1
|
Bai W, Yan C, Yang Y, Sang L, Hao Q, Yao X, Zhang Y, Yu J, Wang Y, Li X, Meng M, Yang J, Shen J, Sun Y, Sun J. EGF/EGFR-YAP1/TEAD2 signaling upregulates STIM1 in vemurafenib resistant melanoma cells. FEBS J 2024; 291:4969-4983. [PMID: 39298503 DOI: 10.1111/febs.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Stromal interaction molecule 1 (STIM1) is the endoplasmic reticulum Ca2+ sensor for store-operated calcium entry and is closely associated with carcinogenesis and tumor progression. Previously, we found that STIM1 is upregulated in melanoma cells resistant to the serine/threonine-protein kinase B-raf inhibitor vemurafenib, although the mechanism underlying this upregulation is unknown. Here, we show that vemurafenib resistance upregulates STIM1 through an epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR)-Yes-associated protein 1 (YAP1)/TEA domain transcription factor 2 (TEAD2) signaling axis. Vemurafenib resistance can lead to an increase in EGF and EGFR levels, causing activation of the EGFR signaling pathway, which promotes YAP1 nuclear localization to increase the expression of STIM1. Our findings not only reveal the mechanism by which vemurafenib resistance promotes STIM1 upregulation, but also provide a rationale for combined targeting of the EGF/EGFR-YAP1/TEAD2-STIM1 axis to improve the therapeutic efficacy of BRAF inhibitor in melanoma patients.
Collapse
Affiliation(s)
- Weiyu Bai
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Chenghao Yan
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yichen Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Lei Sang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Qinggang Hao
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Xinyi Yao
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yingru Zhang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jia Yu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yifan Wang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaowen Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Jilong Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Junling Shen
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yan Sun
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Jianwei Sun
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| |
Collapse
|
2
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
3
|
Boz Er AB, Sheldrake HM, Sutherland M. Overcoming Vemurafenib Resistance in Metastatic Melanoma: Targeting Integrins to Improve Treatment Efficacy. Int J Mol Sci 2024; 25:7946. [PMID: 39063187 PMCID: PMC11277089 DOI: 10.3390/ijms25147946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-β signalling. In this study, the role of integrins and TGF-β signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-β pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-β signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.
Collapse
Affiliation(s)
- Asiye Busra Boz Er
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Helen M. Sheldrake
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Mark Sutherland
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
4
|
He Y, Wang X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput Biol Med 2023; 167:107591. [PMID: 37875043 DOI: 10.1016/j.compbiomed.2023.107591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Despite immune checkpoint inhibitors (ICIs) have shown the greatest success in melanoma treatment, only a subset of melanoma patients responds well to ICIs. Thus, identifying predictive biomarkers for immunotherapy response is crucial. In this study, we took complementary advantages of immunotherapy data and The Cancer Genome Atlas (TCGA) multi-omics data to explore the predictive biomarkers for the response to immunotherapy in melanoma. We first predicted responsive and non-responsive melanomas in the TCGA skin cutaneous melanoma (SKCM) cohort based on both somatic mutation and transcriptome datasets which involved immunotherapy data for melanoma. This method identified 170 responsive and 56 non-responsive melanomas in TCGA-SKCM. Based on the TCGA-SKCM data, we performed a comprehensive comparison of multi-omics molecular features between responsive and non-responsive melanomas. We identified the molecular features significantly associated with immunotherapy response in melanoma at the genome, transcriptome, epigenome, and proteome levels, respectively. Our analysis confirmed certain immunotherapy response-associated biomarkers, such as tumor mutation burden (TMB), copy number alteration (CNA), intratumor heterogeneity (ITH), PD-L1 expression, and tumor immunity. Moreover, we identified some novel molecular features associated with immunotherapy response: (1) the activation of mast cells and dendritic cells correlating negatively with immunotherapy response; (2) the enrichment of many oncogenic pathways correlating positively with immunotherapy response, such as JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, and VEGF pathways; and (3) a number of microRNAs and proteins whose expression correlates with immunotherapy response. In addition, the mTOR signaling pathway has a negative association with immunotherapy response. The novel biomarkers have potential predictive values in immunotherapy response and warrant further investigation.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
6
|
Garbarino O, Valenti GE, Monteleone L, Pietra G, Mingari MC, Benzi A, Bruzzone S, Ravera S, Leardi R, Farinini E, Vernazza S, Grottoli M, Marengo B, Domenicotti C. PLX4032 resistance of patient-derived melanoma cells: crucial role of oxidative metabolism. Front Oncol 2023; 13:1210130. [PMID: 37534247 PMCID: PMC10391174 DOI: 10.3389/fonc.2023.1210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Ombretta Garbarino
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Lorenzo Monteleone
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy
| | | | | | - Stefania Vernazza
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Melania Grottoli
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Ruiz EM, Alhassan SA, Errami Y, Abd Elmageed ZY, Fang JS, Wang G, Brooks MA, Abi-Rached JA, Kandil E, Zerfaoui M. A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma. Int J Mol Sci 2023; 24:8407. [PMID: 37176114 PMCID: PMC10178962 DOI: 10.3390/ijms24098407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy.
Collapse
Affiliation(s)
- Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Solomon A. Alhassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Youssef Errami
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zakaria Y. Abd Elmageed
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana, Monroe, LA 71203, USA
| | - Jennifer S. Fang
- Department of Cell and Molecular Biology, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA
| | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Margaret A. Brooks
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joe A. Abi-Rached
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, van der Meer D, Yang W, Beck A, Mironenko T, Hall C, Hall J, Mali I, Richardson L, Tolley C, Morris J, Thomas F, Lleshi E, Aben N, Benes CH, Bertotti A, Trusolino L, Wessels L, Garnett MJ. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022; 603:166-173. [PMID: 35197630 PMCID: PMC8891012 DOI: 10.1038/s41586-022-04437-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS–TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments. A survey of potency and efficacy of 2,025 clinically relevant two-drug combinations against 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines identifies rare synergistic effects of anticancer drugs, informing rational combination treatments for specific cancer subtypes.
