1
|
Santana JF, Spector BM, Suarez G, Luse D, Price D. NELF focuses sites of initiation and maintains promoter architecture. Nucleic Acids Res 2024; 52:2977-2994. [PMID: 38197272 PMCID: PMC11014283 DOI: 10.1093/nar/gkad1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Many factors control the elongation phase of transcription by RNA polymerase II (Pol II), a process that plays an essential role in regulating gene expression. We utilized cells expressing degradation tagged subunits of NELFB, PAF1 and RTF1 to probe the effects of depletion of the factors on nascent transcripts using PRO-Seq and on chromatin architecture using DFF-ChIP. Although NELF is involved in promoter proximal pausing, depletion of NELFB had only a minimal effect on the level of paused transcripts and almost no effect on control of productive elongation. Instead, NELF depletion increased the utilization of downstream transcription start sites and caused a dramatic, genome-wide loss of H3K4me3 marked nucleosomes. Depletion of PAF1 and RTF1 both had major effects on productive transcript elongation in gene bodies and also caused initiation site changes like those seen with NELFB depletion. Our study confirmed that the first nucleosome encountered during initiation and early elongation is highly positioned with respect to the major TSS. In contrast, the positions of H3K4me3 marked nucleosomes in promoter regions are heterogeneous and are influenced by transcription. We propose a model defining NELF function and a general role of the H3K4me3 modification in blocking transcription initiation.
Collapse
Affiliation(s)
- Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gustavo A Suarez
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Chimata AV, Darnell H, Raj A, Kango-Singh M, Singh A. Transcriptional pausing factor M1BP regulates cellular homeostasis by suppressing autophagy and apoptosis in Drosophila eye. AUTOPHAGY REPORTS 2023; 2:2252307. [PMID: 37746026 PMCID: PMC10512699 DOI: 10.1080/27694127.2023.2252307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
During organogenesis cellular homeostasis plays a crucial role in patterning and growth. The role of promoter proximal pausing of RNA polymerase II, which regulates transcription of several developmental genes by GAGA factor or Motif 1 Binding Protein (M1BP), has not been fully understood in cellular homeostasis. Earlier, we reported that M1BP, a functional homolog of ZKSCAN3, regulates wingless and caspase-dependent cell death (apoptosis) in the Drosophila eye. Further, blocking apoptosis does not fully rescue the M1BPRNAi phenotype of reduced eye. Therefore, we looked for other possible mechanism(s). In a forward genetic screen, members of the Jun-amino-terminal-(NH2)-Kinase (JNK) pathway were identified. Downregulation of M1BP ectopically induces JNK, a pro-death pathway known to activate both apoptosis and caspase-independent (autophagy) cell death. Activation of JNK pathway components can enhance M1BPRNAi phenotype and vice-versa. Downregulation of M1BP ectopically induced JNK signaling, which leads to apoptosis and autophagy. Apoptosis and autophagy are regulated independently by their genetic circuitry. Here, we found that blocking either apoptosis or autophagy alone rescues the reduced eye phenotype of M1BP downregulation; whereas, blocking both apoptosis and autophagy together significantly rescues the M1BP reduced eye phenotype to near wild-type in nearly 85% progeny. This data suggests that the cellular homeostasis response demonstrated by two independent cell death mechanisms, apoptosis and autophagy, can be regulated by a common transcriptional pausing mechanism orchestrated by M1BP. Since these fundamental processes are conserved in higher organisms, this novel functional link between M1BP and regulation of both apoptosis and autophagy can be extrapolated to humans.
Collapse
Affiliation(s)
| | - Hannah Darnell
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Akanksha Raj
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
3
|
Fujinaga K, Huang F, Peterlin BM. P-TEFb: The master regulator of transcription elongation. Mol Cell 2023; 83:393-403. [PMID: 36599353 PMCID: PMC9898187 DOI: 10.1016/j.molcel.2022.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.
Collapse
Affiliation(s)
- Koh Fujinaga
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Fang Huang
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Sobeh AM, Eichhorn CD. C-terminal determinants for RNA binding motif 7 protein stability and RNA recognition. Biophys Chem 2023; 292:106928. [PMID: 36427363 PMCID: PMC9768861 DOI: 10.1016/j.bpc.2022.106928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The 7SK ribonucleoprotein (RNP) is a critical regulator of eukaryotic transcription. Recently, RNA binding motif 7 (RBM7) containing an RNA recognition motif (RRM) was reported to associate with 7SK RNA and core 7SK RNP protein components in response to DNA damage. However, little is known about the mode of RBM7-7SK RNA recognition. Here, we found that RRM constructs containing extended C-termini have increased solubility compared to a minimal RRM construct, although these constructs aggregate in a temperature and concentration-dependent manner. Using solution NMR dynamics experiments, we identified additional structural features observed previously in crystal but not in solution structures. To identify potential RBM7-7SK RNA binding sites, we analyzed deposited data from in cellulo crosslinking experiments and found that RBM7 primarily crosslinks to the distal region of 7SK stem-loop 3 (SL3). Electrophoretic mobility shift assays and NMR chemical shift perturbation experiments showed weak binding to 7SK SL3 constructs in vitro. Together, these results provide new insights into RBM7 RRM folding and recognition of 7SK RNA.
