1
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
2
|
Deng S, Li H, Zhou C, Fan J, Zhu F, Jin G, Xu J, Xia J, Wang J, Nie Z, Zhou R, Song H, Cheng C. Streptococcus suis 5'-nucleotidases contribute to adenosine-mediated immune evasion and virulence in a mouse model. Virulence 2024; 15:2401963. [PMID: 39282964 PMCID: PMC11407386 DOI: 10.1080/21505594.2024.2401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Streptococcus suis (S. suis) is an important swine bacterial pathogen and causes human infections, leading to a wide range of diseases. However, the role of 5'-nucleotidases in its virulence remains to be fully elucidated. Herein, we identified four cell wall-anchored 5'-nucleotidases (Snts) within S. suis, named SntA, SntB, SntC, and SntD, each displaying similar domains yet exhibiting low sequence homology. The malachite green reagent and HPLC assays demonstrated that these recombinant enzymes are capable of hydrolysing ATP, ADP, and AMP into adenosine (Ado), with the hierarchy of catalytic efficiency being SntC>SntB>SntA>SntD. Moreover, comprehensive enzymatic activity assays illustrated slight variances in substrate specificity, pH tolerance, and metal ion requirements, yet highlighted a conserved substrate-binding pocket, His-Asp catalytic dyad, metal, and phosphate-binding sites across Snts, with the exception of SntA. Through bactericidal assays and murine infection assays involving in site-mutagenesis strains, it was demonstrated that SntB and SntC collaboratively enhance bacterial survivability within whole blood and polymorphonuclear leukocytes (PMNs) via the Ado-A2aR pathway in vitro, and within murine blood and organs in vivo. This suggests a direct correlation between enzymatic activity and enhancement of bacterial survival and virulence. Collectively, S. suis 5'-nucleotidases additively contribute to the generation of adenosine, influencing susceptibility within blood and PMNs, and enhancing survival within blood and organs in vivo. This elucidation of their integral functions in the pathogenic process of S. suis not only enhances our comprehension of bacterial virulence mechanisms, but also illuminates new avenues for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Haojie Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Chang Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Jingyan Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Fuxin Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Gexuan Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Zheng Nie
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Rui Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
3
|
Baz AA, Hao H, Lan S, Li Z, Liu S, Jin X, Chen S, Chu Y. Emerging insights into macrophage extracellular traps in bacterial infections. FASEB J 2024; 38:e23767. [PMID: 38924166 DOI: 10.1096/fj.202400739r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Macrophages possess a diverse range of well-defined capabilities and roles as phagocytes, encompassing the regulation of inflammation, facilitation of wound healing, maintenance of tissue homeostasis, and serving as a crucial element in the innate immune response against microbial pathogens. The emergence of extracellular traps is a novel strategy of defense that has been observed in several types of innate immune cells. In response to infection, macrophages are stimulated and produce macrophage extracellular traps (METs), which take the form of net-like structures, filled with strands of DNA and adorned with histones and other cellular proteins. METs not only capture and eliminate microorganisms but also play a role in the development of certain diseases such as inflammation and autoimmune disorders. The primary objective of this study is to examine the latest advancements in METs for tackling bacterial infections. We also delve into the current knowledge and tactics utilized by bacteria to elude or endure the effects of METs. Through this investigation, we hope to shed light on the intricate interactions between bacteria and the host's immune system, particularly in the context of microbicidal effector mechanisms of METs. The continued exploration of METs and their impact on host defense against various pathogens opens up new avenues for understanding and potentially manipulating the immune system's response to infections.
Collapse
Affiliation(s)
- Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xiangrui Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
4
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Happonen L, Collin M. Immunomodulating Enzymes from Streptococcus pyogenes-In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms 2024; 12:200. [PMID: 38258026 PMCID: PMC10818452 DOI: 10.3390/microorganisms12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.