Collapse
Affiliation(s)
| | | | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | | | | | | - Lisa Dwane
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | - James Hall
- Wellcome Sanger Institute, Cambridge, UK
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | - Nanne Aben
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of EEMCS, Delft University of Technology, Delft, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
10
|
Jandova J, Wondrak GT. Vemurafenib Drives Epithelial-to-Mesenchymal Transition Gene Expression in BRAF Inhibitor‒Resistant BRAF V600E/NRAS Q61K Melanoma Enhancing Tumor Growth and Metastasis in a Bioluminescent Murine Model. J Invest Dermatol 2021; 142:1456-1465.e1. [PMID: 34687745 PMCID: PMC9021323 DOI: 10.1016/j.jid.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 vs. BRAFi-resistant A375-BRAFV600E/NRASQ61K), we show that BRAFi (vemurafenib) treatment selectively targets BRAFV600E/NRASQ61K cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo. First, NanoString nCounter transcriptomic analysis identified the upregulation of specific gene expression networks (EMT and EMT to metastasis) as a function of NRASQ61K status. Strikingly, BRAFi treatment further exacerbated the upregulation of genes promoting EMT in BRAFV600E/NRASQ61K cells (with opposing downregulation of EMT-driver genes in the BRAFV600E/NRASQ61 genotype) as detected by EMT-focused RT2 Profiler qPCR array analysis. In BRAFV600E/NRASQ61K cells, BRAFi treatment enhanced proliferation and invasiveness, together with activation of phosphorylated protein kinase B (Ser473), with opposing phenotypic effects observable in BRAFV600E/NRASQ61 cells displaying downregulation of phosphorylated protein kinase B and phosphorylated extracellular signal-regulated kinase 1/2. In a SCID mouse bioluminescent melanoma metastasis model, BRAFi treatment enhanced lung tumor burden imposed by BRAFV600E/NRASQ61K cells while blocking BRAFV600E/NRASQ61 metastasis. These preclinical data document the BRAFi-driven enhancement of tumorigenesis and metastasis in BRAFi-resistant human BRAFV600E/NRASQ61K melanoma, a finding with potential clinical implications for patients with NRAS-driven BRAFi-resistant tumors receiving BRAFi treatment.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Georg T Wondrak
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
11
|
Imlimthan S, Khng YC, Keinänen O, Zhang W, Airaksinen AJ, Kostiainen MA, Zeglis BM, Santos HA, Sarparanta M. A Theranostic Cellulose Nanocrystal-Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007705. [PMID: 33738957 PMCID: PMC8175021 DOI: 10.1002/smll.202007705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - You Cheng Khng
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Keinänen
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Wenzhong Zhang
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Anu J. Airaksinen
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
- Turku PET Centre, Department of Chemistry, University of Turku, FI-20521 Turku, Finland
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Radiology, Weill Cornell Medical College, New York 10021, NY, USA
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
12
|
Pampena R, Michelini S, Lai M, Chester J, Pellacani G, Longo C. New systemic therapies for cutaneous melanoma: why, who and what. Ital J Dermatol Venerol 2021; 156:344-355. [PMID: 33913672 DOI: 10.23736/s2784-8671.21.06936-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incidence of melanoma has been increasing in both sexes in the last decades. Advanced melanoma has always been one of the deadliest cancers worldwide due to his high metastatic capacity. In the last ten years, progresses in the knowledge of the molecular mechanisms involved in the melanoma development and progression, and in immune-response against melanoma, empowered the development of two new classes of systemic therapeutic agents: target-therapies and immunotherapies. Both classes consist of monoclonal antibodies inhibiting specific molecules. Target-therapies are selectively directed against cells harboring the BRAFV600-mutation, while immunotherapies target the two molecules involved in immune-checkpoint regulation, enhancing the immune response against the tumor: cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 receptor (PD-1). Target- and immunotherapy demonstrated to improve both progression-free and overall survival in melanoma patients either in metastatic or in adjuvant settings. Several drugs have been approved in recent years as monotherapy or in combination, and many other drugs are currently under investigation in clinical trials. In the current review on new systemic therapies for cutaneous melanoma, we revised the molecular basis and the mechanisms of actions of both target- and immunotherapy (why). We discussed who are the best candidate to receive such therapies in both the adjuvant and metastatic setting (who) and which were the most important efficacy and safety data on these drugs (what).
Collapse
Affiliation(s)
- Riccardo Pampena
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Michela Lai
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Longo
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy - .,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
14
|
Lutz A, Jung D, Diem K, Fauler M, Port F, Gottschalk K, Felder E. Acute effects of cell stretch on keratin filaments in A549 lung cells. FASEB J 2020; 34:11227-11242. [PMID: 32632966 DOI: 10.1096/fj.201903160rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
Abstract
Keratin filaments (KFs) comprise the intermediate filaments of epithelial cells and are well known for their cytoprotective properties and their mechanical resilience. Although, several studies have demonstrated KFs' remarkable tensile properties relatively little is known about acute implications of mechanical stretch on KFs in living cells. This includes structural effects on the KFs and their higher level assembly structures as well as posttranslational response mechanisms to possibly modify KF's properties. We subjected simple epithelial A549 lung cells to 30% unidirectional stretch and already after 10 seconds we observed morphological changes of the KF-network as well as structural effects on their desmosomal anchor sites-both apparently caused by the tensile strain. Interestingly, the effect on the desmosomes was attenuated after 30 seconds of cell stretch with a concomitant increase in phosphorylation of keratin8-S432, keratin18-S53, and keratin18-S34 without an apparent increase in keratin solubility. When mimicking the phosphorylation of keratin18-S34 the stretch-induced effect on the desmosomes could be diminished and probing the cell surface with atomic force microscopy showed a lowered elastic modulus. We conclude that the stretch-induced KF phosphorylation affects KF's tensile properties, probably to lower the mechanical load on strained desmosomal cell-cell contacts, and hence, preserve epithelial integrity.
