere M, Mortensen M, Dorovykh V, Warnes G, Nizetic D, Smart TG, Hannan SB. Presynaptic hyperexcitability reversed by positive allosteric modulation of a GABABR epilepsy variant. Brain 2025; 148:533-548. [PMID: 39028675 DOI: 10.1093/brain/awae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/05/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024] Open
Abstract
GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits. Recently, three variants (G693W, S695I, I705N) have been identified in the gene (GABBR2) encoding for GABABR2. Individuals that harbour any of these variants exhibit severe developmental epileptic encephalopathy and intellectual disability, but the underlying pathogenesis that is triggered in neurons remains unresolved. Using a range of confocal imaging, flow cytometry, structural modelling, biochemistry, live cell Ca2+ imaging of presynaptic terminals, whole-cell electrophysiology of human embryonic kidney (HEK)-293 T cells and neurons and two-electrode voltage clamping of Xenopus oocytes, we have probed the biophysical and molecular trafficking and functional profiles of G693W, S695I and I705N variants. We report that all three point mutations impair neuronal cell surface expression of GABABRs, reducing signalling efficacy. However, a negative effect evident for one variant perturbed neurotransmission by elevating presynaptic Ca2+ signalling. This is reversed by enhancing GABABR signalling via positive allosteric modulation. Our results highlight the importance of studying neuronal receptors expressed in nervous system tissue and provide new mechanistic insights into how GABABR variants can initiate neurodevelopmental disease whilst highlighting the translational suitability and therapeutic potential of allosteric modulation for correcting these deficits.
Collapse
Affiliation(s)
- Marielle Minere
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Martin Mortensen
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Valentina Dorovykh
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Gary Warnes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dean Nizetic
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Saad B Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Bhat MA, Hleihil M, Mondéjar I, Grampp T, Benke D. The E3 ubiquitin ligase MARCH1 mediates downregulation of plasma membrane GABA B receptors under ischemic conditions by inhibiting fast receptor recycling. Sci Rep 2025; 15:1330. [PMID: 39779794 PMCID: PMC11711762 DOI: 10.1038/s41598-025-85842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
GABAB receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABAB receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors. Treatment with these peptides restored GABAB receptor expression after an ischemic insult and thereby inhibited neuronal overexcitation and progressive neuronal death. In this study, we searched for GABAB receptor interactions that specifically occur under ischemic conditions. We found that the E3 ubiquitin ligase MARCH1 is specifically upregulated under ischemic/excitotoxic conditions. Upregulated MARCH1 interacts with GABAB receptors and triggered downregulation of plasma membrane GABAB receptors by inhibiting fast recycling of the receptors. We developed an interfering peptide that inhibits the MARCH1/GABAB receptor interaction. Treatment of cultured neurons subjected to ischemic stress with this peptide restored receptor expression and as a consequence stopped progressive neuronal death. Thus, inhibiting the interaction of GABAB receptors with MARCH1 to restore cell surface receptor expression might be a promising strategy to prevent progressive neuronal death induced by ischemic conditions.
