1
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Kim A, Benavente CA. Oncogenic Roles of UHRF1 in Cancer. EPIGENOMES 2024; 8:26. [PMID: 39051184 PMCID: PMC11270427 DOI: 10.3390/epigenomes8030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer. Under physiological conditions, UHRF1 protein levels are cell cycle-dependent and are post-translationally regulated by proteasomal degradation. Conversely, UHRF1 is overexpressed and serves as an oncogenic driver in multiple cancers. This review focuses on the functional domains of UHRF1, highlighting its key interacting proteins and oncogenic roles in solid tumors including retinoblastoma, osteosarcoma, lung cancer, and breast cancer. Additionally, current therapeutic strategies targeting UHRF1 domains or its interactors are explored, providing an insight on potential clinical applications.
Collapse
Affiliation(s)
- Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Shu Q, Liu X, Xiang X, Bo X. The expression and clinical significance of UHRF1 in soft tissue sarcomas and its prognostic value. Medicine (Baltimore) 2024; 103:e38393. [PMID: 38847665 PMCID: PMC11155523 DOI: 10.1097/md.0000000000038393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
To explore the expression and prognostic value of UHRF1 gene in soft tissue sarcoma (STS) and its related molecular mechanism. The expression data and clinicopathological parameters of STS were downloaded from the Cancer Genome Atlas (TCGA). The expression level of UHRF1 in STS and adjacent tissues and its relationship with clinicopathological characteristics were analyzed. The expression level of UHRF1 in STS tissues was significantly higher than that in paracancerous tissues (P < .001), and the overall survival (OS) time of patients with high UHRF1 expression was significantly shorter than that of patients with low UHRF1 expression (P = .002). The expression of UHRF1 was correlated with tumor necrosis, histological type and metastasis, and the differences were statistically significant (P = .013; P = .001; P = .002). The area ratio under receiver operating characteristic (ROC) curve between STS tissue and adjacent tissue of UHRF1 expression was 0.994. Number of tumors (HR = 0.416, 95%CI = 0.260-0.666, P < .001), depth of tumor (HR = 2.888, 95%CI = 0.910-9.168, P = .033), metastasis (HR = 2.888, 95% CI = 1.762-4.732, P < .001), residual tumor (HR = 2.637, 95% CI = 1.721-4.038, P < .001) and UHRF1 expression (HR = 1.342, 95% CI = 1.105-1.630, P = .003) were significantly associated with OS, and high expression of UHRF1 (HR = 1.387, 95%CI = 1.008-1.907, P = .044) was an independent risk factor for the prognosis of STS patients. The results of the nomogram exhibited that UHRF1 expression level had a significant effect on the total score value. GSEA enrichment analysis suggested that UHRF1 was involved in 14 signaling pathways regulating mRNA spliceosome, cell cycle, P53 signaling pathway were identified. Single sample gene set enrichment analysis (ssGSEA) exhibited that the expression of UHRF1 in STS was positively correlated with the level of Th2 cell infiltration, and negatively correlated with plasmacytoid dendritic cells (pDC), natural killer cells (NK), Eosinophils, Mast cells, etc. UHRF1 expression is involved in the immune microenvironment of HCC and affects the occurrence and development of HCC. UHRF1 is highly expressed in STS tissues. It is involved in the regulation of multiple tumor-related signaling pathways and immune cell microenvironment, suggesting that UHRF1 may be a potential molecular marker for prognosis prediction and targeted therapy of STS patients.
Collapse
Affiliation(s)
- Qiang Shu
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| | - XiaoLing Liu
- Department of Infection Management, Neijiang Hospital of Traditional Chinese Medicine affiliated to Chengdu University of Traditional Chinese Medicine, Neijiang, China
| | - Xing Xiang
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| | - Xu Bo
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| |
Collapse
|
5
|
Yamaguchi K, Chen X, Rodgers B, Miura F, Bashtrykov P, Bonhomme F, Salinas-Luypaert C, Haxholli D, Gutekunst N, Aygenli BÖ, Ferry L, Kirsh O, Laisné M, Scelfo A, Ugur E, Arimondo PB, Leonhardt H, Kanemaki MT, Bartke T, Fachinetti D, Jeltsch A, Ito T, Defossez PA. Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells. Nat Commun 2024; 15:2960. [PMID: 38580649 PMCID: PMC10997609 DOI: 10.1038/s41467-024-47314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Xiaoying Chen
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | | | - Deis Haxholli
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Gutekunst
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
6
|
Song Y, Liu H, Xian Q, Gui C, Xu M, Zhou Y. Mechanistic insights into UHRF1‑mediated DNA methylation by structure‑based functional clarification of UHRF1 domains (Review). Oncol Lett 2023; 26:542. [PMID: 38020304 PMCID: PMC10660443 DOI: 10.3892/ol.2023.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic modification is crucial for transmitting genetic information, while abnormalities in DNA methylation modification are primarily associated with cancer and neurological diseases. As a multifunctional epigenetic modifier, ubiquitin like with PHD and ring finger domains 1 (UHRF1) mainly affects cell energy metabolism and cell cycle control. It also inhibits the transcription of tumor suppressor genes through DNA and/or histone methylation modifications, promoting the occurrence and development of cancer. Therefore, comprehensively understanding the molecular mechanism of the epigenetic modification of UHRF1 in tumors will help identify targets for inhibiting the expression and function of UHRF1. Notably, each domain of UHRF1 functions as a whole and differently. Thus, the abnormality of any domain can lead to a change in phenotype or disease. However, the specific regulatory mechanism and proteins of each domain have not been fully elucidated. The present review aimed to contribute to the study of the regulatory mechanism of UHRF1 to a greater extent in different cancers and provide ideas for drug research by clarifying the function of UHRF1 domains.