Collapse
Affiliation(s)
- Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
6
|
Ribeiro JM, Cameselle JC. Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes. Genes (Basel) 2023; 14:1657. [PMID: 37628708 PMCID: PMC10454023 DOI: 10.3390/genes14081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
UshA and CpdB are nucleotidases of the periplasm of several Gram-negative bacteria, while several Gram-positives contain cell wall-bound variants. UshA is a 5'-nucleotidase, a UDP-sugar hydrolase, and a CDP-alcohol hydrolase. CpdB acts as a 3'-nucleotidase and as a phosphodiesterase of 2',3'-cyclic nucleotides and 3',5'-linear and cyclic dinucleotides. Both proteins are pro-virulent for the pathogens producing them and facilitate escape from the innate immunity of the infected host. Recently, the genomic distribution of cpdB-like genes in Bacteria was found to be non-homogeneous among different taxa, and differences occur within single taxa, even at species level. Similitudes and differences between UshA-like and CpdB-like proteins prompted parallel analysis of their genomic distributions in Bacteria. The presence of ushA-like and cpdB-like genes was tested by TBlastN analysis using seven protein probes to query the NCBI Complete Genomes Database. It is concluded that the distribution of ushA-like genes, like that of cpdB-like genes, is non-homogeneous. There is a partial correlation between both gene kinds: in some taxa, both are present or absent, while in others, only one is present. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches.
Collapse
Affiliation(s)
- João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
| | | |
Collapse
|
7
|
Zakataeva NP. Microbial 5'-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications. Appl Microbiol Biotechnol 2021; 105:7661-7681. [PMID: 34568961 PMCID: PMC8475336 DOI: 10.1007/s00253-021-11547-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
5′-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their respective nucleosides and phosphate. Most 5′-nucleotidases have broad substrate specificity and are multifunctional enzymes capable of cleaving phosphorus from not only mononucleotide phosphate molecules but also a variety of other phosphorylated metabolites. 5′-Nucleotidases are widely distributed throughout all kingdoms of life and found in different cellular locations. The well-studied vertebrate 5′-nucleotidases play an important role in cellular metabolism. These enzymes are involved in purine and pyrimidine salvage pathways, nucleic acid repair, cell-to-cell communication, signal transduction, control of the ribo- and deoxyribonucleotide pools, etc. Although the first evidence of microbial 5′-nucleotidases was obtained almost 60 years ago, active studies of genetic control and the functions of microbial 5′-nucleotidases started relatively recently. The present review summarizes the current knowledge about microbial 5′-nucleotidases with a focus on their diversity, cellular localizations, molecular structures, mechanisms of catalysis, physiological roles, and activity regulation and approaches to identify new 5′-nucleotidases. The possible applications of these enzymes in biotechnology are also discussed. Key points • Microbial 5′-nucleotidases differ in molecular structure, hydrolytic mechanism, and cellular localization. • 5′-Nucleotidases play important and multifaceted roles in microbial cells. • Microbial 5′-nucleotidases have wide range of practical applications.
Collapse
Affiliation(s)
- Natalia P Zakataeva
- Ajinomoto-Genetika Research Institute, 1st Dorozhny Proezd, b.1-1, Moscow, 117545, Russia.
| |
Collapse
|
8
|
NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence. PLoS Pathog 2021; 17:e1009791. [PMID: 34370789 PMCID: PMC8376106 DOI: 10.1371/journal.ppat.1009791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.
Collapse
|
9
|
Zhao Z, Shang X, Chen Y, Zheng Y, Huang W, Jiang H, Lv Q, Kong D, Jiang Y, Liu P. Bacteria elevate extracellular adenosine to exploit host signaling for blood-brain barrier disruption. Virulence 2021; 11:980-994. [PMID: 32772676 PMCID: PMC7549952 DOI: 10.1080/21505594.2020.1797352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial meningitis remains a substantial cause of mortality worldwide and survivors may have severe lifelong disability. Although we know that meningeal bacterial pathogens must cross blood-central nervous system (CNS) barriers, the mechanisms which facilitate the virulence of these pathogens are poorly understood. Here, we show that adenosine from a surface enzyme (Ssads) of Streptococcus suis facilitates this pathogen’s entry into mouse brains. Monolayer translocation assays (from the human cerebrovascular endothelium) and experiments using diverse inhibitors and agonists together demonstrate that activation of the A1 adenosine receptor signaling cascade in hosts, as well as attendant cytoskeleton remodeling, promote S. suis penetration across blood-CNS barriers. Importantly, our additional findings showing that Ssads orthologs from other bacterial species also promote their translocation across barriers suggest that exploitation of A1 AR signaling may be a general mechanism of bacterial virulence.