Collapse
Affiliation(s)
- Anngrit Lutz
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Dominik Jung
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Kathrin Diem
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Fabian Port
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Kay Gottschalk
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Edward Felder
- Department of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Xu X, Eshima S, Kato S, Fisher DE, Sakurai H, Hayakawa Y, Yokoyama S. Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Mol Cancer Ther 2019; 19:627-636. [PMID: 31744894 DOI: 10.1158/1535-7163.mct-19-0451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022]
Abstract
Mutation of the oncogene BRAF is among the most common genetic alterations in melanoma. BRAF inhibitors alone or in combination with MEK inhibitors fail to eradicate the tumor in most patients due to combinations of intrinsic or acquired resistance. Therefore, novel strategies are needed to improve the therapeutic efficacy of BRAF inhibition. We demonstrated that dinaciclib has potent antimelanoma effects by inducing BAK-dependent apoptosis through MCL1 reduction. Contrary to dinaciclib, the inhibitors of BRAF/MEK/CDK4/6 induced apoptosis dominantly through a BAX-dependent mechanism. Although the combination of BRAF and MEK inhibitors did not exhibit additive antimelanoma effects, their combination with dinaciclib synergistically inhibited melanoma growth both in vitro and in vivo Collectively, our present findings suggest dinaciclib to be an effective complementary drug of BAX-dependent antimelanoma drugs by targeting BAK-mediated apoptosis, and other such rational drug combinations can be determined by identifying complementary drugs activating either BAK or BAX.
Collapse
Affiliation(s)
- Xiaoou Xu
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shizuka Eshima
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shinichiro Kato
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan. .,Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Zaman A, Wu W, Bivona TG. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers (Basel) 2019; 11:E1197. [PMID: 31426419 PMCID: PMC6721448 DOI: 10.3390/cancers11081197] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Identifying recurrent somatic genetic alterations of, and dependency on, the kinase BRAF has enabled a "precision medicine" paradigm to diagnose and treat BRAF-driven tumors. Although targeted kinase inhibitors against BRAF are effective in a subset of mutant BRAF tumors, resistance to the therapy inevitably emerges. In this review, we discuss BRAF biology, both in wild-type and mutant settings. We discuss the predominant BRAF mutations and we outline therapeutic strategies to block mutant BRAF and cancer growth. We highlight common mechanistic themes that underpin different classes of resistance mechanisms against BRAF-targeted therapies and discuss tumor heterogeneity and co-occurring molecular alterations as a potential source of therapy resistance. We outline promising therapy approaches to overcome these barriers to the long-term control of BRAF-driven tumors and emphasize how an extensive understanding of these themes can offer more pre-emptive, improved therapeutic strategies.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Man RJ, Zhang YL, Jiang AQ, Zhu HL. A patent review of RAF kinase inhibitors (2010–2018). Expert Opin Ther Pat 2019; 29:675-688. [DOI: 10.1080/13543776.2019.1651842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, People’s Republic of China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
18
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
19
|
Pisanu ME, Maugeri-Saccà M, Fattore L, Bruschini S, De Vitis C, Tabbì E, Bellei B, Migliano E, Kovacs D, Camera E, Picardo M, Jakopin Z, Cippitelli C, Bartolazzi A, Raffa S, Torrisi MR, Fulciniti F, Ascierto PA, Ciliberto G, Mancini R. Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. J Exp Clin Cancer Res 2018; 37:318. [PMID: 30558661 PMCID: PMC6298024 DOI: 10.1186/s13046-018-0989-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Combination therapy with BRAF and MEK inhibitors significantly improves survival in BRAF mutated melanoma patients but is unable to prevent disease recurrence due to the emergence of drug resistance. Cancer stem cells (CSCs) have been involved in these long-term treatment failures. We previously reported in lung cancer that CSCs maintenance is due to altered lipid metabolism and dependent upon Stearoyl-CoA-desaturase (SCD1)-mediated upregulation of YAP and TAZ. On this ground, we investigated the role of SCD1 in melanoma CSCs. METHODS SCD1 gene expression data of melanoma patients were downloaded from TCGA and correlated with disease progression by bioinformatics analysis and confirmed on patient's tissues by qRT-PCR and IHC analyses. The effects of combination of BRAF/MEKi and the SCD1 inhibitor MF-438 were monitored by spheroid-forming and proliferation assays on a panel of BRAF-mutated melanoma cell lines grown in 3D and 2D conditions, respectively. SCD1, YAP/TAZ and stemness markers were evaluated in melanoma cells and tissues by qRT-PCR, WB and Immunofluorescence. RESULTS We first observed that SCD1 expression increases during melanoma progression. BRAF-mutated melanoma 3D cultures enriched for CSCs overexpressed SCD1 and were more resistant than 2D differentiated cultures to BRAF and MEK inhibitors. We next showed that exposure of BRAF-mutated melanoma cells to MAPK pathway inhibitors enhanced stemness features by upregulating the expression of YAP/TAZ and downstream genes but surprisingly not SCD1. However, SCD1 pharmacological inhibition was able to downregulate YAP/TAZ and to revert at the same time CSC enrichment and resistance to MAPK inhibitors. CONCLUSIONS Our data underscore the role of SCD1 as prognostic marker in melanoma and promote the use of SCD1 inhibitors in combination with MAPK inhibitors for the control of drug resistance.