Collapse
Affiliation(s)
- Yiying Song
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiting Liu
- Department of Critical Care Medicine, Jinan Zhangqiu Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
7
|
Switzer RL, Hartman ZJ, Hewett GR, Carroll CF. Disease-Associated Mutation A554V Disrupts Normal Autoinhibition of DNMT1. DNA 2023; 3:119-133. [PMID: 37663147 PMCID: PMC10470860 DOI: 10.3390/dna3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methyltransferase 1 (DNMT1) is the enzyme primarily responsible for propagation of the methylation pattern in cells. Mutations in DNMT1 have been linked to the development of adult-onset neurodegenerative disorders; these disease-associated mutations occur in the regulatory replication foci-targeting sequence (RFTS) domain of the protein. The RFTS domain is an endogenous inhibitor of DNMT1 activity that binds to the active site and prevents DNA binding. Here, we examine the impact of the disease-associated mutation A554V on normal RFTS-mediated inhibition of DNMT1. Wild-type and mutant proteins were expressed and purified to homogeneity for biochemical characterization. The mutation increased DNA binding affinity ~8-fold. In addition, the mutant enzyme exhibited increased DNA methylation activity. Circular dichroism (CD) spectroscopy revealed that the mutation does not significantly impact the secondary structure or relative thermal stability of the isolated RFTS domain. However, the mutation resulted in changes in the CD spectrum in the context of the larger protein; a decrease in relative thermal stability was also observed. Collectively, this evidence suggests that A554V disrupts normal RFTS-mediated autoinhibition of DNMT1, resulting in a hyperactive mutant enzyme. While the disease-associated mutation does not significantly impact the isolated RFTS domain, the mutation results in a weakening of the interdomain stabilizing interactions generating a more open, active conformation of DNMT1. Hyperactive mutant DNMT1 could be responsible for the increased DNA methylation observed in affected individuals.
Collapse
Affiliation(s)
| | - Zach J. Hartman
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Geoffrey R. Hewett
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Clara F. Carroll
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
8
|
Choudalakis M, Kungulovski G, Mauser R, Bashtrykov P, Jeltsch A. Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3. Protein Sci 2023; 32:e4760. [PMID: 37593997 PMCID: PMC10464304 DOI: 10.1002/pro.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Goran Kungulovski
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Rebekka Mauser
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Pavel Bashtrykov
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Albert Jeltsch
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| |
Collapse
|
9
|
Murin M, Nemcova L, Bartkova A, Gad A, Lucas-Hahn A, Strejcek F, Prochazka R, Laurincik J. Porcine oocytes matured in a chemically defined medium are transcriptionally active. Theriogenology 2023; 203:89-98. [PMID: 37001226 DOI: 10.1016/j.theriogenology.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The statement that fully-grown porcine oocytes (oocytes from follicles with diameter from 3 to 6 mm) are transcriptionally quiescent is not as strongly supported as it was before. Currently, we know that there is a difference between the transcription profile of germinal vesicle (GV) and metaphase II (MII) oocytes. The goal of our study was to compare the transcription profile of GV, germinal vesicle breakdown (GVBD), metaphase I (MI), and MII oocytes matured in the chemically defined medium FLI. Oocytes were sequenced, and the results were subsequently validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). We detected multiple differentially transcribed mRNAs, of which many were upregulated. Among them we found mRNAs necessary for protein production, mitochondrial functions and cytoplasmic maturation. Collectively, these data support the hypothesis that transcription activity in fully-grown porcine oocytes is necessary for key processes during their successful maturation in vitro in a chemically defined maturation medium.
Collapse
|
10
|
Bryzgalov LO, Korbolina EE, Merkulova TI. Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24097955. [PMID: 37175659 PMCID: PMC10177989 DOI: 10.3390/ijms24097955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent type of dementia in elderly populations with a significant genetic component. The accumulating evidence suggests that AD involves a reconfiguration of the epigenetic landscape, including DNA methylation, post-translational modification of histone proteins, and chromatin remodeling. Along with environmental factors, individual specific genetic features play a considerable role in the formation of epigenetic architecture. In this study, we attempt to identify the non-coding regulatory SNPs (rSNPs) able to affect the epigenetic mechanisms in AD. To this end, the multi-omics approach is used. The GEO (Gene Expression Omnibus) available data (GSE153875) for AD patients and controls are integrated to reveal the rSNPs that display allele-specific features in both ChIP-seq profiles of four histone modifications and RNA-seq. Furthermore, we analyze the presence of rSNPs in the promoters of genes reported to be differentially expressed between AD and the normal brain (AD-related genes) and involved in epigenetic regulation according to the EpiFactors database. We also searched for the rSNPs in the promoters of the genes coding for transcription regulators of the identified AD-related genes. These regulators were selected based on the corresponding ChIP-seq peaks (ENCODE) in the promoter regions of these genes. Finally, we formed a panel of rSNPs localized to the promoters of genes that contribute to the epigenetic landscape in AD and, thus, to the genetic predisposition for this disease.
Collapse
Affiliation(s)
- Leonid O Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
- Vector-Best, 630117 Novosibirsk, Russia
| | - Elena E Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| | - Tatiana I Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Ngan KCH, Hoenig SM, Kwok HS, Lue NZ, Gosavi PM, Tanner DA, Garcia EM, Lee C, Liau BB. Activity-based CRISPR scanning uncovers allostery in DNA methylation maintenance machinery. eLife 2023; 12:e80640. [PMID: 36762644 PMCID: PMC9946446 DOI: 10.7554/elife.80640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Allostery enables dynamic control of protein function. A paradigmatic example is the tightly orchestrated process of DNA methylation maintenance. Despite the fundamental importance of allosteric sites, their identification remains highly challenging. Here, we perform CRISPR scanning on the essential maintenance methylation machinery-DNMT1 and its partner UHRF1-with the activity-based inhibitor decitabine to uncover allosteric mechanisms regulating DNMT1. In contrast to non-covalent DNMT1 inhibition, activity-based selection implicates numerous regions outside the catalytic domain in DNMT1 function. Through computational analyses, we identify putative mutational hotspots in DNMT1 distal from the active site that encompass mutations spanning a multi-domain autoinhibitory interface and the uncharacterized BAH2 domain. We biochemically characterize these mutations as gain-of-function, exhibiting increased DNMT1 activity. Extrapolating our analysis to UHRF1, we discern putative gain-of-function mutations in multiple domains, including key residues across the autoinhibitory TTD-PBR interface. Collectively, our study highlights the utility of activity-based CRISPR scanning for nominating candidate allosteric sites, and more broadly, introduces new analytical tools that further refine the CRISPR scanning framework.