Collapse
Affiliation(s)
- Zunquan Zhao
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Xueyi Shang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China.,Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| | - Ying Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology , Beijing, China
| |
Collapse
|
10
|
Abouelkhair MA, Frank LA, Bemis DA, Giannone RJ, Kania SA. Staphylococcus pseudintermedius 5'-nucleotidase suppresses canine phagocytic activity. Vet Microbiol 2020; 246:108720. [PMID: 32605759 DOI: 10.1016/j.vetmic.2020.108720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus pseudintermedius is a major opportunistic bacterial pathogen and the leading cause of pyoderma in dogs. In canines it is also often associated with infections of the urinary system and wounds and occasionally infects people. Widespread antimicrobial resistance has made the development of alternative treatments a high priority. The development of a staphylococcal vaccine, however, has proven challenging. Identification of virulence factors that inhibit phagocytosis and avoid innate immunity may play a significant role in preventing or treating infection with S. pseudintermedius. In this study, we identified a putative 5'-nucleotidase provisionally named SpAdsA, a S. pseudintermedius cell- wall protein encoded by SpAdsA. SpAdsA shares approximately 52% identity with the orthologous protein of Staphylococcus aureus and 14.8% identity with that of Streptococcus suis type2. It catalyzes the dephosphorylation of adenosine triphosphate and attenuation of this enzyme with critical amino acid substitutions nearly eliminated its hydrolytic activity. Exogenous adenosine inhibited phagocytosis of S. pseudintermedius by canine neutrophils and monocytes. Conversely, the addition of SpAdsA inhibitor or A2A adenosine receptor antagonist impaired the capacity of S. pseudintermedius to escape from killing by phagocytic cells. The neutralizing ability of canine antibody produced against SpAdsA-M was determined. Taken together, these results suggest that SpAdsA likely plays an important role in S. pseudintermedius virulence and that attenuated SpAdsA may be a good candidate for inclusion in a vaccine against S. pseudintermedius.
Collapse
Affiliation(s)
- Mohamed A Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - Linda A Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - David A Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Richard J Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA.
| |
Collapse
|
11
|
Soh KY, Loh JMS, Proft T. Cell wall-anchored 5'-nucleotidases in Gram-positive cocci. Mol Microbiol 2020; 113:691-698. [PMID: 31872460 DOI: 10.1111/mmi.14442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. J Virol 2019; 93:JVI.01404-18. [PMID: 30567986 DOI: 10.1128/jvi.01404-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarc tos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a β-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.
Collapse
|
13
|
Dangel ML, Dettmann JC, Haßelbarth S, Krogull M, Schakat M, Kreikemeyer B, Fiedler T. The 5'-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS One 2019; 14:e0211074. [PMID: 30703118 PMCID: PMC6354987 DOI: 10.1371/journal.pone.0211074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
5’-nucleotidases are widespread among all domains of life. The enzymes hydrolyze phosphate residues from nucleotides and nucleotide derivatives. In some pathobiontic bacteria, 5’-nucleotidases contribute to immune evasion by dephosphorylating adenosine mono-, di-, or tri-phosphates, thereby either decreasing the concentration of pro-inflammatory ATP or increasing the concentration of anti-inflammatory adenosine, both acting on purinergic receptors of phagocytic cells. The strict human pathogen Streptococcus pyogenes expresses a surface-associated 5’-nucleotidase (S5nA) under infection conditions that has previously been discussed as a potential virulence factor. Here we show that deletion of the S5nA gene does not significantly affect growth in human blood, evasion of phagocytosis by neutrophils, formation of biofilms and virulence in an infection model with larvae of the greater wax moth Galleria mellonella in S. pyogenes serotypes M6, M18 and M49. Hence, the surface-associated 5’-nucleotidase S5nA seems dispensable for evasion of phagocytosis and biofilm formation in S. pyogenes.
