1
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
2
|
Yuan X, Liu P, Xu L, Liang L, Dong Q, Fan T, Yue W, Qu M, Pei X, Xie X. miR-1915-3p regulates megakaryocytic and erythroid differentiation by targeting SOCS4. Thromb J 2024; 22:74. [PMID: 39123189 PMCID: PMC11316338 DOI: 10.1186/s12959-024-00615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Proper control of the lineage bias of megakaryocytic and erythroid progenitor cells (MEPs) is of significant importance, the disorder of which will lead to abnormalities in the number and function of platelets and erythrocytes. Unfortunately, the signaling pathways regulating MEP differentiation largely remain to be elucidated. This study aimed to analyze the role and the underlying molecular mechanism of miR-1915-3p in megakaryocytic and erythroid differentiation. METHODS We utilized miRNA mimics and miRNA sponge to alter the expression of miR-1915-3p in megakaryocytic and/or erythroid potential cells; siRNA and overexpression plasmid to change the expression of SOCS4, a potential target of miR-1915-3p. The expression of relevant surface markers was detected by flow cytometry. We scanned for miR-1915-3p target genes by mRNA expression profiling and bioinformatic analysis, and confirmed the targeting by dual-luciferase reporter assay, western blot and gain- and lost-of-function studies. One-way ANOVA and t-test were used to analyze the statistical significance. RESULTS In this study, overexpression or knockdown of miR-1915-3p inhibited or promoted erythroid differentiation, respectively. Accordingly, we scanned for miR-1915-3p target genes and confirmed that SOCS4 is one of the direct targets of miR-1915-3p. An attentive examination of the endogenous expression of SOCS4 during megakaryocytic and erythroid differentiation suggested the involvement of SOCS4 in erythroid/megakaryocytic lineage determination. SOCS4 knockdown lessened erythroid surface markers expression, as well as improved megakaryocytic differentiation, similar to the effects of miR-1915-3p overexpression. While SOCS4 overexpression resulted in reversed effects. SOCS4 overexpression in miR-1915-3p upregulated cells rescued the effect of miR-1915-3p. CONCLUSIONS miR-1915-3p acts as a negative regulator of erythropoiesis, and positively in thrombopoiesis. SOCS4 is one of the key mediators of miR-1915-3p during the differentiation of MEPs.
Collapse
Affiliation(s)
- Xin Yuan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Pengcong Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei Xu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Liqing Liang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qian Dong
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Tao Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Mingyi Qu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Xiaoyan Xie
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
3
|
Micheva ID, Atanasova SA. MicroRNA dysregulation in myelodysplastic syndromes: implications for diagnosis, prognosis, and therapeutic response. Front Oncol 2024; 14:1410656. [PMID: 39156702 PMCID: PMC11327013 DOI: 10.3389/fonc.2024.1410656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders with heterogeneous clinical course and risk of transformation to acute myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing disease development and progression. MiRNAs, known for their regulatory roles in gene expression, have emerged as promising biomarkers in various malignant diseases. This review aims to explore the diagnostic and prognostic roles of miRNAs in MDS. We discuss research efforts aimed at understanding the clinical utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific chromosomal abnormalities in MDS, providing insights into the molecular landscape of the disease. Circulating miRNAs in plasma offer a less invasive avenue for diagnostic and prognostic assessment, with distinct miRNA profiles identified in MDS patients. Additionally, we discuss investigations concerning the role of miRNAs as markers for treatment response to hypomethylating and immunomodulating agents, which could lead to improved treatment decision-making and monitoring. Despite significant progress, further research in larger patient cohorts is needed to fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized approaches to patient care.