Collapse
Affiliation(s)
- Amr M Sobeh
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA.
| |
Collapse
|
5
|
Chen G, Li Y, Kong X, Zhao S, Li J, Wu X. Overexpression Bombyx mori HEXIM1 Facilitates Immune Escape of Bombyx mori Nucleopolyhedrovirus by Suppressing BmRelish-Driven Immune Responses. Viruses 2022; 14:v14122636. [PMID: 36560640 PMCID: PMC9782744 DOI: 10.3390/v14122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV), a typical arthropod-specific enveloped DNA virus, is one of the most serious pathogens in silkworm farming, but the potential mechanisms of the evasion of innate immune responses from BmNPV infection are still poorly understood. HEXIM1 is an RNA-binding protein, best known as an inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription elongation by RNA polymerase II. In this study, Bombyx mori HEXIM1 (BmHEXIM1) was cloned and characterized, and its expression was found to be remarkably upregulated after BmNPV infection. Furthermore, BmHEXIM1 was detected to increase the proliferation of BmNPV, and its full length is essential for assisting BmNPV immune escape by suppressing BmRelish-driven immune responses. This study brought new insights into the mechanisms of immune escape of BmNPV and provided theoretical guidance for the breeding of BmNPV-resistant silkworm varieties.
Collapse
Affiliation(s)
- Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Jiale Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
6
|
Lycopene Scavenges Cellular ROS, Modulates Autophagy and Improves Survival through 7SK snRNA Interaction in Smooth Muscle Cells. Cells 2022; 11:cells11223617. [PMID: 36429045 PMCID: PMC9688495 DOI: 10.3390/cells11223617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The chance of survival rate and autophagy of smooth muscle cells under calcium stress were drastically improved with a prolonged inclusion of Lycopene in the media. The results showed an improved viability from 41% to 69% and a reduction in overall autophagic bodies from 7% to 3%, which was well in agreement with the LC3II and III mRNA levels. However, the proliferation was slow compared to the controls. The fall in the major inflammatory marker TNF-α and improved antioxidant enzyme GPx were regarded as significant restoration markers of cell survival. The reactive oxygen species (ROS) were reduced from 8 fold to 3 fold post addition of lycopene for 24 h. Further, the docking studies revealed binding of lycopene molecules with 7SK snRNA at 7.6 kcal/mol docking energy with 300 ns stability under physiological conditions. Together, these results suggest that Lycopene administration during ischemic heart disease might improve the functions of the smooth muscle cells and 7SK snRNA might be involved in the binding of lycopene and its antioxidant protective effects.
Collapse
|
7
|
Olson SW, Turner AMW, Arney JW, Saleem I, Weidmann CA, Margolis DM, Weeks KM, Mustoe AM. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell 2022; 82:1708-1723.e10. [PMID: 35320755 PMCID: PMC9081252 DOI: 10.1016/j.molcel.2022.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.
Collapse
Affiliation(s)
- Samuel W Olson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anne-Marie W Turner
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Irfana Saleem
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Petit MJ, Kenaston MW, Pham OH, Nagainis AA, Fishburn AT, Shah PS. Nuclear dengue virus NS5 antagonizes expression of PAF1-dependent immune response genes. PLoS Pathog 2021; 17:e1010100. [PMID: 34797876 PMCID: PMC8641875 DOI: 10.1371/journal.ppat.1010100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C. Dengue virus (DENV) is a pathogen that infects nearly 400 million people a year and thus represents a major challenge for public health. Productive infection by DENV relies on the effective evasion of intrinsic antiviral defenses and is often accomplished through virus-host protein interactions. Here, we investigate the recently discovered interaction between DENV non-structural protein 5 (NS5) and the transcriptional regulator Polymerase associated factor 1 complex (PAF1C). Our work demonstrates PAF1C member PAF1 acts as an antiviral factor and inhibits DENV replication. In parallel, we identified immune response genes involved in intrinsic antiviral defense that depend on PAF1 for expression. We further identified the regions of NS5 required for the protein interaction with PAF1C. Breaking the NS5-PAF1C protein interaction restores the expression of PAF1-dependent immune response genes. Together, our work establishes the antiviral role of PAF1C in DENV infection and NS5 antagonism of PAF1-dependent gene expression through a virus-host protein interaction.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Ariana A. Nagainis
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Borrajo López A, Penedo MA, Rivera-Baltanas T, Pérez-Rodríguez D, Alonso-Crespo D, Fernández-Pereira C, Olivares JM, Agís-Balboa RC. Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders? Biomedicines 2021; 9:925. [PMID: 34440127 PMCID: PMC8389599 DOI: 10.3390/biomedicines9080925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
The current use of combined antiretroviral therapy (cART) is leading to a significant decrease in deaths and comorbidities associated with human immunodeficiency virus type 1 (HIV-1) infection. Nonetheless, none of these therapies can extinguish the virus from the long-lived cellular reservoir, including microglia, thereby representing an important obstacle to curing HIV. Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS) and are believed to be involved in the development of HIV-1-associated neurocognitive disorder (HAND). At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that removing these infected cells from the brain, as well as obtaining a better understanding of the specific molecular mechanisms of HIV-1 latency in these cells, should help in the design of new strategies to prevent HAND and achieve a cure for these diseases. The goal of this review was to study the current state of knowledge of the neuropathology and research models of HAND containing virus susceptible target cells (microglial cells) and potential pharmacological treatment approaches under investigation.