Collapse
Affiliation(s)
- Marcel-Lino Dangel
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Johann-Christoph Dettmann
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Steffi Haßelbarth
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Martin Krogull
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Miriam Schakat
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Bernd Kreikemeyer
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Tomas Fiedler
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
- * E-mail:
| |
Collapse
|
14
|
Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. J Bacteriol 2018; 201:JB.00462-18. [PMID: 30224435 DOI: 10.1128/jb.00462-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.
Collapse
|
15
|
Soh KY, Loh JMS, Proft T. Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5'-nucleotidase A (S5nA) found in Streptococcus iniae. J Biochem 2018; 164:165-171. [PMID: 29659850 DOI: 10.1093/jb/mvy039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes nuclease A (SpnA) and streptococcal 5' nucleosidase A (S5nA) are two recently described virulence factors from the human pathogen S. pyogenes. In vitro studies have shown that SpnA is a nuclease that cleaves ssDNA and dsDNA, including the DNA backbone of neutrophil extracellular traps. S5nA was shown to hydrolyse AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. S5nA also generates the macrophage-toxic deoxyadenosine from dAMP. However, detailed in vivo studies of the two enzymes have been hampered by difficulties with using current animal models for this exclusive human pathogen. Here we report the identification of two novel enzymes from the fish pathogen Streptococcus iniae that show similarities to SpnA and S5nA in amino acid sequence, protein domain structure and biochemical properties. We propose that SpnAi and S5nAi are orthologues of the S. pyogenes enzymes, providing a rationale to analyse the in vivo function of the two enzymes using a S. iniae-zebrafish infection model.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
16
|
Deng S, Xu T, Fang Q, Yu L, Zhu J, Chen L, Liu J, Zhou R. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis. Front Immunol 2018; 9:1063. [PMID: 29868022 PMCID: PMC5964162 DOI: 10.3389/fimmu.2018.01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA-deleted mutant strain ΔsntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔsntA. The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of ΔsntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2′,3′-cyclic nucleotide 2′-phosphodiesterase/3′-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Collapse
Affiliation(s)
- Simin Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Long Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Diseases (MOST), Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
17
|
Devaux L, Kaminski PA, Trieu-Cuot P, Firon A. Cyclic di-AMP in host-pathogen interactions. Curr Opin Microbiol 2017; 41:21-28. [PMID: 29169058 DOI: 10.1016/j.mib.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
Abstract
Cyclic di-AMP (c-di-AMP) is a bacterial signaling nucleotide synthesized by several human pathogens. This widespread and specific bacterial product is recognized by infected host cells to trigger an innate immune response. Detection of c-di-AMP in the host cytosol leads primarily to the induction of type I interferon via the STING-cGAS signaling axis, while being also entangled in the activation of the NF-κB pathway. During their long-standing interaction, host and pathogens have co-evolved to control c-di-AMP activation of innate immunity. On the bacterial side, the quantity of c-di-AMP released inside cells allows to manipulate the host response to exacerbate infection by avoiding immune recognition or, at the opposite, by overloading the STING-cGAS pathway.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France.
| |
Collapse
|
18
|
Kolter J, Henneke P. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease. Front Immunol 2017; 8:1497. [PMID: 29209311 PMCID: PMC5701622 DOI: 10.3389/fimmu.2017.01497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as part of a beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Trieu-Cuot P, Golenbock DT, Kaminski PA. Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host Microbe 2017; 20:49-59. [PMID: 27414497 DOI: 10.1016/j.chom.2016.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022]
Abstract
Induction of type I interferon (IFN) in response to microbial pathogens depends on a conserved cGAS-STING signaling pathway. The presence of DNA in the cytoplasm activates cGAS, while STING is activated by cyclic dinucleotides (cdNs) produced by cGAS or from bacterial origins. Here, we show that Group B Streptococcus (GBS) induces IFN-β production almost exclusively through cGAS-STING-dependent recognition of bacterial DNA. However, we find that GBS expresses an ectonucleotidase, CdnP, which hydrolyzes extracellular bacterial cyclic-di-AMP. Inactivation of CdnP leads to c-di-AMP accumulation outside the bacteria and increased IFN-β production. Higher IFN-β levels in vivo increase GBS killing by the host. The IFN-β overproduction observed in the absence of CdnP is due to the cumulative effect of DNA sensing by cGAS and STING-dependent sensing of c-di-AMP. These findings describe the importance of a bacterial c-di-AMP ectonucleotidase and suggest a direct bacterial mechanism that dampens activation of the cGAS-STING axis.