Collapse
Affiliation(s)
- Ilina Dimitrova Micheva
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Svilena Angelova Atanasova
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
4
|
Tao T, Chen L, Lin X, Fan Z, Zhu C, Mao L. Deregulated miR-146a-3p alleviates disease progression in atherosclerosis through inactivating NF-κB: An experimental study. Medicine (Baltimore) 2024; 103:e38061. [PMID: 38758895 PMCID: PMC11098229 DOI: 10.1097/md.0000000000038061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), as a complex chronic inflammatory disease, is 1 of the main causes of cardiovascular and cerebrovascular diseases. This study aimed to confirm the direct interaction between miR-146a-3p and NF-κB, and explore the role of miR-146a-3p/NF-κB in the regulation of inflammation in AS. METHODS Bioinformatic prediction and dual-luciferase reporter assay were used to confirm the interaction between miR-146a-3p and NF-κB. Lipopolysaccharides stimulation was performed to establish AS inflammatory cell model, and the levels of pro-inflammatory cytokines were estimated using an enzyme-linked immunosorbent assay. miR-146a-3p and NF-κB expression were evaluated using reverse transcription quantitative PCR, and their clinical value was examined using a receiver operating characteristic curve. RESULTS Inflammatory cell model showed increased IL-1β, IL-6, and TNF-α. NF-κB was a target gene of miR-146a-3p, and mediated the inhibitory effects of miR-146a-3p on inflammatory responses in the cell model. In patients with AS, miR-146a-3p/NF-κB was associated with patients' clinical data and inflammatory cytokine levels, and aberrant miR-146a-3p and NF-κB showed diagnostic accuracy to distinguish AS patients from healthy populations. CONCLUSION miR-146a-3p might inhibit inflammation by targeting NF-κB in AS progression, and miR-146a-3p/ NF-κB might provide novel biomarkers and therapeutic targets for the prevention of AS and related vascular events.
Collapse
Affiliation(s)
- Taotao Tao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Linkao Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xia Lin
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zijian Fan
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chengfei Zhu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Yang J, Pan C, Pan Y, Hu A, Zhao P, Chen M, Song H, Li Y, Hao X. A Carbon 21 Steroidal Glycoside with Pregnane Skeleton from Cynanchum atratum Bunge Promotes Megakaryocytic and Erythroid Differentiation in Erythroleukemia HEL Cells through Regulating Platelet-Derived Growth Factor Receptor Beta and JAK2/STAT3 Pathway. Pharmaceuticals (Basel) 2024; 17:628. [PMID: 38794198 PMCID: PMC11125340 DOI: 10.3390/ph17050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Erythroleukemia is a rare form of acute myeloid leukemia (AML). Its molecular pathogenesis remains vague, and this disease has no specific therapeutic treatments. Previously, our group isolated a series of Carbon 21 (C-21) steroidal glycosides with pregnane skeleton from the root of Cynanchum atratum Bunge. Among them, we found that a compound, named BW18, can induce S-phase cell cycle arrest and apoptosis via the mitogen-activated protein kinase (MAPK) pathway in human chronic myeloid leukemia K562 cells. However, its anti-tumor activity against erythroleukemia remains largely unknown. In this study, we aimed to investigate the anti-erythroleukemia activity of BW18 and the underlying molecular mechanisms. Our results demonstrated that BW18 exhibited a good anti-erythroleukemia activity in the human erythroleukemia cell line HEL and an in vivo xenograft mouse model. In addition, BW18 induced cell cycle arrest at the G2/M phase and promoted megakaryocytic and erythroid differentiation in HEL cells. Furthermore, RNA sequencing (RNA-seq) and rescue assay demonstrated that overexpression of platelet-derived growth factor receptor beta (PDGFRB) reversed BW18-induced megakaryocytic differentiation in HEL cells, but not erythroid differentiation. In addition, the network pharmacology analysis, the molecular docking and cellular thermal shift assay (CETSA) revealed that BW18 could inactivate Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, which might mediate BW18-induced erythroid differentiation. Taken together, our findings elucidated a novel role of PDGFRB in regulating erythroleukemia differentiation and highlighted BW18 as an attractive lead compound for erythroleukemia treatment.
Collapse
Affiliation(s)
- Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Anlin Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (J.Y.); (C.P.); (Y.P.); (A.H.); (P.Z.); (M.C.)