Collapse
Affiliation(s)
- Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Irene Mondéjar
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Thomas Grampp
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Benke D, Bhat MA, Hleihil M. GABAB Receptors: Molecular Organization, Function, and Alternative Drug Development by Targeting Protein-Protein Interactions. THE RECEPTORS 2024:3-39. [DOI: 10.1007/978-3-031-67148-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Erzurumlu Y, Catakli D, Dogan HK. Circadian Oscillation Pattern of Endoplasmic Reticulum Quality Control (ERQC) Components in Human Embryonic Kidney HEK293 Cells. J Circadian Rhythms 2023; 21:1. [PMID: 37033333 PMCID: PMC10077977 DOI: 10.5334/jcr.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates the “push-pull” of the molecular signaling mechanisms that arrange the rhythmic organization of the physiology to maintain cellular homeostasis. In mammals, molecular clock genes tightly arrange cellular rhythmicity. It has been shown that this circadian clock optimizes various biological processes, including the cell cycle and autophagy. Hence, we explored the dynamic crosstalks between the circadian rhythm and endoplasmic reticulum (ER)-quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the most important parts of the ERQC system and is an elaborate surveillance system that eliminates misfolded proteins. It regulates the steady-state levels of several physiologically crucial proteins, such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and the metastasis suppressor KAI1/CD82. However, the circadian oscillation of ERQC members and their roles in cellular rhythmicity requires further investigation. In the present study, we provided a thorough investigation of the circadian rhythmicity of the fifteen crucial ERQC members, including gp78, Hrd1, p97/VCP, SVIP, Derlin1, Ufd1, Npl4, EDEM1, OS9, XTP3B, Sel1L, Ufd2, YOD1, VCIP135 and FAM8A1 in HEK293 cells. We found that mRNA and protein accumulation of the ubiquitin conjugation, binding and processing factors, retrotranslocation-dislocation, substrate recognition and targeting components of ERQC exhibit oscillation under the control of the circadian clock. Moreover, we found that Hrd1 and gp78 have a possible regulatory function on Bmal1 turnover. The findings of the current study indicated that the expression level of ERQC components is fine-tuned by the circadian clock and major ERAD E3 ligases, Hrd1 and gp78, may influence the regulation of circadian oscillation by modulation of Bmal1 stability.
Collapse
|
5
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
6
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
7
|
Mechanisms and Regulation of Neuronal GABA B Receptor-Dependent Signaling. Curr Top Behav Neurosci 2020; 52:39-79. [PMID: 32808092 DOI: 10.1007/7854_2020_129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.
Collapse
|
8
|
Trigo D, Nadais A, da Cruz e Silva OA. Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res Rev 2019; 51:67-77. [PMID: 30763619 DOI: 10.1016/j.arr.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Protein aggregation is normally associated with amyloidosis, namely motor neurone, Alzheimer's, Parkinson's or prion diseases. However, recent results have unveiled a concept of gradual increase of protein aggregation associated with the ageing process, apparently not necessarily associated with pathological conditions. Given that protein aggregation is sufficient to activate stress-response and inflammation, impairing protein synthesis and quality control mechanisms, the former is assumed to negatively affect cellular metabolism and behaviour. In this review the state of the art in protein aggregation research is discussed, namely the relationship between pathology and proteostasis. The role of pathology and ageing in overriding protein quality-control mechanisms, and consequently, the effect of these faulty cellular processes on pathological and healthy ageing, are also addressed.
Collapse
|
9
|
Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) β-Dependent Phosphorylation of GABA B1 Triggers Lysosomal Degradation of GABA B Receptors via Mind Bomb-2 (MIB2)-Mediated Lys-63-Linked Ubiquitination. Mol Neurobiol 2018; 56:1293-1309. [PMID: 29881949 PMCID: PMC6401210 DOI: 10.1007/s12035-018-1142-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
The G protein-coupled GABAB receptors, constituted from GABAB1 and GABAB2 subunits, are important regulators of neuronal excitability by mediating long-lasting inhibition. One factor that determines receptor availability and thereby the strength of inhibition is regulated protein degradation. GABAB receptors are constitutively internalized from the plasma membrane and are either recycled to the cell surface or degraded in lysosomes. Lys-63-linked ubiquitination mediated by the E3 ligase Mind bomb-2 (MIB2) is the signal that sorts GABAB receptors to lysosomes. However, it is unknown how Lys-63-linked ubiquitination and thereby lysosomal degradation of the receptors is regulated. Here, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes MIB2-mediated Lys-63-linked ubiquitination of GABAB receptors. We found that inhibition of CaMKII in cultured rat cortical neurons increased cell surface GABAB receptors, whereas overexpression of CaMKIIβ, but not CaMKIIα, decreased receptor levels. This effect was conveyed by Lys-63-linked ubiquitination of GABAB1 at multiple sites mediated by the E3 ligase MIB2. Inactivation of the CaMKII phosphorylation site on GABAB1(Ser-867) strongly reduced Lys-63-linked ubiquitination of GABAB receptors and increased their cell surface expression, whereas the phosphomimetic mutant GABAB1(S867D) exhibited strongly increased Lys-63-linked ubiquitination and reduced cell surface expression. Finally, triggering lysosomal degradation of GABAB receptors by sustained activation of glutamate receptors, a condition occurring in brain ischemia, was accompanied with a massive increase of GABAB1(Ser-867) phosphorylation-dependent Lys-63-linked ubiquitination of GABAB receptors. These findings indicate that CaMKIIβ-dependent Lys-63-linked ubiquitination of GABAB1 at multiple sites controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological condition.