Collapse
Affiliation(s)
- Ana Borrajo López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - Tania Rivera-Baltanas
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| | - Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - David Alonso-Crespo
- Nursing Team-Intensive Care Unit, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Virgo, Spain;
| | - Carlos Fernández-Pereira
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Department of Psychiatry, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| |
Collapse
|
10
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
11
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
12
|
The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming. Cell Rep 2021; 35:108965. [PMID: 33852864 DOI: 10.1016/j.celrep.2021.108965] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/27/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Conversion of promoter-proximally paused RNA polymerase II (RNAPII) into elongating polymerase by the positive transcription elongation factor b (P-TEFb) is a central regulatory step of mRNA synthesis. The activity of P-TEFb is controlled mainly by the 7SK small nuclear ribonucleoprotein (snRNP), which sequesters active P-TEFb into inactive 7SK/P-TEFb snRNP. Here we demonstrate that under normal culture conditions, the lack of 7SK snRNP has only minor impacts on global RNAPII transcription without detectable consequences on cell proliferation. However, upon ultraviolet (UV)-light-induced DNA damage, cells lacking 7SK have a defective transcriptional response and reduced viability. Both UV-induced release of "lesion-scanning" polymerases and activation of key early-responsive genes are compromised in the absence of 7SK. Proper induction of 7SK-dependent UV-responsive genes requires P-TEFb activity directly mobilized from the nucleoplasmic 7SK/P-TEFb snRNP. Our data demonstrate that the primary function of the 7SK/P-TEFb snRNP is to orchestrate the proper transcriptional response to stress.
Collapse
|
13
|
Antoine-Lorquin A, Arensburger P, Arnaoty A, Asgari S, Batailler M, Beauclair L, Belleannée C, Buisine N, Coustham V, Guyetant S, Helou L, Lecomte T, Pitard B, Stévant I, Bigot Y. Two repeated motifs enriched within some enhancers and origins of replication are bound by SETMAR isoforms in human colon cells. Genomics 2021; 113:1589-1604. [PMID: 33812898 DOI: 10.1016/j.ygeno.2021.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.
Collapse
Affiliation(s)
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, - United States
| | - Ahmed Arnaoty
- EA GICC, 7501, CHRU de Tours, 37044 TOURS, Cedex 09, France
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martine Batailler
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Serge Guyetant
- Tumorothèque du CHRU de Tours, 37044 Tours, Cedex, France
| | - Laura Helou
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Bruno Pitard
- Université de Nantes, CNRS ERL6001, Inserm 1232, CRCINA, F-44000 Nantes, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, 1, 46 allée d'Italie, 69364 Lyon, France
| | - Yves Bigot
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
14
|
Combinatorial Use of Both Epigenetic and Non-Epigenetic Mechanisms to Efficiently Reactivate HIV Latency. Int J Mol Sci 2021; 22:ijms22073697. [PMID: 33918134 PMCID: PMC8036438 DOI: 10.3390/ijms22073697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
The persistence of latent HIV provirus pools in different resting CD4+ cell subsets remains the greatest obstacle in the current efforts to treat and cure HIV infection. Recent efforts to purge out latently infected memory CD4+ T-cells using latency-reversing agents have failed in clinical trials. This review discusses the epigenetic and non-epigenetic mechanisms of HIV latency control, major limitations of the current approaches of using latency-reversing agents to reactivate HIV latency in resting CD4+ T-cells, and potential solutions to these limitations.
Collapse
|
15
|
Sharma V, Montano MM. Non-epigenetic induction of HEXIM1 by DNMT1 inhibitors and functional relevance. Sci Rep 2020; 10:21015. [PMID: 33273553 PMCID: PMC7713402 DOI: 10.1038/s41598-020-78058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in breast and prostate cancer. The anti-cancer actions of HEXIM1 in melanomas and AML have been reported by other groups. Previous studies have shown that 5-Aza-2'deoxycytidine (5-AzadC), a DNMT1 inhibitor, induces re-expression of tumor suppressor genes by removing/erasing methylation marks from their promoters. Our studies highlighted another mechanism wherein 5-AzadC induced DNA damage, which then resulted in enhanced occupancy of NF-ĸB, P-TEFb, and serine 2 phosphorylated RNA Polymerase II on the HEXIM1 gene. As a consequence, 5-AzadC induced HEXIM1 expression in prostate cancer cell lines and triple negative breast cancers. 5-AzadC-induced DNA damage enhanced P-TEFb occupancy via a mechanism that involved activation of ATR and ATM and induction of NF-ĸB recruitment to the HEXIM1 promoter. Downregulation of NF-ĸB attenuated 5-AzadC-induced HEXIM1 expression in prostate and breast cancer cells. The functional relevance of 5-AzadC-induced HEXIM1 expression is revealed by studies showing the HEXIM1 is required for the induction of apoptosis. Collectively, our findings support a non-epigenetic mechanism for 5-AzadC-induced re-expression of HEXIM1 protein, and may contribute to the clinical efficacy of 5-AzadC.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Monica M Montano
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
17
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
18
|
Cary DC, Peterlin BM. Procyanidin trimer C1 reactivates latent HIV as a triple combination therapy with kansui and JQ1. PLoS One 2018; 13:e0208055. [PMID: 30475902 PMCID: PMC6258234 DOI: 10.1371/journal.pone.0208055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Although anti-retroviral therapies have greatly extended the lives of HIV infected individuals, current treatments are unable to completely eliminate virally infected cells. A number of latency reversing agents have been proposed for use in a "shock and kill" strategy to reactivate latent HIV, thus making it vulnerable to killing mechanisms. Procyanidin trimer C1 (PC1) is a flavonoid found in multiple plant sources including grape, apple, and cacao, which has antioxidant and anti-inflammatory properties. We determined that PC1 reactivates latent HIV in cell line and primary cell models of HIV, through activation of the MAPK pathway. Notably, PC1 reactivates latent HIV without increasing surface markers of T cell activation. Combining several therapeutics, which activate HIV transcription through different mechanisms, is the most efficient approach to clinically reactivate latent reservoirs. We utilized PC1 (MAPK agonist), kansui (PKC agonist), and JQ1 (BET bromodomain inhibitor) in a triple combination approach to reactivate latent HIV in cell line and primary cell models of HIV latency. When used in combination, low concentrations which fail to reactivate HIV as single treatments, are effective. Thus, several mechanisms, using distinct activation pathways, act together to reactivate latent HIV.