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
6
|
Munley JA, Willis ML, Gillies GS, Kannan KB, Polcz VE, Balch JA, Barrios EL, Wallet SM, Bible LE, Efron PA, Maile R, Mohr AM. Exosomal microRNA following severe trauma: Role in bone marrow dysfunction. J Trauma Acute Care Surg 2024; 96:548-556. [PMID: 38151766 PMCID: PMC10978306 DOI: 10.1097/ta.0000000000004225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Severe trauma disrupts bone marrow function and is associated with persistent anemia and altered hematopoiesis. Previously, plasma-derived exosomes isolated after trauma have been shown to suppress in vitro bone marrow function. However, the cargo contained in these vesicles has not been examined. We hypothesized that trauma plasma-derived exosomes exhibit microRNA (miRNA) changes that impact bone marrow function after severe injury. METHODS Plasma was collected from a prospective cohort study of trauma patients (n = 15; 7 males, 8 females) with hip and/or femur fractures and an Injury Severity Score of ≥15; elective total hip arthroplasty (THA) patients (n = 8; 4 males, 4 females) served as operative controls. Exosomes were isolated from plasma with the Invitrogen Total Exosome Isolation Kit (Thermo Fisher Scientific, Waltham, MA), and RNA was isolated using a miRNeasy Mini Kit (Qiagen, Hilden, Germany). Direct quantification of miRNA was performed by NanoString Technologies on a human miRNA gene panel and analyzed with nSolver with significance defined as p < 0.05. RESULTS There were no differences in age or sex distribution between trauma and THA groups; the average Injury Severity Score was 23. Trauma plasma-derived exosomes had 60 miRNA identities that were significantly downregulated and 3 miRNAs that were upregulated when compared with THA ( p < 0.05). Twelve of the downregulated miRNAs have a direct role in hematopoiesis regulation. Furthermore, male trauma plasma-derived exosomes demonstrated downregulation of 150 miRNAs compared with male THA ( p < 0.05). Female trauma plasma-derived exosomes demonstrated downregulation of only four miRNAs and upregulation of two miRNAs compared with female THA ( p < 0.05). CONCLUSION We observed downregulation of 12 miRNAs linked to hematopoiesis along with sexual dimorphism in miRNA expression from plasma-derived exosomes following severe trauma. Understanding sexually dimorphic miRNA expression provides new insight into sex-based changes in postinjury systemic inflammation, immune system dysregulation, and bone marrow dysfunction and will aid us in more precise future potential therapeutic strategies. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Micah L. Willis
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Jeremy A. Balch
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Robert Maile
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
7
|
Duong HQ, Nguyen TH, Hoang MC, Ngo VL, Le VT. RNA therapeutics for β-thalassemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:97-107. [PMID: 38458745 DOI: 10.1016/bs.pmbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
β-thalassemia is an autosomal recessive disease, caused by one or more mutations in the β-globin gene that reduces or abolishes β-globin chain synthesis causing an imbalance in the ratio of α- and β-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of β-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as β-thalassemia; Especially, ASO therapeutics can completely treat β-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of β-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of β-globin which increases the amount of mature hemoglobin of red blood cells of β-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for β-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of β-thalassemia patients.
Collapse
Affiliation(s)
| | | | | | - Van-Lang Ngo
- Hanoi University of Public Health, Hanoi, Vietnam
| | - Van-Thu Le
- Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
8
|
Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs' involvement in hematopoiesis: current standing point of findings. Stem Cell Res Ther 2023; 14:282. [PMID: 37794439 PMCID: PMC10552299 DOI: 10.1186/s13287-023-03504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.
Collapse
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran.
| | - Neda Ahmadi Afshar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| | - Parsa Almasi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| |
Collapse
|
9
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
10
|
The role for miRNA146b-5p in the attenuation of dermal fibrosis and angiogenesis by targeting PDGFRα in skin wounds. J Invest Dermatol 2021; 142:1990-2002.e4. [DOI: 10.1016/j.jid.2021.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
|
11
|
Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia. Sci Rep 2021; 11:22783. [PMID: 34815474 PMCID: PMC8611079 DOI: 10.1038/s41598-021-02257-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Dysregulation of non-coding microRNAs during the course of tumor development, invasion and/or progression to the distant organs, makes them a promising candidate marker for the diagnosis of cancer and associated malignancies. This exploratory study aims at evaluating the usefulness of plasma concentration of circulating mir-146a as a non-invasive biomarker for acute lymphoblastic leukemia (ALL). Total RNA including miRNA was isolated from 110 plasma samples of patients (n = 66), healthy controls (n = 24) and follow up (n = 20) cases and reverse transcribed. Relative concentrations were assessed using real-time quantitative PCR and fold-change was calculated by 2−ΔΔCt method. Finally, relative concentrations were correlated to clinicopathological factors. Patients (n = 66) were analyzed to determine fold expression of miR-146a in plasma samples of ALL. Before chemotherapy, pediatric (n = 42) and adult (n = 24) showed overexpression of miR-146a compared with healthy controls (P < 0.0001). There was no effect of age and gender on mir-146a expression in plasma. mirR-146a expression was independent of clinical and hematological features. Moreover, miR-146a levels in plasma of paired samples (n = 20) after treatment showed significant decrease in expression (P < 0.001). Expression of plasma miR-146a may be utilized as non-invasive marker to diagnose and predict prognosis in pediatric and adult patients with ALL. Moreover predicted targets may be utilized for ALL therapy in future.
