1
|
Cai C, Xu N, Feng J, Zhang J, Zhao Q, Liu H, Nan B, Li X, Wang Y. Energy metabolism analysis of exogenous glutamate on promoting co-accumulation of astaxanthin yield and biomass in Phaffia rhodozyma D3. BIORESOURCE TECHNOLOGY 2024; 402:130834. [PMID: 38740311 DOI: 10.1016/j.biortech.2024.130834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Effective metabolic regulators play an essential role in regulating astaxanthin biosynthesis in Phaffia rhodozyma. In this study, it was found that 5 mM glutamate increased the astaxanthin yield and biomass of P. rhodozyma D3 to 22.34 mg/L and 6.12 g/L, which were 1.22 and 1.33 times higher than the control group, respectively. Meanwhile, glucose uptake was increased and the level of reactive oxygen species (ROS) was reduced with 5 mM glutamate. To further explore the interrelationship between glutamate and astaxanthin synthesis, the energy metabolism of P. rhodozyma D3 with and without glutamate was analysed. Glutamate promoted the Embden-Meyerhof-Parnas pathway (EMP) metabolic flux, modulated the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP), activated the ornithine cycle and purine metabolism, and provided more ATP and NADPH for astaxanthin accumulation. This study clarified the possible mechanism by which glutamate promoted astaxanthin accumulation in P. rhodozyma.
Collapse
Affiliation(s)
- Chunyu Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Na Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Jiale Feng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Jiahua Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Qianxi Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
2
|
Safran A, Proskorovski-Ohayon R, Eskin-Schwartz M, Yogev Y, Drabkin M, Eremenko E, Aharoni S, Freund O, Jean MM, Agam N, Hadar N, Loewenthal N, Staretz-Chacham O, Birk OS. Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J Inherit Metab Dis 2023; 46:744-755. [PMID: 36695547 DOI: 10.1002/jimd.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain-of-function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease-causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice-site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic-clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.
Collapse
Affiliation(s)
- Amit Safran
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer Sheva, Israel
| | - Yuval Yogev
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Max Drabkin
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences and Shraga Segal Department of Microbiology, Immunology and Genetics, National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center and the Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University, Beer Sheva, Israel
| | - Sarit Aharoni
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Ofek Freund
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Matan M Jean
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Nadav Agam
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Noam Hadar
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Pediatric Division, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Orna Staretz-Chacham
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
- Pediatric Metabolic Clinic, Pediatric Division, Soroka Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Ohad S Birk
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer Sheva, Israel
| |
Collapse
|
3
|
Shahroor MA, Lasorsa FM, Porcelli V, Dweikat I, Di Noia MA, Gur M, Agostino G, Shaag A, Rinaldi T, Gasparre G, Guerra F, Castegna A, Todisco S, Abu-Libdeh B, Elpeleg O, Palmieri L. PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome. J Clin Endocrinol Metab 2022; 107:1346-1356. [PMID: 34971397 DOI: 10.1210/clinem/dgab932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.
Collapse
Affiliation(s)
- Maher A Shahroor
- Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, 95908 Jerusalem, Palestine
- Department of Neonatology, Sunnybrook Health Sciences Center, University of Toronto, M4N 3M5 Toronto, Canada
| | - Francesco M Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Imad Dweikat
- Metabolic Unit, An-Najah National University, P467 Nablus, Palestine
| | - Maria Antonietta Di Noia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michal Gur
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Giulia Agostino
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Avraham Shaag
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin", University of Rome La Sapienza, 00185 Rome, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics and Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Flora Guerra
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics and Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Alessandra Castegna
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| | - Simona Todisco
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, 95908 Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| |
Collapse
|
4
|
Voelzmann A, Sanchez-Soriano N. Drosophila Primary Neuronal Cultures as a Useful Cellular Model to Study and Image Axonal Transport. Methods Mol Biol 2022; 2431:429-449. [PMID: 35412291 DOI: 10.1007/978-1-0716-1990-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of primary neuronal cultures generated from Drosophila tissue provides a powerful model for studies of transport mechanisms. Cultured fly neurons provide similarly detailed subcellular resolution and applicability of pharmacology or fluorescent dyes as mammalian primary neurons. As an experimental advantage for the mechanistic dissection of transport, fly primary neurons can be combined with the fast and highly efficient combinatorial genetics of Drosophila, and genetic tools for the manipulation of virtually every fly gene are readily available. This strategy can be performed in parallel to in vivo transport studies to address relevance of any findings. Here we will describe the generation of primary neuronal cultures from Drosophila embryos and larvae, the use of external fluorescent dyes and genetic tools to label cargo, and the key strategies for live imaging and subsequent analysis.