Collapse
Affiliation(s)
- Kevin Chun-Ho Ngan
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Samuel M Hoenig
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Nicholas Z Lue
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Pallavi M Gosavi
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - David A Tanner
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Emma M Garcia
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
12
|
PGC7 Regulates Genome-Wide DNA Methylation by Regulating ERK-Mediated Subcellular Localization of DNMT1. Int J Mol Sci 2023; 24:ijms24043093. [PMID: 36834503 PMCID: PMC9958980 DOI: 10.3390/ijms24043093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a vital role in a variety of biological processes, including the regulation of gene expression, cell differentiation, early embryonic development, genomic imprinting, and X chromosome inactivation. PGC7 is a maternal factor that maintains DNA methylation during early embryonic development. One mechanism of action has been identified by analyzing the interactions between PGC7 and UHRF1, H3K9 me2, or TET2/TET3, which reveals how PGC7 regulates DNA methylation in oocytes or fertilized embryos. However, the mechanism by which PGC7 regulates the post-translational modification of methylation-related enzymes remains to be elucidated. This study focused on F9 cells (embryonic cancer cells), which display high levels of PGC7 expression. We found that both knockdown of Pgc7 and inhibition of ERK activity resulted in increased genome-wide DNA methylation levels. Mechanistic experiments confirmed that inhibition of ERK activity led to the accumulation of DNMT1 in the nucleus, ERK phosphorylated DNMT1 at ser717, and DNMT1 Ser717-Ala mutation promoted the nuclear localization of DNMT1. Moreover, knockdown of Pgc7 also caused downregulation of ERK phosphorylation and promoted the accumulation of DNMT1 in the nucleus. In conclusion, we reveal a new mechanism by which PGC7 regulates genome-wide DNA methylation via phosphorylation of DNMT1 at ser717 by ERK. These findings may provide new insights into treatments for DNA methylation-related diseases.
Collapse
|
13
|
Fonouni-Farde C, Christ A, Blein T, Legascue MF, Ferrero L, Moison M, Lucero L, Ramírez-Prado JS, Latrasse D, Gonzalez D, Benhamed M, Quadrana L, Crespi M, Ariel F. The Arabidopsis APOLO and human UPAT sequence-unrelated long noncoding RNAs can modulate DNA and histone methylation machineries in plants. Genome Biol 2022; 23:181. [PMID: 36038910 PMCID: PMC9422110 DOI: 10.1186/s13059-022-02750-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/17/2022] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Thomas Blein
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Lucía Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Michaël Moison
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Juan Sebastián Ramírez-Prado
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Daniel Gonzalez
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
14
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
15
|
Awal MA, Nur SM, Al Khalaf AK, Rehan M, Ahmad A, Hosawi SBI, Choudhry H, Khan MI. Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity. Front Genet 2022; 13:928884. [PMID: 35991572 PMCID: PMC9382028 DOI: 10.3389/fgene.2022.928884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.
Collapse
Affiliation(s)
- Md Abdul Awal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Khalaf Al Khalaf
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Salman Bakr I. Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammad Imran Khan,
| |
Collapse
|
16
|
The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092779. [PMID: 35566130 PMCID: PMC9101516 DOI: 10.3390/molecules27092779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/12/2023]
Abstract
Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.
Collapse
|
17
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Wang L, Wu R, Sargsyan D, Su S, Kuo HC, Li S, Chou P, Sarwar MS, Phadnis A, Wang Y, Su X, Kong AN. Nfe2l2 Regulates Metabolic Rewiring and Epigenetic Reprogramming in Mediating Cancer Protective Effect by Fucoxanthin. AAPS J 2022; 24:30. [PMID: 35043283 DOI: 10.1208/s12248-022-00679-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fucoxanthin (FX) is a carotenoid with many pharmaceutical properties due to its antioxidant/anti-inflammatory and epigenetic effects. NFE2L2 is involved in the defense against oxidative stress/inflammation-mediated diseases, like anticancer effects elicited by phytochemicals including FX. However, the role of FX and NFE2L2 in metabolic rewiring, epigenomic reprogramming, and transcriptomic network in blocking pro-tumorigenic signaling and eliciting cancer-protective effects remains unknown. Herein, we utilized multi-omics approaches to evaluate the role of NFE2L2 and the impact of FX on tumor promoter TPA-induced skin cell transformation. FX blocked TPA-induced ROS and oxidized GSSG/reduced GSH in Nfe2l2wild-type(WT) but not Nfe2l2-knockdown (KD) cells. Both Nfe2l2 KD and TPA altered cellular metabolisms and metabolites which are tightly coupled to epigenetic machinery. The suppressive effects of FX on TPA-enhancedSAM/SAH was abrogated by Nfe2l2 KD indicating Nfe2l2 plays a critical role in FX-mediated metabolic rewiring and its potential consequences on epigenetic reprogramming. Epigenomic CpG methyl-seq revealed that FX attenuated TPA-induced differentially methylated regions (DMRs) of Uhrf1 and Dnmt1 genes. Transcriptomic RNA-seq showed that FX abrogated TPA-induced differentially expressed genes (DEGs) of Nfe2l2-related genes Nqo1, Ho1, and Keap1. Associative analysis of DEGs and DMRs identified that the mRNA expressions of Uhrf1 and Dnmt1 were correlated with the promoter CpG methylation status. Chromatin immunoprecipitation assay showed that FX restored Uhrf1 expression by regulating H3K27Me3 enrichment in the promoter region. In this context, FX/Nfe2l2's redox signaling drives metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the protection of TPA-induced JB6 cellular transformation skin cancer model. Graphical abstract.