Collapse
|
12
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
13
|
Jafarzadeh A, Marzban H, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Hamblin MR, Mirzaei H, Mirzaei HR. Dysregulated expression of miRNAs in immune thrombocytopenia. Epigenomics 2021; 13:1315-1325. [PMID: 34498489 DOI: 10.2217/epi-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years the critical role of miRNAs has been established in many diseases, including autoimmune disorders. Immune thrombocytopenia purpura (ITP) is a predominant autoimmune disease, in which aberrant expression of miRNAs has been observed, suggesting that miRNAs are involved in its development. miRNAs could induce an imbalance in the T helper (Th)1/Th2 cell and Th17/Treg cell-related responses. Moreover, they could also cause alterations in Th9 and Th22 cell responses, and activate Tfh (T follicular helper) cell-dependent auto-reactive B cells, thus influencing megakaryogenesis. Herein, we summarize the role of immune-related miRNAs in ITP pathogenesis, and look forward to clinical applications.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, 7718175911, Rafsanjan, Iran
| | - Havva Marzban
- Department of Pathology & Experimental Animals, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, 77181/75911, Rafsanjan, Iran.,Department of Hematology & Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, 13131- 99137, Mashhad, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| |
Collapse
|
14
|
Zeng Y, Zhao K, Oros Klein K, Shao X, Fritzler MJ, Hudson M, Colmegna I, Pastinen T, Bernatsky S, Greenwood CMT. Thousands of CpGs Show DNA Methylation Differences in ACPA-Positive Individuals. Genes (Basel) 2021; 12:1349. [PMID: 34573331 PMCID: PMC8472734 DOI: 10.3390/genes12091349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
High levels of anti-citrullinated protein antibodies (ACPA) are often observed prior to a diagnosis of rheumatoid arthritis (RA). We undertook a replication study to confirm CpG sites showing evidence of differential methylation in subjects positive vs. negative for ACPA, in a new subset of 112 individuals sampled from the population cohort and biobank CARTaGENE in Quebec, Canada. Targeted custom capture bisulfite sequencing was conducted at approximately 5.3 million CpGs located in regulatory or hypomethylated regions from whole blood; library and protocol improvements had been instituted between the original and this replication study, enabling better coverage and additional identification of differentially methylated regions (DMRs). Using binomial regression models, we identified 19,472 ACPA-associated differentially methylated cytosines (DMCs), of which 430 overlapped with the 1909 DMCs reported by the original study; 814 DMRs of relevance were clustered by grouping adjacent DMCs into regions. Furthermore, we performed an additional integrative analysis by looking at the DMRs that overlap with RA related loci published in the GWAS Catalog, and protein-coding genes associated with these DMRs were enriched in the biological process of cell adhesion and involved in immune-related pathways.
Collapse
Affiliation(s)
- Yixiao Zeng
- PhD Program in Quantitative Life Sciences, Interfaculty Studies, McGill University, Montréal, QC H3A 1E3, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; (K.Z.); (K.O.K.); (M.H.)
| | - Kaiqiong Zhao
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; (K.Z.); (K.O.K.); (M.H.)
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; (K.Z.); (K.O.K.); (M.H.)
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| | - Marvin J. Fritzler
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Marie Hudson
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; (K.Z.); (K.O.K.); (M.H.)
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; (I.C.); (S.B.)