Collapse
Affiliation(s)
- Daniele C. Cary
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
19
|
Leoz M, Kukanja P, Luo Z, Huang F, Cary DC, Peterlin BM, Fujinaga K. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog 2018; 14:e1007402. [PMID: 30395647 PMCID: PMC6245832 DOI: 10.1371/journal.ppat.1007402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/20/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription of HIV provirus is a key step of the viral cycle, and depends on the recruitment of the cellular positive transcription elongation factor b (P-TEFb) to the HIV promoter. The viral transactivator Tat can displace P-TEFb from the 7SK small nuclear ribonucleoprotein, where it is bound and inactivated by HEXIM1, and bring it to TAR, which allows the stalled RNA polymerase II to transition to successful transcription elongation. In this study, we designed a chimeric inhibitor of HIV transcription by combining functional domains from HEXIM1 and Tat. The chimera (HT1) potently inhibited gene expression from the HIV promoter, by competing with Tat for TAR and P-TEFb binding, while keeping the latter inactive. HT1 inhibited spreading infection as well as viral reactivation in lymphocyte T cell line models of HIV latency, with little effect on cellular transcription and metabolism. This proof-of-concept study validates an innovative approach to interfering with HIV transcription via peptide mimicry and competition for RNA-protein interactions. HT1 represents a new candidate for HIV therapy, or HIV cure via the proposed block and lock strategy.
Collapse
Affiliation(s)
- Marie Leoz
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Petra Kukanja
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Zeping Luo
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Fang Huang
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Daniele C. Cary
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Koh Fujinaga
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| |
Collapse
|
20
|
Faust TB, Li Y, Bacon CW, Jang GM, Weiss A, Jayaraman B, Newton BW, Krogan NJ, D'Orso I, Frankel AD. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. eLife 2018; 7:31879. [PMID: 29845934 PMCID: PMC5999396 DOI: 10.7554/elife.31879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/26/2018] [Indexed: 12/12/2022] Open
Abstract
The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Curtis W Bacon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Amit Weiss
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
21
|
Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS Pathog 2018; 14:e1006980. [PMID: 29709033 PMCID: PMC5927403 DOI: 10.1371/journal.ppat.1006980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to target host antiviral responses. Here, we propose a yet uncharacterized mechanism of immune regulation by the orthomyxovirus Thogoto virus (THOV) ML protein through engaging general transcription factor TFIIB. ML generates a TFIIB depleted nuclear environment by re-localizing it into the cytoplasm. Although a broad effect on gene expression would be anticipated, ML expression, delivery of an ML-derived functional domain or experimental depletion of TFIIB only leads to altered expression of a limited number of genes. Our data indicate that TFIIB is critically important for the de novo recruitment of Pol II to promoter start sites and that TFIIB may not be required for regulated gene expression from paused promoters. Since many immune genes require de novo recruitment of Pol II, targeting of TFIIB by THOV represents a neat mechanism to affect immune responses while keeping other cellular transcriptional activities intact. Thus, interference with TFIIB activity may be a favourable site for therapeutic intervention to control undesirable inflammation. Viruses target the innate immune system at critical vulnerability points. Here we show that the orthomyxovirus Thogoto virus impairs activity of general transcription factor IIB (TFIIB). Surprisingly, impairment of TFIIB function does not result in a general inhibition of transcription but in a rather specific impairment of selective genes. Transcriptome and functional analyses intersected with published CHIP-Seq datasets suggest that affected genes require de novo recruitment of the polymerase complex. Since the innate immune system heavily relies on genes that require de novo recruitment of the polymerase complex, targeting of TFIIB represents a neat mechanism to broadly affect antiviral immunity. Conversely, therapeutic targeting of TFIIB may represent a mechanism to limit pathological side effects caused by overshooting immune reactions.
Collapse
Affiliation(s)
- Darya A. Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Katharina Geiger
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carola Vogt
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ellen Preuss
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail:
| |
Collapse
|
22
|
Huang F, Shao W, Fujinaga K, Peterlin BM. Bromodomain-containing protein 4-independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. J Biol Chem 2018; 293:4993-5004. [PMID: 29463681 PMCID: PMC5892592 DOI: 10.1074/jbc.ra117.001518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.