Collapse
Affiliation(s)
- Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Shan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Hsiao-Chen Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ameya Phadnis
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08903, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08903, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
19
|
Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H, Song J. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:45-68. [PMID: 36350506 PMCID: PMC11025882 DOI: 10.1007/978-3-031-11454-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.
Collapse
Affiliation(s)
- Shoji Tajima
- Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Isao Suetake
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | | | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hironobu Kimura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
20
|
Xia T, Liu S, Xu G, Zhou S, Luo Z. Dihydroartemisinin induces cell apoptosis through repression of UHRF1 in prostate cancer cells. Anticancer Drugs 2022; 33:e113-e124. [PMID: 34387595 DOI: 10.1097/cad.0000000000001156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Prostate cancer (PCa) seriously jeopardizes men's health worldwide. Dihydroartemisinin, which is an effective antimalarial agent, has shown potential anticancer effects in various human cancer cell lines, including PCa cells. However, the mechanisms underlying the anticancer activity of dihydroartemisinin are not fully understood. Ubiquitin-like with plant homeodomain and ring finger domain 1 (UHRF1) is highly expressed in a variety of tumors and is negatively correlated with the prognosis of various tumors. We reported previously that UHRF1 is downregulated during apoptosis induced by dihydroartemisinin in PC-3 PCa cells. In this study, we transfected PC-3 cells with lentiviruses containing UHRF1 or shRNA-UHRF1. Then, the cells were treated with dihydroartemisinin at different concentrations. Our data showed that overexpression of UHRF1 promoted cell proliferation and migration in PC-3 cells, inhibited cell apoptosis, increased cell proportion in G2 phase, increased DNA methyltransferase 1 and decreased p16INK4A expression at mRNA and protein levels. Downregulation of UHRF1 produces the opposite results. Moreover, the phenomena caused by overexpression of UHRF1 were inhibited after dihydroartemisinin treatment. Compared with control cells, cells overexpressing UHRF1 can resist the proapoptotic and antiproliferative effects of dihydroartemisinin to a certain extent. The effects of UHRF1 knockdown were further aggravated by dihydroartemisinin treatment, but no statistically significant effect was observed with increasing drug concentration. Our results suggested that dihydroartemisinin decreases proliferation and migration but enhances apoptosis of PCa cells, likely by downregulating UHRF1 and upregulating p16INK4A.
Collapse
Affiliation(s)
- Tong Xia
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
21
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Newkirk SJ, An W. UHRF1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod 2021; 102:1147-1152. [PMID: 32101289 DOI: 10.1093/biolre/ioaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
23
|
Evolution of CG Methylation Maintenance Machinery in Plants. EPIGENOMES 2021; 5:epigenomes5030019. [PMID: 34968368 PMCID: PMC8594673 DOI: 10.3390/epigenomes5030019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosine methylation is an epigenetic mark present in most eukaryotic genomes that contributes to the regulation of gene expression and the maintenance of genome stability. DNA methylation mostly occurs at CG sequences, where it is initially deposited by de novo DNA methyltransferases and propagated by maintenance DNA methyltransferases (DNMT) during DNA replication. In this review, we first summarize the mechanisms maintaining CG methylation in mammals that involve the DNA Methyltransferase 1 (DNMT1) enzyme and its cofactor, UHRF1 (Ubiquitin-like with PHD and RING Finger domain 1). We then discuss the evolutionary conservation and diversification of these two core factors in the plant kingdom and speculate on potential functions of novel homologues typically observed in land plants but not in mammals.
Collapse
|
24
|
Zhu Y, Ye F, Zhou Z, Liu W, Liang Z, Hu G. Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions. Molecules 2021; 26:molecules26175153. [PMID: 34500587 PMCID: PMC8434485 DOI: 10.3390/molecules26175153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.
Collapse
Affiliation(s)
- Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Wanlin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| |
Collapse
|
25
|
Madsen A, Krause J, Höppner G, Hirt MN, Tan WLW, Lim I, Hansen A, Nikolaev VO, Foo RSY, Eschenhagen T, Stenzig J. Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J Mol Cell Cardiol 2021; 154:115-123. [PMID: 33582159 DOI: 10.1016/j.yjmcc.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
The role of DNA methylation in cardiomyocyte physiology and cardiac disease remains a matter of controversy. We have recently provided evidence for an important role of DNMT3A in human cardiomyocyte cell homeostasis and metabolism, using engineered heart tissue (EHT) generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes carrying a knockout of the de novo DNA methyltransferase DNMT3A. Unlike isogenic control EHT, knockout EHT displayed morphological abnormalities such as lipid accumulations inside cardiomyocytes associated with impaired mitochondrial metabolism, as well as functional defects and impaired glucose metabolism. Here, we analyzed the role of DNMT3A in the setting of cardiac hypertrophy. We induced hypertrophic signaling by treatment with 50 nM endothelin-1 and 20 μM phenylephrine for one week and assessed EHT contractility, morphology, DNA methylation, and gene expression. While both knockout EHTs and isogenic controls showed the expected activation of the hypertrophic gene program, knockout EHTs were protected from hypertrophy-related functional impairment. Conversely, hypertrophic treatment prevented the metabolic consequences of a loss of DNMT3A, i.e. abolished lipid accumulation in cardiomyocytes likely by partial normalization of mitochondrial metabolism and restored glucose metabolism and metabolism-related gene expression of knockout EHT. Together, these data suggest an important role of DNA methylation not only for cardiomyocyte physiology, but also in the setting of cardiac disease.