- Division of Rheumatology, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Inés Colmegna
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; (I.C.); (S.B.)
- Division of Rheumatology, McGill University, Montréal, QC H3G 1A4, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada;
- Center for Pediatric Genomic Medicine, Children’s Mercy, Kansas City, MO 64108, USA
| | - Sasha Bernatsky
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; (I.C.); (S.B.)
- Division of Rheumatology, McGill University, Montréal, QC H3G 1A4, Canada
| | - Celia M. T. Greenwood
- PhD Program in Quantitative Life Sciences, Interfaculty Studies, McGill University, Montréal, QC H3A 1E3, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; (K.Z.); (K.O.K.); (M.H.)
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada;
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC H4A 3T2, Canada
| |
Collapse
|
15
|
Bai X, Yang T, Putz AM, Wang Z, Li C, Fortin F, Harding JCS, Dyck MK, Dekkers JCM, Field CJ, Plastow GS. Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete blood count traits collected from a natural disease challenge model. BMC Genomics 2021; 22:535. [PMID: 34256695 PMCID: PMC8278769 DOI: 10.1186/s12864-021-07835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal’s disease response. The aim was to identify the genetic control of disease resilience. Results Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. Conclusions This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07835-4.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Current: ST Genetics, Navasota, TX, USA
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Frédéric Fortin
- Centre de Développement du Porc du Québec, Inc., Quebec City, QC, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Catherine J Field
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Eissa E, Morcos B, Abdelkawy RFM, Ahmed HH, Kholoussi NM. Association of microRNA-125a with the clinical features, disease activity and inflammatory cytokines of juvenile-onset lupus patients. Lupus 2021; 30:1180-1187. [PMID: 33866896 DOI: 10.1177/09612033211010328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with marked variation in its clinical presentation. Juvenile-onset SLE (jSLE) exhibits an aggressive clinical phenotype and severe complications. Dysregulated expression of microRNAs (miRs) in immune cells from patients with SLE has been found. We aim to evaluate the association of miR-125a with the clinical and laboratory characteristics, disease activity and inflammatory cytokines of jSLE patients. METHODS 60 jSLE patients and 25 normal controls were involved in the study. The expression pattern of miR-125a was determined in plasma of all subjects using qRT-PCR. In addition, plasma levels of IL-17 and IFN-γ were examined using ELISA. The correlation of miR-125a expression with the clinical manifestations and disease activity of jSLE patients was analyzed. Also, its association with the inflammatory cytokines was investigated in jSLE patients. RESULTS Our findings showed that miR-125a expression levels were significantly reduced in jSLE patients compared to normal controls (p < 0.01) and these expression levels differed based on the clinical variability of patients. In addition, plasma levels of IL-17 and IFN-γ in jSLE patients were significantly higher than healthy controls (p < 0.01). Finally, miR-125a expression had significant negative associations with each of SLEDAI-2K (p < 0.01), SLICC (p < 0.01), ESR (p < 0.05), proteinuria (p < 0.01) and IL-17 levels (p < 0.01) in jSLE patients. CONCLUSION Our findings postulate that miR-125a could act as a candidate therapeutic target for its possible regulation of inflammation in jSLE patients.
Collapse
Affiliation(s)
- Eman Eissa
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| | - Botros Morcos
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| | | | - Hanan H Ahmed
- Department of Rheumatology and Rehabilitation, Al Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naglaa M Kholoussi
- Human Genetics and Genome Research Division, Immunogenetics Department, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae 2021; 13:4-15. [PMID: 34377552 PMCID: PMC8327150 DOI: 10.32607/actanaturae.11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The myelodysplastic syndrome (MDS) holds a special place among blood cancers, as it represents a whole spectrum of hematological disorders with impaired differentiation of hematopoietic precursors, bone marrow dysplasia, genetic instability and is noted for an increased risk of acute myeloid leukemia. Both genetic and epigenetic factors, including microRNAs (miRNAs), are involved in MDS development. MicroRNAs are short non-coding RNAs that are important regulators of normal hematopoiesis, and abnormal changes in their expression levels can contribute to hematological tumor development. To assess the prognosis of the disease, an international assessment system taking into account a karyotype, the number of blast cells, and the degree of deficiency of different blood cell types is used. However, the overall survival and effectiveness of the therapy offered are not always consistent with predictions. The search for new biomarkers, followed by their integration into the existing prognostic system, will allow for personalized treatment to be performed with more precision. Additionally, this paper explains how miRNA expression levels correlate with the prognosis of overall survival and response to the therapy offered.