Collapse
Affiliation(s)
- Warrison A Andrade
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, 75724 Paris, France; Centre National de la Recherche Scientifique (CNRS) ERL 3526, 75724 Paris, France
| | - Tobias Schmidt
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Evelyn A Kurt-Jones
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, 75724 Paris, France; Centre National de la Recherche Scientifique (CNRS) ERL 3526, 75724 Paris, France.
| | - Douglas T Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, 75724 Paris, France; Centre National de la Recherche Scientifique (CNRS) ERL 3526, 75724 Paris, France
| |
Collapse
|
20
|
Fujii S, Oki H, Kawahara K, Yamane D, Yamanaka M, Maruno T, Kobayashi Y, Masanari M, Wakai S, Nishihara H, Ohkubo T, Sambongi Y. Structural and functional insights into thermally stable cytochrome c' from a thermophile. Protein Sci 2017; 26:737-748. [PMID: 28097774 PMCID: PMC5368077 DOI: 10.1002/pro.3120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/10/2022]
Abstract
Thermophilic Hydrogenophilus thermoluteolus cytochrome c′ (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c′ (AVCP), which has a homo‐dimeric structure and ligand‐binding ability. To understand the thermal stability mechanism and ligand‐binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo‐dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 Å. In the PHCP structure, six specific residues appeared to strengthen the heme‐related and subunit–subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit–subunit interactions were more severely destabilized than ones having altered heme‐related interactions. The PHCP structure further revealed a ligand‐binding channel and a penta‐coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme‐related and subunit–subunit interactions with conservation of the ligand‐binding ability. Brief Summary We report the X‐ray crystal structure of cytochrome c′ (PHCP) from thermophilic Hydrogenophilus thermoluteolus. The high thermal stability of PHCP was attributed to heme‐related and subunit–subunit interactions, which were confirmed by a mutagenesis study. The ligand‐binding ability of PHCP was examined by spectrophotometry. PHCP acquired the thermal stability with conservation of the ligand‐binding ability. This study furthers the understanding of the stability and function of cytochromes c. PDB Code(s): 5B3I
Collapse
Affiliation(s)
- Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroya Oki
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Daisuke Yamane
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Misa Masanari
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, Rokkodai, Kobe, Hyogo, Japan
| | | | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
21
|
Difference in NaCl tolerance of membrane-bound 5'-nucleotidases purified from deep-sea and brackish water Shewanella species. Extremophiles 2017; 21:357-368. [PMID: 28050644 DOI: 10.1007/s00792-016-0909-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Shewanella species are widely distributed in sea, brackish, and fresh water areas, growing psychrophilically or mesophilically, and piezophilically or piezo-sensitively. Here, membrane-bound 5'-nucleotidases (NTases) from deep-sea Shewanella violacea and brackish water Shewanella amazonensis were examined from the aspect of NaCl tolerance to gain an insight into protein stability against salt. Both NTases were single polypeptides with molecular masses of ~59 kDa, as determined on mass spectroscopy. They similarly required 10 mM MgCl2 for their activities, and they exhibited the same pH dependency and substrate specificity for 5'-nucleotides. However, S. violacea 5'-nucleotidase (SVNTase) was active enough in the presence of 2.5 M NaCl, whereas S. amazonensis 5'-nucleotidase (SANTase) exhibited significantly reduced activity with the same concentration of the salt. Although SVNTase and SANTase exhibited high sequence identity (69.7%), differences in the ratio of acidic to basic amino acid residues and the number of potential salt bridges maybe being responsible for the difference in the protein stability against salt. 5'-Nucleotidases from these Shewanella species will provide useful information regarding NaCl tolerance, which may be fundamental for understanding bacterial adaptation to growth environments.