Collapse
Affiliation(s)
- Maria Elena Pisanu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Present Address: High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Luigi Fattore
- Preclinical Models and New Therapeutics Agents Unit, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Eugenio Tabbì
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics research, San Gallicano Dermatologic Institute, IRCSS, 00144 Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute, IRCSS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics research, San Gallicano Dermatologic Institute, IRCSS, 00144 Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics research, San Gallicano Dermatologic Institute, IRCSS, 00144 Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics research, San Gallicano Dermatologic Institute, IRCSS, 00144 Rome, Italy
| | - Ziga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Claudia Cippitelli
- Pathology Research laboratory, Sapienza University, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Armando Bartolazzi
- Pathology Research laboratory, Sapienza University, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Cellular Diagnostics Unit, Sapienza University, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Cellular Diagnostics Unit, Sapienza University, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Franco Fulciniti
- Istituto Cantonale di Patologia, Servizio di Citologia Clinica, 6600 Locarno, Switzerland
| | - Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale Tumori IRCSS Regina Elena, 00128 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
20
|
Segaoula Z, Primot A, Lepretre F, Hedan B, Bouchaert E, Minier K, Marescaux L, Serres F, Galiègue-Zouitina S, André C, Quesnel B, Thuru X, Tierny D. Isolation and characterization of two canine melanoma cell lines: new models for comparative oncology. BMC Cancer 2018; 18:1219. [PMID: 30514258 PMCID: PMC6280433 DOI: 10.1186/s12885-018-5114-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metastatic melanoma is one of the most aggressive forms of cancer in humans. Among its types, mucosal melanomas represent one of the most highly metastatic and aggressive forms, with a very poor prognosis. Because they are rare in Caucasian individuals, unlike cutaneous melanomas, there has been fewer epidemiological, clinical and genetic evaluation of mucosal melanomas. Moreover, the lack of predictive models fully reproducing the pathogenesis and molecular alterations of mucosal melanoma makes its treatment challenging. Interestingly, dogs are frequently affected by melanomas of the oral cavity that are characterized, as their human counterparts, by focal infiltration, recurrence, and metastasis to regional lymph nodes, lungs and other organs. In dogs, some particular breeds are at high risk, suggesting a specific genetic background and strong genetic drivers. Altogether, the striking homologies in clinical presentation, histopathological features, and overall biology between human and canine mucosal melanomas make dogs invaluable natural models with which to investigate tumor development, including tumor ætiology, and develop tailored treatments. METHODS We developed and characterized two canine oral melanoma cell lines from tumors isolated from dog patients with distinct clinical profiles; with and without lung metastases. The cells were characterized using immunohistochemistry, pharmacology and genetic studies. RESULTS We have developed and immunohistochemically, genetically, and pharmacologically characterized. Two cell lines (Ocr_OCMM1X & Ocr_OCMM2X) were produced through mouse xenografts originating from two clinically contrasting melanomas of the oral cavity. Their exhaustive characterization showed two distinct biological and genetic profiles that are potentially linked to the stage of malignancy at the time of diagnosis and sample collection of each melanoma case. These cell lines thus constitute relevant tools with which to perform genetic and drug screening analyses for a better understanding of mucosal melanomas in dogs and humans. CONCLUSIONS The aim of this study was to establish and characterize xenograft-derived canine melanoma cell lines with different morphologies, genetic features and pharmacological sensitivities that constitute good predictive models for comparative oncology. These cell lines are relevant tools to advance the use of canine mucosal melanomas as natural models for the benefit of both veterinary and human medicine.
Collapse
Affiliation(s)
- Zacharie Segaoula
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
| | - Aline Primot
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | | | - Benoit Hedan
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Emmanuel Bouchaert
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
| | - Kevin Minier
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - Laurent Marescaux
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - François Serres
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| | - Sylvie Galiègue-Zouitina
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
| | - Catherine André
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Bruno Quesnel
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
- CNRS-University of Rennes 1, UMR 6290, Institute of Genetique and Development of Rennes, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Xavier Thuru
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Jean-Pierre AUBERT Research Centre of Neuroscience and Cancer, F-59000 Lille, France
| | - Dominique Tierny
- OCR (Oncovet Clinical Research), SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
- Oncovet Cancer Centre, Avenue Paul Langevin, 59650 Villeneuve d’Ascq, France
| |
Collapse
|
21
|
Del Bufalo F, Ceglie G, Cacchione A, Alessi I, Colafati GS, Carai A, Diomedi-Camassei F, De Billy E, Agolini E, Mastronuzzi A, Locatelli F. BRAF V600E Inhibitor (Vemurafenib) for BRAF V600E Mutated Low Grade Gliomas. Front Oncol 2018; 8:526. [PMID: 30488019 PMCID: PMC6246660 DOI: 10.3389/fonc.2018.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Low-grade gliomas (LGG) are the most common central nervous system tumors in children. Prognosis depends on complete surgical resection. For patients not amenable of gross total resection (GTR) new approaches are needed. The BRAF mutation V600E is critical for the pathogenesis of pediatric gliomas and specific inhibitors of the mutated protein, such as Vemurafenib, are available. We investigated the safety and efficacy of Vemurafenib as single agent in pediatric patients with V600E+ LGG. From November 2013 to May 2018, 7 patients have been treated in our Institution; treatment was well-tolerated, the main concern being dermatological toxicity. The best responses to treatment were: 1 complete response, 3 partial responses, 1 stable disease, only one patient progressed; in one patient, the follow-up is too short to establish the clinical response. Two patients discontinued treatment, and, in both cases, immediate progression of the disease was observed. In one case the treatment was discontinued due to toxicity, in the other one the previously assessed BRAF V600E mutation was not confirmed by further investigation. Two patients, after obtaining a response, progressed during treatment, suggesting the occurrence of resistance mechanisms. Clinical response, with improvement of the neurologic function, was observed in all patients a few weeks after the therapy was started. Despite the limitations inherent to a small and heterogeneous cohort, this experience, suggests that Vemurafenib represents a treatment option in pediatric patients affected by LGG and carrying BRAF mutation V600E.