Collapse
|
10
|
De Marchis F, Colanero S, Klein EM, Mainieri D, Prota VM, Bellucci M, Pagliuca G, Zironi E, Gazzotti T, Vitale A, Pompa A. Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:67-80. [PMID: 29650159 DOI: 10.1016/j.plantsci.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Sara Colanero
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Eva M Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Viviana M Prota
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Michele Bellucci
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Giampiero Pagliuca
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Elisa Zironi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Teresa Gazzotti
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | - Andrea Pompa
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy.
| |
Collapse
|
11
|
Kumari R, Gupta P, Tiwari S. Ubc7/Ube2g2 ortholog in Entamoeba histolytica: connection with the plasma membrane and phagocytosis. Parasitol Res 2018; 117:1599-1611. [PMID: 29594345 DOI: 10.1007/s00436-018-5842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and unfolded protein response (UPR) pathways are important for quality and quantity control of membrane and secretory proteins. We have identified orthologs of ER-associated ubiquitin conjugating enzymes (E2s) Ubc6/Ube2j2 and Ubc7/Ube2g2, ubiquitin ligases (E3) Hrd1 and GP78/AMFR, and sensor of UPR, Ire1 in E. histolytica that show conservation of important features of these proteins. Biochemical characterization of the ortholog of ERAD E2, Ubc7/Ube2g2 (termed as EhUbc7), was carried out. This E2 was transcriptionally upregulated several folds upon induction of UPR with tunicamycin. Ire1 ortholog was also upregulated upon UPR induction suggesting a linked UPR and ERAD pathway in this organism. EhUbc7 showed enzymatic activity and, similar to its orthologs in higher eukaryotes, formed polyubiquitin chains in vitro and localized to both cytoplasm and membranes. However, unlike its ortholog in higher eukaryotes, it also showed localization to the plasma membrane along with calreticulin. Inactivation of EhUbc7 significantly inhibited erythrophagocytosis, suggesting a novel function that has not been reported before for this E2. No change in growth, motility, or cell-surface expression of Gal/GalNAC lectin was observed due to inactivation of EhUbc7. The protein was present in the phagocytic cups but not in the phagosomes. A significant decrease in the number of phagocytic cups in inactive EhUbc7 expressing cells was observed, suggesting altered kinetics of phagocytosis. These findings have implications for evolutionary and mechanistic understanding of connection between phagocytosis and ER-associated proteins.
Collapse
Affiliation(s)
- Rinki Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Gupta
- Microbiology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP, 474002, India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Li Q, Li Y, Wang X, Qi J, Jin X, Tong H, Zhou Z, Zhang ZC, Han J. Fbxl4 Serves as a Clock Output Molecule that Regulates Sleep through Promotion of Rhythmic Degradation of the GABA A Receptor. Curr Biol 2017; 27:3616-3625.e5. [PMID: 29174887 DOI: 10.1016/j.cub.2017.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023]
Abstract
The timing of sleep is tightly governed by the circadian clock, which contains a negative transcriptional feedback loop and synchronizes the physiology and behavior of most animals to daily environmental oscillations. However, how the circadian clock determines the timing of sleep is largely unclear. In vertebrates and invertebrates, the status of sleep and wakefulness is modulated by the electrical activity of pacemaker neurons that are circadian regulated and suppressed by inhibitory GABAergic inputs. Here, we showed that Drosophila GABAA receptors undergo rhythmic degradation in arousal-promoting large ventral lateral neurons (lLNvs) and their expression level in lLNvs displays a daily oscillation. We also demonstrated that the E3 ligase Fbxl4 promotes GABAA receptor ubiquitination and degradation and revealed that the transcription of fbxl4 in lLNvs is CLOCK dependent. Finally, we demonstrated that Fbxl4 regulates the timing of sleep through rhythmically reducing GABA sensitivity to modulate the excitability of lLNvs. Our study uncovered a critical molecular linkage between the circadian clock and the electrical activity of pacemaker neurons and demonstrated that CLOCK-dependent Fbxl4 expression rhythmically downregulates GABAA receptor level to increase the activity of pacemaker neurons and promote wakefulness.