Collapse
Affiliation(s)
- Y. A. Veryaskina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| | - S. E. Titov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
- Vector-Best, Novosibirsk, 630117 Russia
| | - I. B. Kovynev
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - S. S. Fedorova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - T. I. Pospelova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - I. F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| |
Collapse
|
18
|
Long W, Liu S, Li XX, Shen X, Zeng J, Luo JS, Li KR, Wu AG, Yu L, Qin DL, Hu GQ, Yang J, Wu JM. Whole transcriptome sequencing and integrated network analysis elucidates the effects of 3,8-Di-O-methylellagic acid 2-O-glucoside derived from Sanguisorba offcinalis L., a novel differentiation inducer on erythroleukemia cells. Pharmacol Res 2021; 166:105491. [PMID: 33582247 DOI: 10.1016/j.phrs.2021.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive hematologic malignancy with no specific treatment. Sanguisorba officinalis L. (S. officinalis), a well-known traditional Chinese medicine, possesses potent anticancer activity. However, the active components of S. officinalis against AEL and the associated molecular mechanisms remain unknown. In this study, we predicted the anti-AML effect of S. officinalis based on network pharmacology. Through the identification of active components of S. officinalis, we found that 3,8-Di-O-methylellagic acid 2-O-glucoside (DMAG) not only significantly inhibited the proliferation of erythroleukemic cell line HEL, but also induced their differentiation to megakaryocytes. Furthermore, we demonstrated that DMAG could prolong the survival of AEL mice model. Whole-transcriptome sequencing was performed to elucidate the underlying molecular mechanisms associated with anti-AEL effect of DMAG. The results showed that the total of 68 miRNAs, 595 lncRNAs, 4030 mRNAs and 35 circRNAs were significantly differentially expressed during DMAG induced proliferation inhibition and differentiation of HEL cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed miRNAs, lncRNAs, mRNAs and circRNAs were mainly involved in metabolic, HIF-1, MAPK, Notch pathway and apoptosis. The co-expression networks showed that miR-23a-5p, miR-92a-1-5p, miR-146b and miR-760 regulatory networks were crucial for megakaryocyte differentiation induced by DMAG. In conclusion, our results suggest that DMAG, derived from S. officinalis might be a potent differentiation inducer of AEL cells and provide important information on the underlying mechanisms associated with its anti-AEL activity.
Collapse
Affiliation(s)
- Wang Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Sha Liu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Xuan Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Xin Shen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jie-Si Luo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ke-Ru Li
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Guang-Qiang Hu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
19
|
Li Q, Du X, Liu L, Liu H, Pan Z, Li Q. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1. Domest Anim Endocrinol 2021; 74:106509. [PMID: 32653739 DOI: 10.1016/j.domaniend.2020.106509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide long small noncoding RNAs, which play an important role in follicular atresia and granulosa cell (GC) apoptosis in the mammalian ovary. Here, we report that miR-146b, a conserved and ovary-enriched miRNA, modulates estradiol (E2) secretion, GC apoptosis, and follicular atresia in pigs. Genome-wide analysis and quantitative real-time PCR revealed that miR-146b was significantly upregulated during follicular atresia, and fluorescence-activated cell sorting showed that miR-146b functioned as a proapoptotic factor to induce GC apoptosis. MicroRNA-mRNA network analysis and luciferase reporter assays showed that CYP19A1, the pivotal enzyme for E2 synthesis signaling, was directly targeted by miR-146b. Furthermore, miR-146b interacted with the 3'untranslated region of CYP19A1 to prevent translation, thereby regulating CYP19A1-mediated E2 secretion and GC apoptosis. However, miR-146b was not regulated by the transcription factor SMAD4 or oxidative stress, both of which are critical regulators of CYP19A1. We, thus, conclude that miR-146b is a novel epigenetic factor regulating GC functions, follicular development, and female reproduction.