Collapse
Affiliation(s)
- Fang Huang
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
23
|
hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons. Proc Natl Acad Sci U S A 2018; 115:E2859-E2868. [PMID: 29507242 PMCID: PMC5866599 DOI: 10.1073/pnas.1721670115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells. RNA-binding proteins contribute to this polarization by generating diverse subcellular transcriptomes. The RNA-binding protein hnRNP R is essential for axon growth in motoneurons. This study reports the RNA interactome for hnRNP R. The main interacting RNA of hnRNP R was the noncoding RNA 7SK. Depletion of 7SK from primary motoneurons disturbed axon growth. This effect was dependent on the interaction of 7SK with hnRNP R. Both hnRNP R and 7SK localize to axons. Loss of 7SK led to a similar depletion of axonal transcripts as loss of hnRNP R. Our data suggest that 7SK, in addition to its role in transcriptional regulation, acts in concert with hnRNP R to sort specific transcripts into axons. Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth. Here, we used individual nucleotide-resolution cross-linking and immunoprecipitation (iCLIP) to determine the RNA interactome of hnRNP R in motoneurons. We identified ∼3,500 RNA targets, predominantly with functions in synaptic transmission and axon guidance. Among the RNA targets identified by iCLIP, the noncoding RNA 7SK was the top interactor of hnRNP R. We detected 7SK in the nucleus and also in the cytosol of motoneurons. In axons, 7SK localized in close proximity to hnRNP R, and depletion of hnRNP R reduced axonal 7SK. Furthermore, suppression of 7SK led to defective axon growth that was accompanied by axonal transcriptome alterations similar to those caused by hnRNP R depletion. Using a series of 7SK-deletion mutants, we show that the function of 7SK in axon elongation depends on its interaction with hnRNP R but not with the PTEF-B complex involved in transcriptional regulation. These results propose a role for 7SK as an essential interactor of hnRNP R to regulate its function in axon maintenance.
Collapse
|
24
|
Gerlach D, Tontsch-Grunt U, Baum A, Popow J, Scharn D, Hofmann MH, Engelhardt H, Kaya O, Beck J, Schweifer N, Gerstberger T, Zuber J, Savarese F, Kraut N. The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 2018; 37:2687-2701. [PMID: 29491412 PMCID: PMC5955861 DOI: 10.1038/s41388-018-0150-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/22/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts. HEXIM1 is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.
Collapse
Affiliation(s)
- Daniel Gerlach
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Marco H Hofmann
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Onur Kaya
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Janina Beck
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.,Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Fabio Savarese
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
25
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
26
|
Capturing the interactome of newly transcribed RNA. Nat Methods 2018; 15:213-220. [PMID: 29431736 DOI: 10.1038/nmeth.4595] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
We combine the labeling of newly transcribed RNAs with 5-ethynyluridine with the characterization of bound proteins. This approach, named capture of the newly transcribed RNA interactome using click chemistry (RICK), systematically captures proteins bound to a wide range of RNAs, including nascent RNAs and traditionally neglected nonpolyadenylated RNAs. RICK has identified mitotic regulators amongst other novel RNA-binding proteins with preferential affinity for nonpolyadenylated RNAs, revealed a link between metabolic enzymes/factors and nascent RNAs, and expanded the known RNA-bound proteome of mouse embryonic stem cells. RICK will facilitate an in-depth interrogation of the total RNA-bound proteome in different cells and systems.
Collapse
|
27
|
Brogie JE, Price DH. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res 2017; 45:6864-6880. [PMID: 28431135 PMCID: PMC5499737 DOI: 10.1093/nar/gkx262] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) plays a central role in RNA polymerase II elongation control by regulating the availability of active P-TEFb. We optimized conditions for analyzing 7SK RNA by SHAPE and demonstrated a hysteretic effect of magnesium on 7SK folding dynamics including a 7SK GAUC motif switch. We also found evidence that the 5΄ end pairs alternatively with two different regions of 7SK giving rise to open and closed forms that dictate the state of the 7SK motif. We then used recombinant P-TEFb, HEXIM1, LARP7 and MEPCE to reconstruct a functional 7SK snRNP in vitro. Stably associated P-TEFb was highly inhibited, but could still be released and activated by HIV-1 Tat. Notably, P-TEFb association with both in vitro-reconstituted and cellular snRNPs led to similar changes in SHAPE reactivities, confirming that 7SK undergoes a P-TEFb-dependent structural change. We determined that the xRRM of LARP7 binds to the 3΄ stem loop of 7SK and inhibits the methyltransferase activity of MEPCE through a C-terminal MEPCE interaction domain (MID). Inhibition of MEPCE is dependent on the structure of the 3΄ stem loop and the closed form of 7SK RNA. This study provides important insights into intramolecular interactions within the 7SK snRNP.