Collapse
Affiliation(s)
- Alexandra Madsen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Julia Krause
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Grit Höppner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc N Hirt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | | | - Ives Lim
- Genome Institute of Singapore, 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, 119077, Singapore
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger S Y Foo
- Genome Institute of Singapore, 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, 119077, Singapore
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
26
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
27
|
Ding ZC, Aboelella NS, Bryan L, Shi H, Zhou G. The Monocytes That Repopulate in Mice After Cyclophosphamide Treatment Acquire a Neutrophil Precursor Gene Signature and Immunosuppressive Activity. Front Immunol 2021; 11:594540. [PMID: 33569051 PMCID: PMC7868404 DOI: 10.3389/fimmu.2020.594540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclophosphamide (CTX) is a major component of the chemotherapy conditioning regimens used in the clinic to prepare cancer patients for hematopoietic stem cell transplantation or adoptive T cell therapy. Previous studies have shown that CTX given at nonmyeloablative doses in mice and patients leads to expansion of myeloid cells within which the monocytic subset exhibits immunosuppressive activity. However, the ontogeny and gene expression signature of these CTX-induced monocytes are not well-defined. Here, we report that the expansion of myeloid cells is a default process intrinsic to hematopoietic recovery after chemotherapy. During this process, the monocytes repopulated in mice acquire immunosuppressive activity, which can persist long after cessation of chemotherapy. Moreover, monocytes acquire a gene signature characteristic of neutrophil precursors, marked by increased proliferative capability and elevated expressions of multiple primary and secondary granules. We provide evidence that CTX-induced myeloid cell expansion is regulated by DNA methyltransferase 1 (Dnmt1) and dependent on chemotherapy-induced microbial translocation. These findings help advance our understanding of the differentiation, heterogeneity, and function of myeloid cells repopulating after chemotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nada S Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Locke Bryan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
28
|
Ming X, Zhu B, Li Y. Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 2021; 48:1-13. [PMID: 33771455 DOI: 10.1016/j.jgg.2021.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
Collapse
Affiliation(s)
- Xuan Ming
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Sci Rep 2021; 11:1121. [PMID: 33441849 PMCID: PMC7806715 DOI: 10.1038/s41598-020-80588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.
Collapse
|
30
|
Li Q, Chu Z, Geng S. UHRF1 Knockdown Attenuates Cell Growth, Migration, and Invasion in Cutaneous Squamous Cell Carcinoma. Cancer Invest 2020; 39:84-97. [PMID: 33058714 DOI: 10.1080/07357907.2020.1837152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ubiquitin like with PHD and ring finger domains 1 (UHRF1) contributes to the progression of many cancers. Here, we firstly observed UHRF1 was elevated in cutaneous squamous cell carcinoma (cSCC) and related to the differentiation stages. Knockdown of UHRF1 in A431 and Scl-1 attenuated cell proliferation, migration, and invasion, leading to G2/M cell cycle arrest and apoptosis. Through a mouse xenograft model, we found UHRF1 deficiency ameliorated tumor growth. These results may be associated with destruction of multiple signal pathways. In summary, our results suggest UHRF1 is involved in the pathogenesis of cSCC and may be a therapeutic target.
Collapse
Affiliation(s)
- Qingyan Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, Foo RSY, Eschenhagen T, Stenzig J. An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility. Circulation 2020; 142:1562-1578. [PMID: 32885664 PMCID: PMC7566310 DOI: 10.1161/circulationaha.119.044444] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supplemental Digital Content is available in the text. Background: DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial. Thus, we knocked out the main de novo DNA methyltransferase in cardiomyocytes, DNMT3A, in human induced pluripotent stem cells. Functional consequences of DNA methylation-deficiency under control and stress conditions were then assessed in human engineered heart tissue from knockout human induced pluripotent stem cell–derived cardiomyocytes. Methods: DNMT3A was knocked out in human induced pluripotent stem cells by CRISPR/Cas9gene editing. Fibrin-based engineered heart tissue was generated from knockout and control human induced pluripotent stem cell–derived cardiomyocytes. Development and baseline contractility were analyzed by video-optical recording. Engineered heart tissue was subjected to different stress protocols, including serum starvation, serum variation, and restrictive feeding. Molecular, histological, and ultrastructural analyses were performed afterward. Results: Knockout of DNMT3A in human cardiomyocytes had three main consequences for cardiomyocyte morphology and function: (1) Gene expression changes of contractile proteins such as higher atrial gene expression and lower MYH7/MYH6 ratio correlated with different contraction kinetics in knockout versus wild-type; (2) Aberrant activation of the glucose/lipid metabolism regulator peroxisome proliferator-activated receptor gamma was associated with accumulation of lipid vacuoles within knockout cardiomyocytes; (3) Hypoxia-inducible factor 1α protein instability was associated with impaired glucose metabolism and lower glycolytic enzyme expression, rendering knockout-engineered heart tissue sensitive to metabolic stress such as serum withdrawal and restrictive feeding. Conclusion: The results suggest an important role of DNA methylation in the normal homeostasis of cardiomyocytes and during cardiac stress, which could make it an interesting target for cardiac therapy.
Collapse
Affiliation(s)
- Alexandra Madsen
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Grit Höppner
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Julia Krause
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.).,Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (J.K.)
| | - Marc N Hirt
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology (M.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, United Kingdom (D.M.)
| | - Chukwuemeka George Anene-Nzelu
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.).,Cardiovascular Research Institute, National University of Singapore (C.G.A.-N., I.L., R.S.Y.F.)
| | - Ives Lim
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.)
| | - Roger S Y Foo
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.).,Cardiovascular Research Institute, National University of Singapore (C.G.A.-N., I.L., R.S.Y.F.)