Collapse
Affiliation(s)
- André Voelzmann
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
6
|
Brischigliaro M, Corrà S, Tregnago C, Fernandez-Vizarra E, Zeviani M, Costa R, De Pittà C. Knockdown of APOPT1/COA8 Causes Cytochrome c Oxidase Deficiency, Neuromuscular Impairment, and Reduced Resistance to Oxidative Stress in Drosophila melanogaster. Front Physiol 2019; 10:1143. [PMID: 31555154 PMCID: PMC6742693 DOI: 10.3389/fphys.2019.01143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome c oxidase (COX) deficiency is the biochemical hallmark of several mitochondrial disorders, including subjects affected by mutations in apoptogenic-1 (APOPT1), recently renamed as COA8 (HGNC:20492). Loss-of-function mutations are responsible for a specific infantile or childhood-onset mitochondrial leukoencephalopathy with a chronic clinical course. Patients deficient in COA8 show specific COX deficiency with distinctive neuroimaging features, i.e., cavitating leukodystrophy. In human cells, COA8 is rapidly degraded by the ubiquitin-proteasome system, but oxidative stress stabilizes the protein, which is then involved in COX assembly, possibly by protecting the complex from oxidative damage. However, its precise function remains unknown. The CG14806 gene (dCOA8) is the Drosophila melanogaster ortholog of human COA8 encoding a highly conserved COA8 protein. We report that dCOA8 knockdown (KD) flies show locomotor defects, and other signs of neurological impairment, reduced COX enzymatic activity, and reduced lifespan under oxidative stress conditions. Our data indicate that KD of dCOA8 in Drosophila phenocopies several features of the human disease, thus being a suitable model to characterize the molecular function/s of this protein in vivo and the pathogenic mechanisms associated with its defects.
Collapse
Affiliation(s)
| | - Samantha Corrà
- Department of Biology, University of Padova, Padua, Italy
| | - Claudia Tregnago
- Department of Women and Children's Health, University of Padova, Padua, Italy
| | | | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosciences, University of Padova, Padua, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
7
|
Tsakiri EN, Gumeni S, Vougas K, Pendin D, Papassideri I, Daga A, Gorgoulis V, Juhász G, Scorrano L, Trougakos IP. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy 2019; 15:1757-1773. [PMID: 31002009 PMCID: PMC6735541 DOI: 10.1080/15548627.2019.1596477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Konstantinos Vougas
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute, IRCCS E. Medea , Lecco , Italy
| | - Vassilis Gorgoulis
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece.,Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece.,Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary and Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua , Padova , Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
8
|
Li H, Tennessen JM. Methods for studying the metabolic basis of Drosophila development. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.280. [PMID: 28556549 PMCID: PMC5561480 DOI: 10.1002/wdev.280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 01/06/2023]
Abstract
The field of metabolic research has experienced an unexpected renaissance. While this renewed interest in metabolism largely originated in response to the global increase in diabetes and obesity, studies of metabolic regulation now represent the frontier of many biomedical fields. This trend is especially apparent in developmental biology, where metabolism influences processes ranging from stem cell differentiation and tissue growth to sexual maturation and reproduction. In this regard, the fruit fly Drosophila melanogaster has emerged as a powerful tool for dissecting conserved mechanisms that underlie developmental metabolism, often with a level of detail that is simply not possible in other animals. Here we describe why the fly is an ideal system for exploring the relationship between metabolism and development, and outline a basic experimental strategy for conducting these studies. WIREs Dev Biol 2017, 6:e280. doi: 10.1002/wdev.280 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M. Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
9
|
Lunetti P, Romano A, Carrisi C, Antonucci D, Verri T, De Benedetto GE, Dolce V, Fanizzi FP, Benedetti M, Capobianco L. Platinated Nucleotides are Substrates for the Human Mitochondrial Deoxynucleotide Carrier (DNC) and DNA Polymerase γ: Relevance for the Development of New Platinum-Based Drugs. ChemistrySelect 2016. [DOI: 10.1002/slct.201600961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Alessandro Romano
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience; IRCCS San Raffaele Scientific Institute; Via Olgettina 60 20132 Milan Italy
| | - Chiara Carrisi
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Daniela Antonucci
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Giuseppe E. De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage; University of Salento; 73100 Lecce Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; 87036 Arcavacata di Rende Cosenza) Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies; University of Salento; 73100 Lecce Italy