Collapse
Affiliation(s)
- John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Gamage AM, Lee KO, Gan YH. Anti-Cancer Drug HMBA Acts as an Adjuvant during Intracellular Bacterial Infections by Inducing Type I IFN through STING. THE JOURNAL OF IMMUNOLOGY 2017; 199:2491-2502. [PMID: 28827286 DOI: 10.4049/jimmunol.1602162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/26/2017] [Indexed: 01/06/2023]
Abstract
The anti-proliferative agent hexamethylene bisacetamide (HMBA) belongs to a class of hybrid bipolar compounds developed more than 30 y ago for their ability to induce terminal differentiation of transformed cells. Recently, HMBA has also been shown to trigger HIV transcription from latently infected cells, via a CDK9/HMBA inducible protein-1 dependent process. However, the effect of HMBA on the immune response has not been explored. We observed that pretreatment of human peripheral blood mononuclear cells with HMBA led to a markedly increased production of IL-12 and IFN-γ, but not of TNF-α, IL-6, and IL-8 upon subsequent infection with Burkholderia pseudomallei and Salmonella enterica HMBA treatment was also associated with better intracellular bacterial control. HMBA significantly improved IL-12p70 production from CD14+ monocytes during infection partly via the induction of type I IFN in these cells, which primed an increased transcription of the p35 subunit of IL-12p70 during infection. HMBA also increased early type I IFN transcription in human monocytic and epithelial cell lines, but this was surprisingly independent of its previously reported effects on positive transcription elongation factor b and HMBA inducible protein-1. Instead, the effect of HMBA was downstream of a calcium influx, and required the pattern recognition receptor and adaptor STING but not cGAS. Our work therefore links the STING-IRF3 axis to enhanced IL-12 production and intracellular bacterial control in primary monocytes. This raises the possibility that HMBA or related small molecules may be explored as therapeutic adjuvants to improve disease outcomes during intracellular bacterial infections.
Collapse
Affiliation(s)
- Akshamal Mihiranga Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; and
| | - Kok-Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; and
| |
Collapse
|
29
|
Zhang X, Chiang HC, Wang Y, Zhang C, Smith S, Zhao X, Nair SJ, Michalek J, Jatoi I, Lautner M, Oliver B, Wang H, Petit A, Soler T, Brunet J, Mateo F, Angel Pujana M, Poggi E, Chaldekas K, Isaacs C, Peshkin BN, Ochoa O, Chedin F, Theoharis C, Sun LZ, Curiel TJ, Elledge R, Jin VX, Hu Y, Li R. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat Commun 2017; 8:15908. [PMID: 28649985 PMCID: PMC5490191 DOI: 10.1038/ncomms15908] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5' end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Sabrina Smith
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Sreejith J. Nair
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Joel Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Ismail Jatoi
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Meeghan Lautner
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Boyce Oliver
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Howard Wang
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Teresa Soler
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona 17007, Spain
| | - Francesca Mateo
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elizabeth Poggi
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Krysta Chaldekas
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Beth N. Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Oscar Ochoa
- PRMA Plastic Surgery, San Antonio, Texas 78240, USA
| | - Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Richard Elledge
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Victor X. Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| |
Collapse
|
30
|
Yeganeh M, Praz V, Cousin P, Hernandez N. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene. Genes Dev 2017; 31:413-421. [PMID: 28289142 PMCID: PMC5358760 DOI: 10.1101/gad.293324.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023]
Abstract
A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase (Pol) III subunit, is conserved in mammals and highly occupied by Pol III. Here, Yeganeh et al. show that the MIR affects Polr3e expression through transcriptional interference. Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Cary DC, Fujinaga K, Peterlin BM. Euphorbia Kansui Reactivates Latent HIV. PLoS One 2016; 11:e0168027. [PMID: 27977742 PMCID: PMC5158021 DOI: 10.1371/journal.pone.0168027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
While highly active anti-retroviral therapy has greatly improved the lives of HIV infected individuals, these treatments are unable to eradicate the virus. Current approaches to reactivate the virus have been limited by toxicity, lack of an orally available therapy, and limited responses in primary CD4+ T cells and in clinical trials. The PKC agonist ingenol, purified from Euphorbia plants, is a potent T cell activator and reactivates latent HIV. Euphorbia kansui itself has been used for centuries in traditional Chinese medicine to treat ascites, fluid retention, and cancer. We demonstrate that an extract of this plant, Euphorbia kansui, is capable of recapitulating T cell activation induced by the purified ingenol. Indeed, Euphorbia kansui induced expression of the early T cell activation marker CD69 and P-TEFb in a dose-dependent manner. Furthermore, Euphorbia kansui reactivated latent HIV in a CD4+ T cell model of latency and in HIV+ HAART suppressed PBMC. When combined with the other latency reversing agents, the effective dose of Euphorbia kansui required to reactive HIV was reduced 10-fold and resulted in synergistic reactivation of latent HIV. We conclude that Euphorbia Euphorbia kansui reactivates latent HIV and activates CD4+ T cells. When used in combination with a latency reversing agent, the effective dose of Euphorbia kansui is reduced; which suggests its application as a combination strategy to reactivate latent HIV while limiting the toxicity due to global T cell activation. As a natural product, which has been used in traditional medicine for thousands of years, Euphorbia kansui is attractive as a potential treatment strategy, particularly in resource poor countries with limited treatment options. Further clinical testing will be required to determine its safety with current anti-retroviral therapies.