Collapse
Affiliation(s)
- Francesca Del Bufalo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulia Ceglie
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Emmanuel De Billy
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, Mina L, Dragovich T, Gimbel M, Mahmoud F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 2018; 11:7095-7107. [PMID: 30410366 PMCID: PMC6200076 DOI: 10.2147/ott.s182721] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of melanomas harbor an activating BRAF mutation. Combined BRAF and MEK inhibitors such as dabrafenib and trametinib, vemurafenib and cobimetinib, and encorafenib and binimetinib are US Food and Drug Administration (FDA)-approved to treat patients with BRAFV600-mutated advanced melanoma. Both genetic and epigenetic alterations play a major role in resistance to BRAF inhibitors by reactivation of the MAPK and/or the PI3K–Akt pathways. The role of BRAF inhibitors in modulating the immunomicroenvironment and perhaps enhancing the efficacy of checkpoint inhibitors is gaining interest. This article provides a comprehensive review of mechanisms of resistance to BRAF and MEK inhibitors in melanoma and summarizes landmark trials that led to the FDA approval of BRAF and MEK inhibitors in metastatic melanoma.
Collapse
Affiliation(s)
- Sunilkumar Kakadia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naveen Yarlagadda
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramez Awad
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Madappa Kundranda
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Jiaxin Niu
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Boris Naraev
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Lida Mina
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Tomislav Dragovich
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Mark Gimbel
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Fade Mahmoud
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| |
Collapse
|
23
|
Martinez-Useros J, Li W, Georgiev-Hristov T, Fernandez-Aceñero MJ, Borrero-Palacios A, Perez N, Celdran A, Garcia-Foncillas J. Clinical Implications of NRAS Overexpression in Resectable Pancreatic Adenocarcinoma Patients. Pathol Oncol Res 2017; 25:269-278. [PMID: 29101736 DOI: 10.1007/s12253-017-0341-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
|
24
|
Duggan MC, Stiff AR, Bainazar M, Regan K, Olaverria Salavaggione GN, Maharry S, Blachly JS, Krischak M, Walker CJ, Latchana N, Tridandapani S, de la Chapelle A, Eisfeld AK, Carson WE. Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proc Natl Acad Sci U S A 2017; 114:9629-9634. [PMID: 28827320 PMCID: PMC5594655 DOI: 10.1073/pnas.1704371114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activating mutations in BRAF are found in 50% of melanomas and although treatment with BRAF inhibitors (BRAFi) is effective, resistance often develops. We now show that recently discovered NRAS isoform 2 is up-regulated in the setting of BRAF inhibitor resistance in melanoma, in both cell lines and patient tumor tissues. When isoform 2 was overexpressed in BRAF mutant melanoma cell lines, melanoma cell proliferation and in vivo tumor growth were significantly increased in the presence of BRAFi treatment. shRNA-mediated knockdown of isoform 2 in BRAFi resistant cells restored sensitivity to BRAFi compared with controls. Signaling analysis indicated decreased mitogen-activated protein kinase (MAPK) pathway signaling and increased phosphoinositol-3-kinase (PI3K) pathway signaling in isoform 2 overexpressing cells compared with isoform 1 overexpressing cells. Immunoprecipitation of isoform 2 validated a binding affinity of this isoform to both PI3K and BRAF/RAF1. The addition of an AKT inhibitor to BRAFi treatment resulted in a partial restoration of BRAFi sensitivity in cells expressing high levels of isoform 2. NRAS isoform 2 may contribute to resistance to BRAFi by facilitating PI3K pathway activation.
Collapse
Affiliation(s)
- Megan C Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Andrew R Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Maryam Bainazar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Kelly Regan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Sophia Maharry
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - James S Blachly
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Madison Krischak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Nicholas Latchana
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210
| | | | | | | | - William E Carson
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells. Oncotarget 2017; 7:8676-87. [PMID: 26735176 PMCID: PMC4890996 DOI: 10.18632/oncotarget.6779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
Clinical studies evaluating targeted BRAFV600E inhibitors in advanced thyroid cancer patients are currently underway. Vemurafenib (BRAFV600E inhibitor) monotherapy has shown promising results thus far, although development of resistance is a clinical challenge. The objective of this study was to characterize development of resistance to BRAFV600E inhibition and to identify targets for effective combination therapy. We created a line of BCPAP papillary thyroid cancer cells resistant to vemurafenib by treating with increasing concentrations of the drug. The resistant BCPAP line was characterized and compared to its sensitive counterpart with respect to signaling molecules thought to be directly related to resistance. Expression and phosphorylation of several critical proteins were analyzed by Western blotting and dimerization was evaluated by immunoprecipitation. Resistance to vemurafenib in BCPAP appeared to be mediated by constitutive overexpression of phospho-ERK and by resistance to inhibition of both phospho-mTOR and phospho-S6 ribosomal protein after vemurafenib treatment. Expression of potential alternative signaling molecule, CRAF, was not increased in the resistant line, although formation of CRAF dimers appeared increased. Expression of membrane receptors HER2 and HER3 was greatly amplified in the resistant cancer cells. Papillary thyroid cancer cells were capable of overcoming targeted BRAFV600E inhibition by rewiring of cell signal pathways in response to prolonged vemurafenib therapy. Our study suggests that in vitro culture of cancer cells may be useful in assessing molecular resistance pathways. Potential therapies in advanced thyroid cancer patients may combine vemurafenib with inhibitors of CRAF, HER2/HER3, ERK, and/or mTOR to delay or abort development of resistance.