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| |
Collapse
|
32
|
Guo R, Zhang Y, Teng M, Jiang C, Schineller M, Zhao B, Doench JG, O'Reilly RJ, Cesarman E, Giulino-Roth L, Gewurz BE. DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression. Nat Microbiol 2020; 5:1051-1063. [PMID: 32424339 PMCID: PMC7462085 DOI: 10.1038/s41564-020-0724-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
To accomplish the remarkable task of lifelong infection, the Epstein-Barr virus (EBV) switches between four viral genome latency and lytic programmes to navigate the B-cell compartment and evade immune responses. The transforming programme, consisting of highly immunogenic EBV nuclear antigen (EBNA) and latent membrane proteins (LMPs), is expressed in newly infected B lymphocytes and in post-transplant lymphomas. On memory cell differentiation and in most EBV-associated Burkitt's lymphomas, all but one viral antigen are repressed for immunoevasion. To gain insights into the epigenetic mechanisms that restrict immunogenic oncoprotein expression, a genome-scale CRISPR-Cas9 screen was performed in EBV and Burkitt's lymphoma cells. Here, we show that the ubiquitin ligase ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) and its DNA methyltransferase partner DNA methyltransferase I (DNMT1) are critical for the restriction of EBNA and LMP expression. All UHRF1 reader and writer domains were necessary for silencing and DNMT3B was identified as an upstream viral genome CpG methylation initiator. Polycomb repressive complex I exerted a further layer of control over LMP expression, suggesting a second mechanism for latency programme switching. UHRF1, DNMT1 and DNMT3B are upregulated in germinal centre B cells, the Burkitt's lymphoma cell of origin, providing a molecular link between B-cell state and the EBV latency programme. These results suggest rational therapeutic targets to manipulate EBV oncoprotein expression.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yuchen Zhang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Molly Schineller
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
33
|
Patnaik D. Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1). BMC Res Notes 2020; 13:254. [PMID: 32448288 PMCID: PMC7247125 DOI: 10.1186/s13104-020-05103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES UHRF1 is a multi-domain protein that recognizes both histone and DNA modification marks on chromatin. UHRF1 is involved in various cellular processes that lead to tumorigenesis and thus attracted considerable attention as a potential anti-cancer drug target. The SRA domain is a unique to the UHRF family. SRA domain recognizes 5-methylcytosine in hemimethylated DNA and necessary for maintenance DNA methylation mediated by DNMT1. Small molecules capable of interacting with the SRA domain may reduce aberrant methylation levels by preventing the interaction of 5-methylcytosine with the SRA domain and thereby blocking substrate access to the catalytic center of DNMT1. The data were collected to identify and predict an initial set of small molecules that are expected to bind to the SRA domain. DATA DESCRIPTION Nearly 2.4 million molecules from various chemical libraries were screened with the SRA domain of UHRF1 using Schrodinger's Small Molecule Drug Discovery Suite. The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SRA domain.
Collapse
|
34
|
Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, Diedrich JK, Cook S, Shea T, Geinger E, Lintner R, Yates JR, Hajkova P, Narlikar GJ, Cuomo CA, Pritchard JK, Madhani HD. Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase. Cell 2020; 180:263-277.e20. [PMID: 31955845 PMCID: PMC7197499 DOI: 10.1016/j.cell.2019.12.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 mya. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 million years through a process analogous to Darwinian evolution of the genome.
Collapse
Affiliation(s)
- Sandra Catania
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Harold Pimentel
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ammar Nasif
- MRC London Institute of Medical Sciences (LMS), Reprogramming and Chromatin Group, Du Cane Road, W12 0NN London, UK; Institute of Clinical Sciences, Imperial College Faculty of Medicine, Du Cane Rd, W12 0NN London, UK
| | - Caitlin I Stoddard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan E Burke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sophie Cook
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Terrance Shea
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth Geinger
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert Lintner
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Petra Hajkova
- MRC London Institute of Medical Sciences (LMS), Reprogramming and Chromatin Group, Du Cane Road, W12 0NN London, UK; Institute of Clinical Sciences, Imperial College Faculty of Medicine, Du Cane Rd, W12 0NN London, UK
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Role of protein-protein interactions in allosteric drug design for DNA methyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:49-84. [PMID: 32312426 DOI: 10.1016/bs.apcsb.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methyltransferases (DNMTs) not only play key roles in epigenetic gene regulation, but also serve as emerging targets for several diseases, especially for cancers. Due to the multi-domains of DNMT structures, targeting allosteric sites of protein-protein interactions (PPIs) is becoming an attractive strategy in epigenetic drug discovery. This chapter aims to review the major contemporary approaches utilized for the drug discovery based on PPIs in different dimensions, from the enumeration of allosteric mechanism to the identification of allosteric pockets. These include the construction of protein structure networks (PSNs) based on molecular dynamics (MD) simulations, performing elastic network models (ENMs) and perturbation response scanning (PRS) calculation, the sequence-based conservation and coupling analysis, and the allosteric pockets identification. Furthermore, we complement this methodology by highlighting the role of computational approaches in promising practical applications for the computer-aided drug design, with special focus on two DNMTs, namely, DNMT1 and DNMT3A.
Collapse
|
36
|
Dolen EK, McGinnis JH, Tavory RN, Weiss JA, Switzer RL. Disease-Associated Mutations G589A and V590F Relieve Replication Focus Targeting Sequence-Mediated Autoinhibition of DNA Methyltransferase 1. Biochemistry 2019; 58:5151-5159. [PMID: 31804802 DOI: 10.1021/acs.biochem.9b00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the most common epigenetic DNA modification is methylation of carbon 5 of cytosines, predominantly in CpG dinucleotides. Methylation patterns are established and maintained by a family of proteins known as DNA methyltransferases (DNMTs). DNA methylation is an important epigenetic mark associated with gene repression, and disruption of the normal DNA methylation pattern is known to play a role in several disease states. Methylation patterns are primarily maintained by DNMT1, which possesses specificity for methylation of hemimethylated DNA. DNMT1 is a multidomain protein with a C-terminal catalytic methyltransferase domain and a large N-terminal regulatory region. The replication focus targeting sequence (RFTS) domain, found in the regulatory region, is an endogenous inhibitor of DNMT1 activity. Recently, several mutations in the RFTS domain were shown to be causal for two adult onset neurodegenerative diseases; however, little is known about the impact of these mutations on the structure and function of DNMT1. Two of these mutations, G589A and V590F, are associated with development of autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN). We have successfully expressed and purified G589A and V590F DNMT1 for in vitro studies. The mutations significantly decrease the thermal stability of DNMT1, yet the mutant proteins exhibit 2.5-3.5-fold increases in DNA binding affinity. In addition, the mutations weaken RFTS-mediated inhibition of DNA methylation activity. Taken together, these data suggest these disease-associated mutations decrease protein stability and, at least partially, relieve normal RFTS-mediated autoinhibition of DNMT1.