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Microbiology, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Immunology, University of California at San Francisco, San Francisco, CA, United States of America
- * E-mail:
| | - Koh Fujinaga
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Microbiology, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Immunology, University of California at San Francisco, San Francisco, CA, United States of America
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Microbiology, University of California at San Francisco, San Francisco, CA, United States of America
- Department of Immunology, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
32
|
Mück F, Bracharz S, Marschalek R. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. AMERICAN JOURNAL OF BLOOD RESEARCH 2016; 6:28-45. [PMID: 27679741 PMCID: PMC5030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of "super elongation complexes" (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs.
Collapse
Affiliation(s)
- Fabian Mück
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Silvia Bracharz
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
33
|
Tan JL, Fogley RD, Flynn RA, Ablain J, Yang S, Saint-André V, Fan ZP, Do BT, Laga AC, Fujinaga K, Santoriello C, Greer CB, Kim YJ, Clohessy JG, Bothmer A, Pandell N, Avagyan S, Brogie JE, van Rooijen E, Hagedorn EJ, Shyh-Chang N, White RM, Price DH, Pandolfi PP, Peterlin BM, Zhou Y, Kim TH, Asara JM, Chang HY, Young RA, Zon LI. Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell 2016; 62:34-46. [PMID: 27058786 DOI: 10.1016/j.molcel.2016.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022]
Abstract
Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma.
Collapse
Affiliation(s)
- Justin L Tan
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Rachel D Fogley
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julien Ablain
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Song Yang
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Violaine Saint-André
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Zi Peng Fan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Brian T Do
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvaro C Laga
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina Santoriello
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Celeste B Greer
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Bothmer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Pandell
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Serine Avagyan
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - John E Brogie
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elliott J Hagedorn
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ng Shyh-Chang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
35
|
Induction of HEXIM1 activities by HMBA derivative 4a1: Functional consequences and mechanism. Cancer Lett 2016; 379:60-9. [PMID: 27238569 DOI: 10.1016/j.canlet.2016.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in tamoxifen resistant and metastatic breast cancer. HMBA was considered the most potent and specific inducer for HMBA inducible protein 1 (HEXIM1) prior to our studies. Moreover, the ability of HMBA to induce differentiation is advantageous for its therapeutic use when compared to cytotoxic agents. However, HMBA induced HEXIM1 expression required at mM concentrations and induced dose limiting toxicity, thrombocytopenia. Thus we structurally optimized HMBA and identified a more potent inducer of HEXIM1 expression, 4a1. The studies reported herein tested the ability of 4a1 to induce HEXIM1 activities using a combination of biochemical, cell phenotypic, and in vivo assays. 4a1 induced breast cell differentiation, including the stem cell fraction in triple negative breast cancer cells. Clinically relevant HEXIM1 activities that are also induced by 4a1 include enhancement of the inhibitory effects of tamoxifen and inhibition of breast tumor metastasis. We also provide mechanistic basis for the phenotypic effects of 4a1. Our results support the potential of an unsymmetrical HMBA derivative, such as 4a1, as lead compound for further drug development.
Collapse
|
36
|
Abstract
HIV seeds reservoirs of latent proviruses in the earliest phases of infection. These reservoirs are found in many sites, including circulating cells, the lymphoid system, the brain, and other tissues. The "shock and kill" strategy, where HIV transcription is reactivated so that antiretroviral therapy and the immune system clear the infection, has been proposed as one approach to curing AIDS. In addition to many defective viruses, resting hematopoietic cells harbor transcriptionally latent HIV. Understanding basic mechanisms of HIV gene expression provides a road map for this strategy, allowing for manipulation of critical cellular and viral transcription factors in such a way as to maximize HIV gene expression while avoiding global T cell activation. These transcription factors include NF-κB and the HIV transactivator of transcription (Tat) as well as the cyclin-dependent kinases CDK13 and CDK11 and positive transcription elongation factor b (P-TEFb). Possible therapies involve agents that activate these proteins or release P-TEFb from the inactive 7SK small nuclear ribonucleoprotein (snRNP). These proposed therapies include PKC and MAPK agonists as well as histone deacetylase inhibitors (HDACis) and bromodomain and extraterminal (BET) bromodomain inhibitors (BETis), which act synergistically to reactivate HIV in latently infected cells.
Collapse
|
37
|
KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II. Mol Cell 2015; 61:39-53. [PMID: 26725010 DOI: 10.1016/j.molcel.2015.11.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
The transition from transcription initiation to elongation at promoters of primary response genes (PRGs) in metazoan cells is controlled by inducible transcription factors, which utilize P-TEFb to phosphorylate RNA polymerase II (Pol II) in response to stimuli. Prior to stimulation, a fraction of P-TEFb is recruited to promoter-proximal regions in a catalytically inactive state bound to the 7SK small nuclear ribonucleoprotein (snRNP) complex. However, it remains unclear how and why the 7SK snRNP is assembled at these sites. Here we report that the transcriptional regulator KAP1 continuously tethers the 7SK snRNP to PRG promoters to facilitate P-TEFb recruitment and productive elongation in response to stimulation. Remarkably, besides PRGs, genome-wide studies revealed that KAP1 and 7SK snRNP co-occupy most promoter-proximal regions containing paused Pol II. Collectively, we provide evidence of an unprecedented mechanism controlling 7SK snRNP delivery to promoter-proximal regions to facilitate "on-site" P-TEFb activation and Pol II elongation.