Collapse
|
26
|
Orue A, Chavez V, Strasberg-Rieber M, Rieber M. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine. BMC Cancer 2016; 16:902. [PMID: 27863474 PMCID: PMC5116131 DOI: 10.1186/s12885-016-2930-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
Background The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. Results In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. Conclusions This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.
Collapse
Affiliation(s)
- Andrea Orue
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
| | - Valery Chavez
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
| | | | - Manuel Rieber
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela.
| |
Collapse
|
27
|
Sarrabayrouse G, Pich C, Teiti I, Tilkin-Mariame AF. Regulatory properties of statins and rho gtpases prenylation inhibitiors to stimulate melanoma immunogenicity and promote anti-melanoma immune response. Int J Cancer 2016; 140:747-755. [PMID: 27616679 DOI: 10.1002/ijc.30422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023]
Abstract
Melanoma is a highly lethal cutaneous tumor, killing affected patients through development of multiple poorly immunogenic metastases. Suboptimal activation of immune system by melanoma cells is often due to molecular modifications occurring during tumor progression that prevent efficient recognition of melanoma cells by immune effectors. Statins are HMG-CoA reductase inhibitors, which block the mevalonate synthesis pathway, used by millions of people as hypocholesterolemic agents in cardiovascular and cerebrovascular diseases. They are also known to inhibit Rho GTPase activation and Rho dependent signaling pathways. Rho GTPases are regarded as molecular switches that regulate a wide spectrum of cellular functions and their dysfunction has been characterized in various oncogenic process notably in melanoma progression. Moreover, these molecules can modulate the immune response. Since 10 years we have demonstrated that Statins and other Rho GTPases inhibitors are critical regulators of molecules involved in adaptive and innate anti-melanoma immune response. In this review we summarize our major observations demonstrating that these pharmacological agents stimulate melanoma immunogenicity and suggest a potential use of these molecules to promote anti-melanoma immune response.
Collapse
Affiliation(s)
- Guillaume Sarrabayrouse
- Digestive System Research Unit, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119-129, Barcelona, Spain
| | - Christine Pich
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Iotefa Teiti
- INSERM UMR 1037, CRCT, Université de Toulouse, UPS, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | | |
Collapse
|
28
|
Rathmann SM, Janzen N, Valliant JF. Synthesis, radiolabelling, and biodistribution studies of triazole derivatives for targeting melanoma. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular probes that target specific markers expressed in solid tumours are in demand for cancer imaging and radionuclide therapy applications. The synthesis, characterization, and in vivo evaluation of radioiodinated triazoles designed as probes to target melanoma are described here. Compounds were prepared using a thermal click reaction between ethynylstannane and methyl 2-azidoacetate, resulting in preferential formation of the corresponding 1,4-tin triazole. The primary amine of various targeting vectors was then coupled to the resulting tin triazole methyl ester. These precursors were labelled with no carrier added 123I or 125I and purified by high performance liquid chromatography to give isolated radiochemical yields between 6% and 51% and radiochemical purities of >95% in all cases. Among the evaluated compounds, N-(2-diethylamino-ethyl)-2-(4-iodo-[1,2,3]triazol-1-yl)acetamide (7a) and N-(1-benzylpiperidin-4-yl)-2-(4-iodo-1H-1,2,3-triazol-1-yl)acetamide (7d) showed the most promising in vivo data, and their 123I-labelled forms were used in single photon emission computed tomography computed tomography (SPECT–CT) imaging studies. The imaging data showed excellent tumour visualization with a very high signal to noise ratio.
Collapse
Affiliation(s)
- Stephanie M. Rathmann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
29
|
Bhargava A, Anant M, Mack H. Registered report: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. eLife 2016; 5. [PMID: 26885666 PMCID: PMC4769162 DOI: 10.7554/elife.11999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/25/2016] [Indexed: 01/07/2023] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF" by Heidorn and colleagues, published in Cell in 2010 (Heidorn et al., 2010). The experiments to be replicated are those reported in Figures 1A, 1B, 3A, 3B, and 4D. Heidorn and colleagues report that paradoxical activation of the RAF-RAS-MEK-ERK pathway by BRAF inhibitors when applied to BRAFWT cells is a result of BRAF/CRAF heterodimer formation upon inactivation of BRAF kinase activity, and occurs only in the context of active RAS. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife. DOI:http://dx.doi.org/10.7554/eLife.11999.001
Collapse
Affiliation(s)
| | - Madan Anant
- Shakti BioResearch LLC, Woodbridge, United States
| | - Hildegard Mack
- University of California, San Francisco, San Francisco, United States
| | | | | |
Collapse
|
30
|
Kundu A, Quirit JG, Khouri MG, Firestone GL. Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Mol Carcinog 2016; 56:49-61. [PMID: 26878440 DOI: 10.1002/mc.22472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Indole-3-carbinol (I3C), an anti-cancer phytochemical derived from cruciferous vegetables, strongly inhibited proliferation and down-regulated protein levels of the melanocyte master regulator micropthalmia-associated transcription factor (MITF-M) in oncogenic BRAF-V600E expressing melanoma cells in culture as well as in vivo in tumor xenografted athymic nude mice. In contrast, wild type BRAF-expressing melanoma cells remained relatively insensitive to I3C anti-proliferative signaling. In BRAF-V600E-expressing melanoma cells, I3C treatment inhibited phosphorylation of MEK and ERK/MAPK, the down stream effectors of BRAF. The I3C anti-proliferative arrest was concomitant with the down-regulation of MITF-M transcripts and promoter activity, loss of endogenous BRN-2 binding to the MITF-M promoter, and was strongly attenuated by expression of exogenous MITF-M. Importantly, in vitro kinase assays using immunoprecipitated BRAF-V600E and wild type BRAF demonstrated that I3C selectively inhibited the enzymatic activity of the oncogenic BRAF-V600E but not of the wild type protein. In silico modeling predicted an I3C interaction site in the BRAF-V600E protomer distinct from where the clinically used BRAF-V600E inhibitor Vemurafenib binds to BRAF-V600E. Consistent with this prediction, combinations of I3C and Vemurafenib more potently inhibited melanoma cell proliferation and reduced MITF-M levels in BRAF-V600E expressing melanoma cells compared to the effects of each compound alone. Thus, our results demonstrate that oncogenic BRAF-V600E is a new cellular target of I3C that implicate this indolecarbinol compound as a potential candidate for novel single or combination therapies for melanoma. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aishwarya Kundu
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Jeanne G Quirit
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Michelle G Khouri
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Gary L Firestone
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| |
Collapse
|
31
|
Zhu Y, Ye T, Yu X, Lei Q, Yang F, Xia Y, Song X, Liu L, Deng H, Gao T, Peng C, Zuo W, Xiong Y, Zhang L, Wang N, Zhao L, Xie Y, Yu L, Wei Y. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma. Sci Rep 2016; 6:20253. [PMID: 26830149 PMCID: PMC4735744 DOI: 10.1038/srep20253] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023] Open
Abstract
Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma.