| |
Collapse
|
10
|
Dalla Rosa I, Cámara Y, Durigon R, Moss CF, Vidoni S, Akman G, Hunt L, Johnson MA, Grocott S, Wang L, Thorburn DR, Hirano M, Poulton J, Taylor RW, Elgar G, Martí R, Voshol P, Holt IJ, Spinazzola A. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet 2016; 12:e1005779. [PMID: 26760297 PMCID: PMC4711891 DOI: 10.1371/journal.pgen.1005779] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/08/2015] [Indexed: 11/21/2022] Open
Abstract
MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients’ quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway. Mitochondrial DNA depletion syndrome (MDS) is a genetically heterogeneous condition characterized by a decrease of mitochondrial DNA (mtDNA) copy number and decreased activities of respiratory chain enzymes. Depletion of mtDNA has been associated with mutations in several genes, which encode either proteins directly involved in mtDNA replication or factors regulating the homeostasis of the mitochondrial deoxynucleotide pool. However, for some genes the mechanism linking mutations and mtDNA depletion is not known. One such gene is MPV17, whose loss-of-function causes mtDNA abnormalities in human, mouse and yeast. Here we show that MPV17 dysfunction leads to a shortage of the precursors for DNA synthesis in the mitochondria, slowing DNA replication in the organelle. Not only does mtDNA copy number correlate with dNTP pool size in both mouse tissues and human cells, deoxynucleoside supplementation of the growth medium prevents depletion and restores mtDNA copy number in quiescent MPV17-deficient cells. Hence, our study links MPV17 deficiency, insufficiency of mitochondrial dNTPs, and slow replication in mitochondria to depletion of mtDNA manifesting in the human disease, and places MPV17-related disease firmly in the category of mtDNA disorders caused by deoxynucleotide perturbation. The prevention and reversal of mtDNA loss in MPV17 patient-derived cells identifies potential therapeutic strategy for a currently untreatable disease.
Collapse
Affiliation(s)
| | - Yolanda Cámara
- Laboratory of Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia
- Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Sara Vidoni
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Gokhan Akman
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Lilian Hunt
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Mark A. Johnson
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Sarah Grocott
- Mitochondrial Genetics Group, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | - David R. Thorburn
- Murdoch Childrens Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Joanna Poulton
- Mitochondrial Genetics Group, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Greg Elgar
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Ramon Martí
- Laboratory of Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia
- Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Peter Voshol
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Ian J. Holt
- MRC Mill Hill Laboratory, London, United Kingdom
| | | |
Collapse
|
11
|
Llorens JV, Metzendorf C, Missirlis F, Lind MI. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem 2015; 20:1229-38. [PMID: 26468126 DOI: 10.1007/s00775-015-1302-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.
Collapse
Affiliation(s)
- Jose V Llorens
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Mexico City, Mexico.
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden.
| |
Collapse
|
12
|
Da-Rè C, von Stockum S, Biscontin A, Millino C, Cisotto P, Zordan MA, Zeviani M, Bernardi P, De Pittà C, Costa R. Leigh syndrome in Drosophila melanogaster: morphological and biochemical characterization of Surf1 post-transcriptional silencing. J Biol Chem 2014; 289:29235-46. [PMID: 25164807 PMCID: PMC4200275 DOI: 10.1074/jbc.m114.602938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/26/2014] [Indexed: 01/20/2023] Open
Abstract
Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS(Surf1) patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R(+) cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS.
Collapse
Affiliation(s)
| | | | | | - Caterina Millino
- CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy and
| | | | | | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
13
|
Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, Palmieri F. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 2014; 289:33137-48. [PMID: 25320081 DOI: 10.1074/jbc.m114.610808] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.
Collapse
Affiliation(s)
- Maria Antonietta Di Noia
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Department of Sciences, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy
| | - Simona Todisco
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Angela Cirigliano
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy, Associazione Gian Franco Lupo "Un Sorriso alla Vita," ASM Azienda Sanitaria Locale di Matera, via Montescaglioso 75100 Matera, Italy, and
| | - Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy
| | - Gennaro Agrimi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Vito Iacobazzi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|