Collapse
|
22
|
Extracellular Nucleases of Streptococcus equi subsp. zooepidemicus Degrade Neutrophil Extracellular Traps and Impair Macrophage Activity of the Host. Appl Environ Microbiol 2016; 83:AEM.02468-16. [PMID: 27815272 DOI: 10.1128/aem.02468-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 01/20/2023] Open
Abstract
The pathogen Streptococcus equi subsp. zooepidemicus is associated with a wide range of animals, including humans, and outbreaks frequently occur in pigs, equines, and goats. Thus far, few studies have assessed interactions between the host immune system and S. equi subsp. zooepidemicus and how these interactions explain the wide host spectrum of S. equi subsp. zooepidemicus Neutrophils, the first line of innate immunity, possess a defense mechanism called neutrophil extracellular traps (NETs), which primarily consist of DNA and granule proteins that trap bacteria via charge interactions. Extracellular nucleases play important roles in the degradation of the DNA backbone of NETs. Here, two related extracellular nucleases, nuclease and 5'-nucleotidase (named ENuc and 5Nuc, respectively, in this study), were identified as being encoded by the SESEC_RS04165 gene and the SESEC_RS05720 gene (named ENuc and 5Nuc, respectively), and three related gene deletion mutant strains, specifically, the single-mutant ΔENuc and Δ5Nuc strains and the double-mutant ΔENuc Δ5Nuc strain, were constructed. The ΔENuc and Δ5Nuc single-mutant strains and the ΔENuc Δ5Nuc double-mutant strain demonstrated lower virulence than wild-type S. equi subsp. zooepidemicus when the mouse survival rate was evaluated postinfection. Furthermore, wild-type S. equi subsp. zooepidemicus more frequently traversed the bloodstream and transferred to other organs. Wild-type S. equi subsp. zooepidemicus induced fewer NETs and was able to survive in NETs, whereas only 40% of the ΔENuc Δ5Nuc double-mutant cells survived. S. equi subsp. zooepidemicus degraded the NET DNA backbone and produced deoxyadenosine, primarily through the action of ENuc and/or 5Nuc. However, the double-mutant ΔENuc Δ5Nuc strain lost the ability to degrade NETs into deoxyadenosine. Deoxyadenosine decreased RAW 264.7 cell phagocytosis to 40% of that of normal macrophages. IMPORTANCE Streptococcus equi subsp. zooepidemicus causes serious bacteremia in its hosts. However, little is known about how S. equi subsp. zooepidemicus interacts with the host innate immune system, particularly innate cells found in the blood. S. equi subsp. zooepidemicus is capable of evading NET-mediated killing via the actions of its potent extracellular nucleases, ENuc and 5Nuc, which directly degrade the NET DNA backbone to deoxyadenosine. In previous studies, other pathogens have required the synergism of nuclease and 5'-nucleotidase to engage in this self-protective process; however, ENuc and 5Nuc both possess nuclease activity and 5'-nucleotidase activity, highlighting the novelty of this discovery. Furthermore, deoxyadenosine impairs phagocytosis but not the intracellular bactericidal activity of macrophages. Here we describe a novel mechanism for S. equi subsp. zooepidemicus extracellular nucleases in NET degradation, which may provide new insights into the pathogen immune evasion mechanism and the prevention and treatment of bacterial disease.
Collapse
|
23
|
Chaves MM, Canetti C, Coutinho-Silva R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 2016; 9:489. [PMID: 27595742 PMCID: PMC5011846 DOI: 10.1186/s13071-016-1781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cláudio Canetti
- Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
24
|
Fiene A, Baqi Y, Malik EM, Newton P, Li W, Lee SY, Hartland EL, Müller CE. Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorg Med Chem 2016; 24:4363-4371. [DOI: 10.1016/j.bmc.2016.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022]
|
25
|
Characterization of the Domain Orientations of E. coli 5'-Nucleotidase by Fitting an Ensemble of Conformers to DEER Distance Distributions. Structure 2015; 24:43-56. [PMID: 26724996 DOI: 10.1016/j.str.2015.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
Escherichia coli 5'-nucleotidase is a two-domain enzyme exhibiting a unique 96° domain motion that is required for catalysis. Here we present an integrated structural biology study that combines DEER distance distributions with structural information from X-ray crystallography and computational biology to describe the population of presumably almost isoenergetic open and closed states in solution. Ensembles of models that best represent the experimental distance distributions are determined by a Monte Carlo search algorithm. As a result, predominantly open conformations are observed in the unliganded state indicating that the majority of enzyme molecules await substrate binding for the catalytic cycle. The addition of a substrate analog yields ensembles with an almost equal mixture of open and closed states. Thus, in the presence of substrate, efficient catalysis is provided by the simultaneous appearance of open conformers (binding substrate or releasing product) and closed conformers (enabling the turnover of the substrate).