Collapse
Affiliation(s)
- Yongxia Zhu
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xi Yu
- College of agricultural and life sciences, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Qian Lei
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fangfang Yang
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Xia
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Liu
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxia Deng
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantao Gao
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cuiting Peng
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Xiong
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, 404100, China
| | - Lidan Zhang
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ningyu Wang
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lifeng Zhao
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
32
|
Roller DG, Capaldo B, Bekiranov S, Mackey AJ, Conaway MR, Petricoin EF, Gioeli D, Weber MJ. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas. Oncotarget 2016; 7:2734-53. [PMID: 26673621 PMCID: PMC4823068 DOI: 10.18632/oncotarget.6548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 12/28/2022] Open
Abstract
Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes ("back-seat drivers") and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway.
Collapse
Affiliation(s)
- Devin G. Roller
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908 USA
| | - Brian Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908 USA
| | - Aaron J. Mackey
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908 USA
| | - Mark R. Conaway
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908 USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908 USA
| | - Michael J. Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908 USA
| |
Collapse
|
33
|
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the Management of Melanoma. Mini Rev Med Chem 2016; 16:953-79. [PMID: 26864554 PMCID: PMC4980238 DOI: 10.2174/1389557516666160211120157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Volker Hall, Room 501, 1670 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
34
|
Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, Moriceau G, Hong A, Dahlman KB, Johnson DB, Sosman JA, Ribas A, Lo RS. Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell 2015; 162:1271-85. [PMID: 26359985 DOI: 10.1016/j.cell.2015.07.061] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/20/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
Abstract
Clinically acquired resistance to MAPK inhibitor (MAPKi) therapies for melanoma cannot be fully explained by genomic mechanisms and may be accompanied by co-evolution of intra-tumoral immunity. We sought to discover non-genomic mechanisms of acquired resistance and dynamic immune compositions by a comparative, transcriptomic-methylomic analysis of patient-matched melanoma tumors biopsied before therapy and during disease progression. Transcriptomic alterations across resistant tumors were highly recurrent, in contrast to mutations, and were frequently correlated with differential methylation of tumor cell-intrinsic CpG sites. We identified in the tumor cell compartment supra-physiologic c-MET up-expression, infra-physiologic LEF1 down-expression and YAP1 signature enrichment as drivers of acquired resistance. Importantly, high intra-tumoral cytolytic T cell inflammation prior to MAPKi therapy preceded CD8 T cell deficiency/exhaustion and loss of antigen presentation in half of disease-progressive melanomas, suggesting cross-resistance to salvage anti-PD-1/PD-L1 immunotherapy. Thus, melanoma acquires MAPKi resistance with highly dynamic and recurrent non-genomic alterations and co-evolving intra-tumoral immunity.
Collapse
Affiliation(s)
- Willy Hugo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Hubing Shi
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Lu Sun
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Marco Piva
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Chunying Song
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Xiangju Kong
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Kimberly B Dahlman
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Jeffrey A Sosman
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
35
|
González-Cao M, Rodón J, Karachaliou N, Sánchez J, Santarpia M, Viteri S, Pilotto S, Teixidó C, Riso A, Rosell R. Other targeted drugs in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:266. [PMID: 26605312 DOI: 10.3978/j.issn.2305-5839.2015.08.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Targeted therapy drugs are developed against specific molecular alterations on cancer cells. Because they are "targeted" to the tumor, these therapies are more effective and better tolerated than conventional therapies such as chemotherapy. In the last decade, great advances have been made in understanding of melanoma biology and identification of molecular mechanisms involved in malignant transformation of cells. The identification of oncogenic mutated kinases involved in this process provides an opportunity for development of new target therapies. The dependence of melanoma on BRAF-mutant kinase has provided an opportunity for development of mutation-specific inhibitors with high activity and excellent tolerance that are now being used in clinical practice. This marked a new era in the treatment of metastatic melanoma and much research is now ongoing to identify other "druggable" kinases and transduction signaling networking. It is expected that in the near future the spectrum of target drugs for melanoma treatment will increase. Herein, we review the most relevant potential novel drugs for melanoma treatment based on preclinical data and the results of early clinical trials.