Collapse
Affiliation(s)
- Qian Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yi Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiao Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junxia Qi
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xi Jin
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Huawei Tong
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
14
|
Zhu B, Jiang L, Huang T, Zhao Y, Liu T, Zhong Y, Li X, Campos A, Pomeroy K, Masliah E, Zhang D, Xu H. ER-associated degradation regulates Alzheimer's amyloid pathology and memory function by modulating γ-secretase activity. Nat Commun 2017; 8:1472. [PMID: 29133892 PMCID: PMC5684335 DOI: 10.1038/s41467-017-01799-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic-reticulum-associated degradation (ERAD) is an important protein quality control system which maintains protein homeostasis. Constituents of the ERAD complex and its role in neurodegeneration are not yet fully understood. Here, using proteomic and FRET analyses, we demonstrate that the ER protein membralin is an ERAD component, which mediates degradation of ER luminal and membrane substrates. Interestingly, we identify nicastrin, a key component of the γ-secretase complex, as a membralin binding protein and membralin-associated ERAD substrate. We demonstrate a reduction of membralin mRNA and protein levels in Alzheimer's disease (AD) brain, the latter of which inversely correlates with nicastrin abundance. Furthermore, membralin deficiency enhances γ-secretase activity and neuronal degeneration. In a mouse AD model, downregulating membralin results in β-amyloid pathology, neuronal death, and exacerbates synaptic/memory deficits. Our results identify membralin as an ERAD component and demonstrate a critical role for ERAD in AD pathogenesis.
Collapse
Affiliation(s)
- Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongfei Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Alexandre Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Kenneth Pomeroy
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dongxian Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
15
|
Orjuela Leon AC, Marwosky A, Arand M. Evidence for a complex formation between CYP2J5 and mEH in living cells by FRET analysis of membrane protein interaction in the endoplasmic reticulum (FAMPIR). Arch Toxicol 2017; 91:3561-3570. [PMID: 29030652 PMCID: PMC5696493 DOI: 10.1007/s00204-017-2072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
The potential complex formation between microsomal epoxide hydrolase (mEH) and cytochrome P450-dependent monooxygenase (CYP) has been a subject of research for many decades. Such an association would enable efficient substrate channeling between CYP and mEH and as such represent an attractive strategy to prevent deleterious accumulation of harmful metabolic by-products such as CYP-generated epoxide intermediates. However, such complex formation is experimentally difficult to prove, because CYP and mEH are membrane-bound proteins that are prone to unspecific aggregation after solubilization. Here, we report the development of a FRET-based procedure to analyze the mEH–CYP interaction in living cells by fluorescence-activated cell sorting. With this non-invasive procedure, we demonstrate that CYP2J5 and mEH associate in the endoplasmic reticulum of recombinant HEK293 cells to the same extent as do CYP2J5 and its indispensible redox partner cytochrome P450 reductase. This presents final proof for a very close proximity of CYP and mEH in the endoplasmic reticulum, compatible with and indicative of their physical interaction. In addition, we provide with FAMPIR a robust and easy-to-implement general method for analyzing the interaction of ER membrane-resident proteins that share a type I topology.
Collapse
Affiliation(s)
- Anette Carolina Orjuela Leon
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anne Marwosky
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Kahanovitch U, Berlin S, Dascal N. Collision coupling in the GABA
B
receptor–G protein–GIRK signaling cascade. FEBS Lett 2017; 591:2816-2825. [DOI: 10.1002/1873-3468.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Uri Kahanovitch
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Israel
| |
Collapse
|
17
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Abstract
Maintaining synaptic integrity and function depends on the continuous removal and degradation of aged or damaged proteins. Synaptic protein degradation has received considerable attention in the context of synaptic plasticity and growing interest in relation to neurodegenerative and other disorders. Conversely, less attention has been given to constitutive, ongoing synaptic protein degradation and the roles canonical degradation pathways play in these processes. Here we briefly review recent progress on this topic and new experimental approaches which have expedited such progress and highlight several emerging principles. These include the realization that synaptic proteins typically have unusually long lifetimes, as might be expected from the remote locations of most synaptic sites; the possibility that degradation pathways can change with time from synthesis, cellular context, and physiological input; and that degradation pathways, other than ubiquitin-proteasomal-mediated degradation, might play key roles in constitutive protein degradation at synaptic sites. Finally, we point to the importance of careful experimental design and sufficiently sensitive techniques for studying synaptic protein degradation, which bring into account their slow turnover rates and complex life cycles.