Collapse
Affiliation(s)
- Emma K Dolen
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - James H McGinnis
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rachel N Tavory
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Jill A Weiss
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rebecca L Switzer
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| |
Collapse
|
37
|
Mishima Y, Brueckner L, Takahashi S, Kawakami T, Otani J, Shinohara A, Takeshita K, Garvilles RG, Watanabe M, Sakai N, Takeshima H, Nachtegael C, Nishiyama A, Nakanishi M, Arita K, Nakashima K, Hojo H, Suetake I. Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes Cells 2019; 25:22-32. [DOI: 10.1111/gtc.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yuichi Mishima
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Laura Brueckner
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Saori Takahashi
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Toru Kawakami
- Laboratory of Organic Chemistry Institute for Protein Research Osaka University Suita Japan
| | - Junji Otani
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Akira Shinohara
- Laboratory of Genome‐Chromosome Function Institute for Protein Research Osaka University Suita Japan
| | | | | | - Mikio Watanabe
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
| | - Norio Sakai
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
| | - Hideyuki Takeshima
- Division of Epigenomics National Cancer Center Research Institute Tokyo Japan
| | - Charlotte Nachtegael
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
- Interuniversity Institute of Bioinformatics in Brussels Universite Libre de Bruxelles‐Vrije Universiteit Brussel Brussels Belgium
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science Yokohama City University Yokohama Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hironobu Hojo
- Laboratory of Organic Chemistry Institute for Protein Research Osaka University Suita Japan
| | - Isao Suetake
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
- College of Nutrition Koshien University Takarazuka Japan
| |
Collapse
|
38
|
Zaayter L, Mori M, Ahmad T, Ashraf W, Boudier C, Kilin V, Gavvala K, Richert L, Eiler S, Ruff M, Botta M, Bronner C, Mousli M, Mély Y. A Molecular Tool Targeting the Base-Flipping Activity of Human UHRF1. Chemistry 2019; 25:13363-13375. [PMID: 31322780 DOI: 10.1002/chem.201902605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Indexed: 12/12/2022]
Abstract
During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5'-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.
Collapse
Affiliation(s)
- Liliyana Zaayter
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Tanveer Ahmad
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Waseem Ashraf
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Vasyl Kilin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
39
|
Ye F, Huang J, Wang H, Luo C, Zhao K. Targeting epigenetic machinery: Emerging novel allosteric inhibitors. Pharmacol Ther 2019; 204:107406. [PMID: 31521697 DOI: 10.1016/j.pharmthera.2019.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Epigenetics has emerged as an extremely exciting fast-growing area of biomedical research in post genome era. Epigenetic dysfunction is tightly related with various diseases such as cancer and aging related degeneration, potentiating epigenetics modulators as important therapeutics targets. Indeed, inhibitors of histone deacetylase and DNA methyltransferase have been approved for treating blood tumor malignancies, whereas inhibitors of histone methyltransferase and histone acetyl-lysine recognizer bromodomain are in clinical stage. However, it remains a great challenge to discover potent and selective inhibitors by targeting catalytic site, as the same subfamily of epigenetic enzymes often share high sequence identity and very conserved catalytic core pocket. It is well known that epigenetic modifications are usually carried out by multi-protein complexes, and activation of catalytic subunit is often tightly regulated by other interactive protein component, especially in disease conditions. Therefore, it is not unusual that epigenetic complex machinery may exhibit allosteric regulation site induced by protein-protein interactions. Targeting allosteric site emerges as a compelling alternative strategy to develop epigenetic drugs with enhanced druggability and pharmacological profiles. In this review, we highlight recent progress in the development of allosteric inhibitors for epigenetic complexes through targeting protein-protein interactions. We also summarized the status of clinical applications of those inhibitors. Finally, we provide perspectives of future novel allosteric epigenetic machinery modulators emerging from otherwise undruggable single protein target.
Collapse
Affiliation(s)
- Fei Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Huang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
40
|
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, M DN, Rao PP, Pestell RG, Rao M. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol 2019; 114:105558. [DOI: 10.1016/j.biocel.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
|
41
|
Hahm JY, Kim JY, Park JW, Kang JY, Kim KB, Kim SR, Cho H, Seo SB. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res 2019; 47:184-196. [PMID: 30357346 PMCID: PMC6326791 DOI: 10.1093/nar/gky975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.
Collapse
Affiliation(s)
- Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Se-Ryeon Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
42
|
Gene Ontology and Expression Studies of Strigolactone Analogues on a Hepatocellular Carcinoma Cell Line. Anal Cell Pathol (Amst) 2019; 2019:1598182. [PMID: 31482051 PMCID: PMC6701435 DOI: 10.1155/2019/1598182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.