Collapse
|
26
|
Rodrigues L, Russo-Abrahão T, Cunha RA, Gonçalves T, Meyer-Fernandes JR. Characterization of extracellular nucleotide metabolism in Candida albicans. FEMS Microbiol Lett 2015; 363:fnv212. [PMID: 26538575 DOI: 10.1093/femsle/fnv212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is the most frequent agent of human disseminated fungal infection. Ectophosphatase and ectonucleotidase activities are known to influence the infectious potential of several microbes, including other non-albicans species of Candida. With the present work we aim to characterize these ecto-enzymatic activities in C. albicans. We found that C. albicans does not have a classical ecto-5'-nucleotidase enzyme and 5'AMP is cleaved by a phosphatase instead of exclusively by a nucleotidase that also can use 3'AMP as a substrate. Moreover, these enzymatic activities are not dependent on secreted soluble enzymes and change when the yeast cells are under infection conditions, including low pH, and higher temperature and CO2 content.
Collapse
Affiliation(s)
- Lisa Rodrigues
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Thais Russo-Abrahão
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Zheng L, Khemlani A, Lorenz N, Loh JMS, Langley RJ, Proft T. Streptococcal 5'-Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion. J Biol Chem 2015; 290:31126-37. [PMID: 26527680 DOI: 10.1074/jbc.m115.677443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5'-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5'-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg(2+), Ca(2+), or Mn(2+). However, Zn(2+) inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5'-nucleotidase activity and immune evasion properties.
Collapse
Affiliation(s)
- Lisa Zheng
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and
| | - Adrina Khemlani
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and
| | - Natalie Lorenz
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and the Maurice Wilkins Center, University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and the Maurice Wilkins Center, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and the Maurice Wilkins Center, University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- From the Department of Molecular Medicine and Pathology, School of Medical Sciences, and the Maurice Wilkins Center, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015; 5:775-92. [PMID: 25950510 PMCID: PMC4496696 DOI: 10.3390/biom5020775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
Collapse
|
29
|
Pathophysiological role of extracellular purinergic mediators in the control of intestinal inflammation. Mediators Inflamm 2015; 2015:427125. [PMID: 25944982 PMCID: PMC4405224 DOI: 10.1155/2015/427125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022] Open
Abstract
Purinergic mediators such as adenosine 5′-triphosphate (ATP) are released into the extracellular compartment from damaged tissues and activated immune cells. They are then recognized by multiple purinergic P2X and P2Y receptors. Release and recognition of extracellular ATP are associated with both the development and the resolution of inflammation and infection. Accumulating evidence has recently suggested the potential of purinergic receptors as novel targets for drugs for treating intestinal disorders, including intestinal inflammation and irritable bowel syndrome. In this review, we highlight recent findings regarding the pathophysiological role of purinergic mediators in the development of intestinal inflammation.