Collapse
Affiliation(s)
- Laurie D Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Technion City, Haifa, 32000, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Technion City, Haifa, 32000, Israel
| |
Collapse
|
19
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
20
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
21
|
VCP/p97 regulates β 2AR quality control during receptor biosynthesis. Cell Signal 2016; 30:50-58. [PMID: 27887991 DOI: 10.1016/j.cellsig.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
GPCRs form signalling complexes with other receptors as part of dimers, G proteins and effector partners. A proteomic screen to identify proteins that associate with the β2-adrenergic receptor (β2AR) identified many of components of the Endoplasmic-Reticulum-Associated Degradation (ERAD) quality control system [1], including the valosin-containing protein (VCP/p97). Here, we validated the interaction of VCP with co-expressed FLAG-β2AR, demonstrating, using an inducible expression system, that the interaction of FLAG-β2AR and VCP is not an artifact of overexpression of the β2AR per se. We knocked down VCP and noted that levels of FLAG-β2AR were increased in cells with lower VCP levels. This increase in the level of FLAG-β2AR did not lead to an increase in the level of functional receptor observed at the cell surface. Similarly, inhibition of the proteasome lead to a dramatic increase in the abundance of TAP-β2AR, while cellular responses again remained unchanged. Taken together, our data suggests that a substantial proportion of the β2AR produced is non-functional and VCP plays a key role in the maturation and trafficking of the β2AR as part of the ERAD quality control process.
Collapse
|
22
|
Zemoura K, Trümpler C, Benke D. Lys-63-linked Ubiquitination of γ-Aminobutyric Acid (GABA), Type B1, at Multiple Sites by the E3 Ligase Mind Bomb-2 Targets GABAB Receptors to Lysosomal Degradation. J Biol Chem 2016; 291:21682-21693. [PMID: 27573246 PMCID: PMC5076837 DOI: 10.1074/jbc.m116.750968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
GABAB receptors are heterodimeric G protein-coupled receptors, which control neuronal excitability by mediating prolonged inhibition. The magnitude of GABAB receptor-mediated inhibition essentially depends on the amount of receptors in the plasma membrane. However, the factors regulating cell surface expression of GABAB receptors are poorly characterized. Cell surface GABAB receptors are constitutively internalized and either recycled to the plasma membrane or degraded in lysosomes. The signal that sorts GABAB receptors to lysosomes is currently unknown. Here we show that Mind bomb-2 (MIB2)-mediated Lys-63-linked ubiquitination of the GABAB1 subunit at multiple sites is the lysosomal sorting signal for GABAB receptors. We found that inhibition of lysosomal activity in cultured rat cortical neurons increased the fraction of Lys-63-linked ubiquitinated GABAB receptors and enhanced the expression of total as well as cell surface GABAB receptors. Mutational inactivation of four putative ubiquitination sites in the GABAB1 subunit significantly diminished Lys-63-linked ubiquitination of GABAB receptors and prevented their lysosomal degradation. We identified MIB2 as the E3 ligase triggering Lys-63-linked ubiquitination and lysosomal degradation of GABAB receptors. Finally, we show that sustained activation of glutamate receptors, a condition occurring in brain ischemia that down-regulates GABAB receptors, considerably increased the expression of MIB2 and Lys-63-linked ubiquitination of GABAB receptors. Interfering with Lys-63-linked ubiquitination by overexpressing ubiquitin mutants or GABAB1 mutants deficient in Lys-63-linked ubiquitination prevented glutamate-induced down-regulation of the receptors. These findings indicate that Lys-63-linked ubiquitination of GABAB1 at multiple sites by MIB2 controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich
| | - Claudia Trümpler
- From the Institute of Pharmacology and Toxicology, University of Zurich
| | - Dietmar Benke
- From the Institute of Pharmacology and Toxicology, University of Zurich,
- the Neuroscience Center Zurich, University of Zurich and ETH Zurich, and
- the Drug Discovery Network Zurich (DDNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
23
|
Lahaie N, Kralikova M, Prézeau L, Blahos J, Bouvier M. Post-endocytotic Deubiquitination and Degradation of the Metabotropic γ-Aminobutyric Acid Receptor by the Ubiquitin-specific Protease 14. J Biol Chem 2016; 291:7156-70. [PMID: 26817839 DOI: 10.1074/jbc.m115.686907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Indexed: 02/01/2023] Open