Collapse
|
43
|
Li T, Wang L, Du Y, Xie S, Yang X, Lian F, Zhou Z, Qian C. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res 2019; 46:3218-3231. [PMID: 29471350 PMCID: PMC5887372 DOI: 10.1093/nar/gky104] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
UHRF1 plays multiple roles in regulating DNMT1-mediated DNA methylation maintenance during DNA replication. The UHRF1 C-terminal RING finger functions as an ubiquitin E3 ligase to establish histone H3 ubiquitination at Lys18 and/or Lys23, which is subsequently recognized by DNMT1 to promote its localization onto replication foci. Here, we present the crystal structure of DNMT1 RFTS domain in complex with ubiquitin and highlight a unique ubiquitin binding mode for the RFTS domain. We provide evidence that UHRF1 N-terminal ubiquitin-like domain (UBL) also binds directly to DNMT1. Despite sharing a high degree of structural similarity, UHRF1 UBL and ubiquitin bind to DNMT1 in a very distinct fashion and exert different impacts on DNMT1 enzymatic activity. We further show that the UHRF1 UBL-mediated interaction between UHRF1 and DNMT1, and the binding of DNMT1 to ubiquitinated histone H3 that is catalyzed by UHRF1 RING domain are critical for the proper subnuclear localization of DNMT1 and maintenance of DNA methylation. Collectively, our study adds another layer of complexity to the regulatory mechanism of DNMT1 activation by UHRF1 and supports that individual domains of UHRF1 participate and act in concert to maintain DNA methylation patterns.
Collapse
Affiliation(s)
- Tao Li
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Linsheng Wang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Yongming Du
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Si Xie
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Xi Yang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Fuming Lian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Epigenetic variations have been shown to reveal vulnerability to diabetes and its complications. Although it has become clear that metabolic derangements, especially hyperglycemia, can impose a long-term metabolic memory that predisposes to diabetic complications, the underlying mechanisms remain to be understood. It has been suggested that epigenetics (e.g., histone modification, DNA methylation, and non-coding RNAs) help link metabolic disruption to aberrancies related to diabetic kidney disease (DKD). In this review, we discuss the key findings and advances made in the epigenetic risk profile of DKD and provide perspectives on the emerging topics that implicate epigenetics in DKD. RECENT FINDINGS Epigenetic profiles can be profoundly altered in patients with diabetes, in circulating blood cells as well as in renal tissues. These changes provide useful insight into the mechanisms of diabetic kidney injury and progressive kidney dysfunction. Increasing evidence supports the role of epigenetic regulation in DKD. More studies are needed to elucidate the mechanism and importance of epigenetic changes in the initiation and progression of DKD and to further explore their diagnostic and therapeutic potential in the clinical management of patients with diabetes who have a high risk for DKD.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
- Division of Nephrology, Guangdong Academy of Medical Science and Guangdong General Hospital, 106 Zhongshan Er Rd, Guangzhou, 510080, China
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
45
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
46
|
Xue B, Zhao J, Feng P, Xing J, Wu H, Li Y. Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther 2019; 12:549-559. [PMID: 30666134 PMCID: PMC6334784 DOI: 10.2147/ott.s192234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) functions as an epigenetic regulator recruiting PCNA, DNMT1, histone deacetylase 1, G9a, SuV39H, herpes virus-associated ubiquitin-specific protease, and Tat-interactive protein by multiple corresponding domains of DNA and H3 to maintain DNA methylation and histone modifications. Overexpression of UHRF1 has been found as a potential biomarker in various cancers resulting in either DNA hypermethylation or global DNA hypo-methylation, which participates in the occurrence, progression, and invasion of cancer. The role of UHRF1 in the reciprocal interaction between DNA methylation and histone modifications, the dynamic structural transformation of UHRF1 protein within epigenetic code replication machinery in epigenetic regulations, as well as modifications during cell cycle and chemotherapy targeting UHRF1 are evaluated in this study.
Collapse
Affiliation(s)
- Busheng Xue
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Jiansong Zhao
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, People's Republic of China
| | - Hongliang Wu
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Yan Li
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
47
|
Kori S, Ferry L, Matano S, Jimenji T, Kodera N, Tsusaka T, Matsumura R, Oda T, Sato M, Dohmae N, Ando T, Shinkai Y, Defossez PA, Arita K. Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure 2019; 27:485-496.e7. [PMID: 30639225 DOI: 10.1016/j.str.2018.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.
Collapse
Affiliation(s)
- Satomi Kori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Laure Ferry
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Shohei Matano
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Tomohiro Jimenji
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Rumie Matsumura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Pierre-Antoine Defossez
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France.
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
48
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
49
|
The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation. Genes (Basel) 2018; 9:genes9120600. [PMID: 30513966 PMCID: PMC6316679 DOI: 10.3390/genes9120600] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Mammalian DNMT1 is mainly responsible for maintenance DNA methylation that is critical in maintaining stem cell pluripotency and controlling lineage specification during early embryonic development. A number of studies have demonstrated that DNMT1 is an auto-inhibited enzyme and its enzymatic activity is allosterically regulated by a number of interacting partners. UHRF1 has previously been reported to regulate DNMT1 in multiple ways, including control of substrate specificity and the proper genome targeting. In this review, we discuss the recent advances in our understanding of the regulation of DNMT1 enzymatic activity by UHRF1 and highlight a number of unresolved questions.
Collapse
|
50
|
Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 2018; 46:1191-1202. [PMID: 30154093 PMCID: PMC6581191 DOI: 10.1042/bst20170574] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
As part of the epigenetic network, DNA methylation is a major regulator of chromatin structure and function. In mammals, it mainly occurs at palindromic CpG sites, but asymmetric methylation at non-CpG sites is also observed. Three enzymes are involved in the generation and maintenance of DNA methylation patterns. DNMT1 has high preference for hemimethylated CpG sites, and DNMT3A and DNMT3B equally methylate unmethylated and hemimethylated DNA, and also introduce non-CpG methylation. Here, we review recent observations and novel insights into the structure and function of mammalian DNMTs (DNA methyltransferases), including new structures of DNMT1 and DNMT3A, data on their mechanism, regulation by post-translational modifications and on the function of DNMTs in cells. In addition, we present news findings regarding the allosteric regulation and targeting of DNMTs by chromatin modifications and chromatin proteins. In combination, the recent publications summarized here impressively illustrate the intensity of ongoing research in this field. They provide a deeper understanding of key mechanistic properties of DNMTs, but they also document still unsolved issues, which need to be addressed in future research.
Collapse
Affiliation(s)
- Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|