Collapse
Affiliation(s)
- María González-Cao
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jordi Rodón
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Niki Karachaliou
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jesús Sánchez
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Mariacarmela Santarpia
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Santiago Viteri
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Sara Pilotto
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Cristina Teixidó
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Aldo Riso
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
36
|
Abstract
The three RAS genes comprise the most frequently mutated oncogene family in cancer. With significant and compelling evidence that continued function of mutant RAS is required for tumor maintenance, it is widely accepted that effective anti-RAS therapy will have a significant impact on cancer growth and patient survival. However, despite more than three decades of intense research and pharmaceutical industry efforts, a clinically effective anti-RAS drug has yet to be developed. With the recent renewed interest in targeting RAS, exciting and promising progress has been made. In this review, we discuss the prospects and challenges of drugging oncogenic RAS. In particular we focus on new inhibitors of RAS effector signaling and the ERK mitogen-activated protein kinase cascade.
Collapse
|
37
|
Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, Gough PJ, Feoktistova M, Leverkus M. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 2015; 6:e1884. [PMID: 26355347 PMCID: PMC4650439 DOI: 10.1038/cddis.2015.240] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
Acquired or intrinsic resistance to apoptotic and necroptotic stimuli is considered a major hindrance of therapeutic success in malignant melanoma. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptotic and necroptotic cell death mediated by numerous cell death signalling platforms. In this report we investigated the impact of IAPs for cell death regulation in malignant melanoma. Suppression of IAPs strongly sensitized a panel of melanoma cells to death ligand-induced cell death, which, surprisingly, was largely mediated by apoptosis, as it was completely rescued by addition of caspase inhibitors. Interestingly, the absence of necroptosis signalling correlated with a lack of receptor-interacting protein kinase-3 (RIPK3) mRNA and protein expression in all cell lines, whereas primary melanocytes and cultured nevus cells strongly expressed RIPK3. Reconstitution of RIPK3, but not a RIPK3-kinase dead mutant in a set of melanoma cell lines overcame CD95L/IAP antagonist-induced necroptosis resistance independent of autocrine tumour necrosis factor secretion. Using specific inhibitors, functional studies revealed that RIPK3-mediated mixed-lineage kinase domain-like protein (MLKL) phosphorylation and necroptosis induction critically required receptor-interacting protein kinase-1 signalling. Furthermore, the inhibitor of mutant BRAF Dabrafenib, but not Vemurafenib, inhibited necroptosis in melanoma cells whenever RIPK3 is present. Our data suggest that loss of RIPK3 in melanoma and selective inhibition of the RIPK3/MLKL axis by BRAF inhibitor Dabrafenib, but not Vemurafenib, is critical to protect from necroptosis. Strategies that allow RIPK3 expression may allow unmasking the necroptotic signalling machinery in melanoma and points to reactivation of this pathway as a treatment option for metastatic melanoma.
Collapse
Affiliation(s)
- P Geserick
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - J Wang
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - R Schilling
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - S Horn
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - P A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - M Feoktistova
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - M Leverkus
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| |
Collapse
|
38
|
Ahire JH, Behray M, Webster CA, Wang Q, Sherwood V, Saengkrit N, Ruktanonchai U, Woramongkolchai N, Chao Y. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake. Adv Healthc Mater 2015; 4:1877-86. [PMID: 26121084 DOI: 10.1002/adhm.201500298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells.
Collapse
Affiliation(s)
| | - Mehrnaz Behray
- School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | - Carl A. Webster
- School of Pharmacy; University of East Anglia; Norwich NR4 7TJ UK
| | - Qi Wang
- School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | | | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathumthani 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathumthani 12120 Thailand
| | - Noppawan Woramongkolchai
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathumthani 12120 Thailand
| | - Yimin Chao
- School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| |
Collapse
|
39
|
BRAF inhibitors: the current and the future. Curr Opin Pharmacol 2015; 23:68-73. [PMID: 26072431 DOI: 10.1016/j.coph.2015.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/07/2023]
Abstract
The introduction of BRAF inhibitors (BRAFi), vemurafenib and dabrafenib, revolutionized BRAFV600-mutated metastatic melanoma treatment with improved response rate and overall survival compared to standard chemotherapy. However, the mechanism related cutaneous toxicity remains a concern. In addition, intrinsic and acquired resistance remain the key challenges in BRAFi therapy. Extensive efforts to elucidate the mechanisms have led to an improved understanding of disease biology and resulted in exploration of multiple new therapeutic options. While the future looks bright with multiple new therapeutic strategies in exploration and possible new generations of BRAFi, there are questions remaining to be answered to enable more efficient use of BRAFi in cancer therapy.
Collapse
|
40
|
Kass SL, Linden AF, Jackson PG, De Brito PA, Atkins MB. Bowel perforation associated with robust response to BRAF/MEK inhibitor therapy for BRAF-mutant melanoma: a case report. Melanoma Manag 2015; 2:115-120. [PMID: 30190840 DOI: 10.2217/mmt.15.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Combination BRAF/MEK inhibition has shown improved response rates and longer progression-free and overall survival for patients with BRAF-mutant metastatic melanoma. A 63-year-old female with widely metastatic BRAF V600E-mutant melanoma was treated with dabrafenib/trametinib. Ten weeks into therapy, she was treated conservatively for a partial bowel obstruction involving a lesion in the distal ileum. She presented two weeks later with CT evidence of a high-grade bowel obstruction with perforation. Emergent surgery was performed. Intraoperative inspection and pathologic analysis of the resected specimen revealed no evidence of melanoma. Seven months postoperatively she is disease free and fully functional. Rapid BRAF/MEK inhibitor-induced regression of small bowel lesions can result in bowel perforation, which is critical to distinguish from the consequences of disease progression.
Collapse
Affiliation(s)
- Samantha L Kass
- Georgetown University School of Medicine, Washington, DC 20007, USA.,Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Allison F Linden
- Department of Surgery, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Patrick G Jackson
- Department of Surgery, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Pedro A De Brito
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Pathology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Michael B Atkins
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA.,Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|