Abstract
Mechanisms controlling the metabotropic γ-aminobutyric acid receptor (GABAB) cell surface stability are still poorly understood. In contrast with many other G protein-coupled receptors (GPCR), it is not subject to agonist-promoted internalization, but is constitutively internalized and rapidly down-regulated. In search of novel interacting proteins regulating receptor fate, we report that the ubiquitin-specific protease 14 (USP14) interacts with the GABAB(1b)subunit's second intracellular loop. Probing the receptor for ubiquitination using bioluminescence resonance energy transfer (BRET), we detected a constitutive and phorbol 12-myristate 13-acetate (PMA)-induced ubiquitination of the receptor at the cell surface. PMA also increased internalization and accelerated receptor degradation. Overexpression of USP14 decreased ubiquitination while treatment with a small molecule inhibitor of the deubiquitinase (IU1) increased receptor ubiquitination. Treatment with the internalization inhibitor Dynasore blunted both USP14 and IU1 effects on the receptor ubiquitination state, suggesting a post-endocytic site of action. Overexpression of USP14 also led to an accelerated degradation of GABABin a catalytically independent fashion. We thus propose a model whereby cell surface ubiquitination precedes endocytosis, after which USP14 acts as an ubiquitin-binding protein that targets the ubiquitinated receptor to lysosomal degradation and promotes its deubiquitination.
Collapse
Affiliation(s)
- Nicolas Lahaie
- From the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michaela Kralikova
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, 14220 Prague 4, Czech Republic, and
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier 1 and 2, 34090 Montpellier, France
| | - Jaroslav Blahos
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, 14220 Prague 4, Czech Republic, and
| | - Michel Bouvier
- From the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada,
| |
Collapse
|
24
|
Jean-Charles PY, Snyder JC, Shenoy SK. Chapter One - Ubiquitination and Deubiquitination of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:1-55. [PMID: 27378754 DOI: 10.1016/bs.pmbts.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seven-transmembrane containing G protein-coupled receptors (GPCRs) constitute the largest family of cell-surface receptors. Transmembrane signaling by GPCRs is fundamental to many aspects of physiology including vision, olfaction, cardiovascular, and reproductive functions as well as pain, behavior and psychomotor responses. The duration and magnitude of signal transduction is tightly controlled by a series of coordinated trafficking events that regulate the cell-surface expression of GPCRs at the plasma membrane. Moreover, the intracellular trafficking profiles of GPCRs can correlate with the signaling efficacy and efficiency triggered by the extracellular stimuli that activate GPCRs. Of the various molecular mechanisms that impart selectivity, sensitivity and strength of transmembrane signaling, ubiquitination of the receptor protein plays an important role because it defines both trafficking and signaling properties of the activated GPCR. Ubiquitination of proteins was originally discovered in the context of lysosome-independent degradation of cytosolic proteins by the 26S proteasome; however a large body of work suggests that ubiquitination also orchestrates the downregulation of membrane proteins in the lysosomes. In the case of GPCRs, such ubiquitin-mediated lysosomal degradation engenders long-term desensitization of transmembrane signaling. To date about 40 GPCRs are known to be ubiquitinated. For many GPCRs, ubiquitination plays a major role in postendocytic trafficking and sorting to the lysosomes. This chapter will focus on the patterns and functional roles of GPCR ubiquitination, and will describe various molecular mechanisms involved in GPCR ubiquitination.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States
| | - J C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
25
|
Jin S, Merchant ML, Ritzenthaler JD, McLeish KR, Lederer ED, Torres-Gonzalez E, Fraig M, Barati MT, Lentsch AB, Roman J, Klein JB, Rane MJ. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators. PLoS One 2015; 10:e0121637. [PMID: 25848767 PMCID: PMC4388838 DOI: 10.1371/journal.pone.0121637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.