Collapse
|
38
|
GC skew defines distinct RNA polymerase pause sites in CpG island promoters. Genome Res 2015; 25:1600-9. [PMID: 26275623 PMCID: PMC4617957 DOI: 10.1101/gr.189068.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 08/14/2015] [Indexed: 12/15/2022]
Abstract
CpG islands (CGIs) are associated with over half of human gene promoters and are characterized by a unique chromatin environment and high levels of bidirectional transcriptional activity relative to surrounding genomic regions, suggesting that RNA polymerase (Pol II) progression past the CGI boundaries is restricted. Here we describe a novel transcriptional regulatory step wherein Pol II encounters an additional barrier to elongation distinct from the promoter-proximal pause and occurring at the downstream boundary of the CGI domain. For most CGI-associated promoters, Pol II exhibits a dominant pause at either the promoter-proximal or this distal site that correlates, both in position and in intensity, with local regions of high GC skew, a sequence feature known to form unique secondary structures. Upon signal-induced gene activation, long-range enhancer contacts at the dominant pause site are selectively enhanced, suggesting a new role for enhancers at the downstream pause. These data point to an additional level of control over transcriptional output at a subset of CGI-associated genes that is linked to DNA sequence and the integrity of the CGI domain.
Collapse
|
39
|
Nilson KA, Guo J, Turek ME, Brogie JE, Delaney E, Luse DS, Price DH. THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing. Mol Cell 2015; 59:576-87. [PMID: 26257281 DOI: 10.1016/j.molcel.2015.06.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
The Cdk7 subunit of TFIIH phosphorylates RNA polymerase II (Pol II) during initiation, and, while recent studies show that inhibition of human Cdk7 negatively influences transcription, the mechanisms involved are unclear. Using in vitro transcription with nuclear extract, we demonstrate that THZ1, a covalent Cdk7 inhibitor, causes defects in Pol II phosphorylation, co-transcriptional capping, promoter proximal pausing, and productive elongation. THZ1 does not affect initiation but blocks essentially all Pol II large subunit C-terminal domain (CTD) phosphorylation. We found that guanylylation of nascent RNAs is length dependent and modulated by a THZ1-sensitive factor present in nuclear extract. THZ1 impacts pausing through a capping-independent block of DSIF and NELF loading. The P-TEFb-dependent transition into productive elongation was also inhibited by THZ1, likely due to loss of DSIF. Capping and pausing were also reduced in THZ1-treated cells. Our results provide mechanistic insights into THZ1 action and how Cdk7 broadly influences transcription and capping.
Collapse
Affiliation(s)
- Kyle A Nilson
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jiannan Guo
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E Turek
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Delaney
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Donal S Luse
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David H Price
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA; Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression. PLoS Pathog 2015. [PMID: 26225566 PMCID: PMC4520688 DOI: 10.1371/journal.ppat.1005063] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs. Persistence of latently infected cells during cART is a major hurdle for HIV-1 eradication. A widely proposed strategy to purge these reservoirs involves the reactivation of latent proviruses. The low levels of active P-TEFb and the cytoplasmic sequestration of NF-κB in resting infected cells largely contribute to maintenance of HIV-1 latency. Therefore, utilization of chemical compounds that target both pathways may lead to more potent effects on HIV-1 reactivation than the effect mediated by the individual drug treatments. In this study, we showed that combined treatments of PKC agonists (prostratin, bryostatin-1 and ing-B) with compounds releasing P-TEFb (JQ1, I-BET, I-BET151 and HMBA) exhibited a synergistic increase in viral reactivation from latency. In-depth comparison of combined treatments in various in vitro cellular models of HIV-1 latency as well as in ex vivo primary cell cultures from cART-treated HIV+ aviremic patients identified bryostatin-1+JQ1 and ing-B+JQ1 to potently reactivate latent HIV-1. The potent effects of these two combinations were detected as early as 24 hours post-treatment. Importantly, bryostatin-1 was used at concentrations below the drug plasma levels achieved by doses used in children with refractory solid tumors. Our mechanistic data established a correlation between potentiated P-TEFb activation and potentiated or synergistic (depending on the HIV-1 latency cellular model used) induction of HIV-1 gene expression observed after the combined versus individual drug treatments. In conclusion, our results establish a proof-of-concept for PKC agonists combined with compounds releasing active P-TEFb as a strategy proposed for a cure or a durable remission of HIV infection.
Collapse
|
41
|
HEXIM1 induction is mechanistically involved in mediating anti-AML activity of BET protein bromodomain antagonist. Leukemia 2015; 30:504-8. [PMID: 26148704 PMCID: PMC4809433 DOI: 10.1038/leu.2015.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Fujinaga K, Luo Z, Schaufele F, Peterlin BM. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells. J Biol Chem 2014; 290:1829-36. [PMID: 25492871 DOI: 10.1074/jbc.m114.605816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.
Collapse
Affiliation(s)
- Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Zeping Luo
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Fred Schaufele
- the Diabetes and Endocrinology Research Center, University of California, San Francisco, California 94143-0703
| | | |
Collapse
|
43
|
Quinodoz M, Gobet C, Naef F, Gustafson KB. Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. Genome Biol 2014; 15:R85. [PMID: 24972996 PMCID: PMC4197824 DOI: 10.1186/gb-2014-15-6-r85] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/12/2014] [Indexed: 01/15/2023] Open
Abstract
Background In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. Results Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. Conclusions We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.
Collapse
|