Collapse
|
30
|
Karlskås IL, Eijsink VGH, Saleihan Z, Holo H, Mathiesen G. EF0176 and EF0177 from Enterococcus faecalis V583 are substrate-binding lipoproteins involved in ABC transporter mediated ribonucleoside uptake. Microbiology (Reading) 2015; 161:754-64. [DOI: 10.1099/mic.0.000045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
|
31
|
Lee SY, Fiene A, Li W, Hanck T, Brylev KA, Fedorov VE, Lecka J, Haider A, Pietzsch HJ, Zimmermann H, Sévigny J, Kortz U, Stephan H, Müller CE. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors. Biochem Pharmacol 2014; 93:171-81. [PMID: 25449596 DOI: 10.1016/j.bcp.2014.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
Polyoxometalates (POMs) are inorganic cluster metal complexes that possess versatile biological activities, including antibacterial, anticancer, antidiabetic, and antiviral effects. Their mechanisms of action at the molecular level are largely unknown. However, it has been suggested that the inhibition of several enzyme families (e.g., phosphatases, protein kinases or ecto-nucleotidases) by POMs may contribute to their pharmacological properties. Ecto-nucleotidases are cell membrane-bound or secreted glycoproteins involved in the hydrolysis of extracellular nucleotides thereby regulating purinergic (and pyrimidinergic) signaling. They comprise four distinct families: ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs), alkaline phosphatases (APs) and ecto-5'-nucleotidase (eN). In the present study, we evaluated the inhibitory potency of a series of polyoxometalates as well as chalcogenide hexarhenium cluster complexes at a broad range of ecto-nucleotidases. [Co4(H2O)2(PW9O34)2](10-) (5, PSB-POM142) was discovered to be the most potent inhibitor of human NTPDase1 described so far (Ki: 3.88 nM). Other investigated POMs selectively inhibited human NPP1, [TiW11CoO40](8-) (4, PSB-POM141, Ki: 1.46 nM) and [NaSb9W21O86](18-) (6, PSB-POM143, Ki: 4.98 nM) representing the most potent and selective human NPP1 inhibitors described to date. [NaP5W30O110](14-) (8, PSB-POM144) strongly inhibited NTPDase1-3 and NPP1 and may therefore be used as a pan-inhibitor to block ATP hydrolysis. The polyoxoanionic compounds displayed a non-competitive mechanism of inhibition of NPPs and eN, but appeared to be competitive inhibitors of TNAP. Future in vivo studies with selected inhibitors identified in the current study are warranted.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Wenjin Li
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russia Academy of Sciences, 3 Acad. Lavrentiev prospect, 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Vladimir E Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russia Academy of Sciences, 3 Acad. Lavrentiev prospect, 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Joanna Lecka
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada G1V 0A6; Centre de Recherche du CHU de Québec, Québec City, QC, Canada G1V 4G2
| | - Ali Haider
- School of Engineering and Science, Campus Ring 8, Jacobs University, 28759 Bremen, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada G1V 0A6; Centre de Recherche du CHU de Québec, Québec City, QC, Canada G1V 4G2
| | - Ulrich Kortz
- School of Engineering and Science, Campus Ring 8, Jacobs University, 28759 Bremen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
32
|
Two Spx regulators modulate stress tolerance and virulence in Streptococcus suis serotype 2. PLoS One 2014; 9:e108197. [PMID: 25264876 PMCID: PMC4180751 DOI: 10.1371/journal.pone.0108197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/18/2014] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis serotype 2 is an important zoonotic pathogen causing severe infections in pigs and humans. The pathogenesis of S. suis 2 infections, however, is still poorly understood. Spx proteins are a group of global regulators involved in stress tolerance and virulence. In this study, we characterized two orthologs of the Spx regulator, SpxA1 and SpxA2 in S. suis 2. Two mutant strains (ΔspxA1 and ΔspxA2) lacking the spx genes were constructed. The ΔspxA1 and ΔspxA2 mutants displayed different phenotypes. ΔspxA1 exhibited impaired growth in the presence of hydrogen peroxide, while ΔspxA2 exhibited impaired growth in the presence of SDS and NaCl. Both mutants were defective in medium lacking newborn bovine serum. Using a murine infection model, we demonstrated that the abilities of the mutant strains to colonize the tissues were significantly reduced compared to that of the wild-type strain. The mutant strains also showed a decreased level of survival in pig blood. Microarray analysis revealed a global regulatory role for SpxA1 and SpxA2. Furthermore, we demonstrated for the first time that Spx is involved in triggering the host inflammatory response. Collectively, our data suggest that SpxA1 and SpxA2 are global regulators that are implicated in stress tolerance and virulence in S. suis 2.
Collapse
|