Collapse
Affiliation(s)
- Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael L. Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jeffrey D. Ritzenthaler
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Eleanor D. Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Edilson Torres-Gonzalez
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mostafa Fraig
- Department of Pathology, University of Louisville, Louisville, Kentucky, United States of America
| | - Michelle T. Barati
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Jon B. Klein
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Li F, Gao B, Dong H, Shi J, Fang D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER stress-induced apoptosis. PLoS One 2015; 10:e0119955. [PMID: 25806530 PMCID: PMC4373914 DOI: 10.1371/journal.pone.0119955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
- * E-mail: (FL); (DF)
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| |
Collapse
|
27
|
Benke D, Balakrishnan K, Zemoura K. Regulation of Cell Surface GABAB Receptors. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:41-70. [DOI: 10.1016/bs.apha.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Crider A, Pandya CD, Peter D, Ahmed AO, Pillai A. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder. Mol Autism 2014; 5:45. [PMID: 25392730 PMCID: PMC4228821 DOI: 10.1186/2040-2392-5-45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. METHODS Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. RESULTS A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1 was found in the middle frontal gyrus of ASD subjects. CONCLUSIONS SYVN1 plays a critical role as an E3 ligase in the ubiquitin proteasome system (UPS)-mediated GABAAα1 degradation. Thus, inhibition of the ubiquitin-proteasome-mediated GABAAα1 degradation may be an important mechanism for preventing GABAAα1 turnover to maintain GABAAα1 levels and GABA signaling in ASD.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA
| | - Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA
| | - Diya Peter
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Rd, White Plains, NY 10605, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA
| |
Collapse
|
29
|
Zemoura K, Benke D. Proteasomal degradation of γ-aminobutyric acidB receptors is mediated by the interaction of the GABAB2 C terminus with the proteasomal ATPase Rtp6 and regulated by neuronal activity. J Biol Chem 2014; 289:7738-46. [PMID: 24482233 DOI: 10.1074/jbc.m113.541987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys(48)-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and
| | | |
Collapse
|
30
|
Petäjä-Repo UE, Lackman JJ. Targeting opioid receptors with pharmacological chaperones. Pharmacol Res 2013; 83:52-62. [PMID: 24355364 DOI: 10.1016/j.phrs.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) are polytopic membrane proteins that have a pivotal role in cellular signaling. Like other membrane proteins, they fold in the endoplasmic reticulum (ER) before they are transported to the plasma membrane. The ER quality control monitors the folding process and misfolded proteins and slowly folding intermediates are targeted to degradation in the cytosol via the ubiquitin-proteasome pathway. The high efficiency of the quality control machinery may lead to the disposal of potentially functional receptors. This is the major underlying course for loss-of-function conformational diseases, such as retinitis pigmentosa, nephrogenic diabetes insipidus and early onset obesity, which involve mutant GPCRs. During the past decade, it has become increasingly evident that small-molecular lipophilic and pharmacologically selective receptor ligands, called pharmacological chaperones (PCs), can rescue these mutant receptors from degradation by stabilizing newly synthesized receptors in the ER and enhancing their transport to the cell surface. This has raised the interesting prospect that PCs might have therapeutic value for the treatment of conformational diseases. At the same time, accumulating evidence has indicated that wild-type receptors might also be targeted by PCs, widening their therapeutic potential. This review focuses on one GPCR subfamily, opioid receptors that have been useful models to unravel the mechanism of action of PCs. In contrast to most other GPCRs, compounds that act as PCs for opioid receptors, including widely used opioid drugs, target wild-type receptors and their common natural variants.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland.
| | - Jarkko J Lackman
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|