Collapse
Affiliation(s)
- Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - X Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - L Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Chattopadhyaya S, Banerjee S. miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes. Biol Cell 2020; 113:118-129. [PMID: 33278308 DOI: 10.1111/boc.202000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND INFORMATION Megakaryocytes (MKs) follow a unique cell cycle duplication process, called endomitosis, resulting in polyploidisation of cells. It is hypothesised that polyploidy, as well as an increment in cytoplasm volume, allow more efficient platelets generation from MKs. Although polyploidy leads to an increase in the DNA amount, which impacts gene expression, little is known about ribosomal biogenesis in these polylobulated polyploid cells. RESULTS The nucleolus acts as a hub for ribosomal biogenesis, which in turn governs the protein synthesis rate of the cells. We therefore estimated the size and activity of the nucleolus in polyploid cells during megakaryopoiesis in vitro. Polyploid megakaryocytic cell lines and in vitro cultured MKs, which were obtained from human cord blood-derived CD 34+ cells, revealed that miRNA 146b regulated the activity of nucleolar and coiled-body phosphoprotein 1, which plays an integral role in determining nucleolar size and activity. Additionally, miRNA-146b was up-regulated during endomitosis and was found to promote megakaryopoiesis. CONCLUSION We propose that miRNA 146b regulates not only nucleolar size and activity, but also megakaryopoiesis. SIGNIFICANCE This study highlights the importance of nucleolar activity and miRNA in the progression of megakaryopoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Saran Chattopadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Bidhannagar, Kolkata, 700064, India
| | - Subrata Banerjee
- School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| |
Collapse
|
21
|
Danese E, Montagnana M, Gelati M, Lippi G. The Role of Epigenetics in the Regulation of Hemostatic Balance. Semin Thromb Hemost 2020; 47:53-62. [PMID: 33368118 DOI: 10.1055/s-0040-1718400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics, a term conventionally used to explain the intricate interplay between genes and the environment, is now regarded as the fundament of developmental biology. Several lines of evidence garnered over the past decades suggest that epigenetic alterations, mostly encompassing DNA methylation, histone tail modifications, and generation of microRNAs, play an important, though still incompletely explored, role in both primary and secondary hemostasis. Epigenetic variations may interplay with platelet functions and their responsiveness to antiplatelet drugs, and they may also exert a substantial contribution in modulating the production and release into the bloodstream of proteins involved in blood coagulation and fibrinolysis. This emerging evidence may have substantial biological and clinical implications. An enhanced understanding of posttranscriptional mechanisms would help to clarify some remaining enigmatic issues in primary and secondary hemostasis, which cannot be thoughtfully explained by genetics or biochemistry alone. Increased understanding would also pave the way to developing innovative tests for better assessment of individual risk of bleeding or thrombosis. The accurate recognition of key epigenetic mechanisms in hemostasis would then contribute to identify new putative therapeutic targets, and develop innovative agents that could be helpful for preventing or managing a vast array of hemostasis disturbances.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martina Montagnana
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Das SS, Das S, Byram PK, Rahaman M, Dolai TK, Chatterjee A, Chakravorty N. MicroRNA expression patterns in HbE/β-thalassemia patients: The passwords to unlock fetal hemoglobin expression in β-hemoglobinopathies. Blood Cells Mol Dis 2020; 87:102523. [PMID: 33242839 DOI: 10.1016/j.bcmd.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022]
Abstract
Hemoglobin E (HbE)/β-thalassemia is a form of β-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels - a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/β-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology. The miRNA expression profile of hematopoietic progenitor cells in HbE/β-thalassemia patients was investigated and compared with that of healthy controls. Using miRNA PCR array experiments, eight miRNAs (hsa-miR-146a-5p, hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-155-5p, hsa-miR-192-5p, hsa-miR-335-5p, hsa-miR-7-5p, hsa-miR-98-5p) were identified to be significantly up-regulated whereas four miRNAs (hsa-let-7a-5p, hsa-miR-320a, hsa-let-7b-5p, hsa-miR-92a-3p) were significantly down-regulated. Target analysis found them to be associated with several biological processes and molecular functions including MAPK and HIF-1 signaling pathways - the pathways known to be associated with HbF upregulation. Results of dysregulated miRNAs further indicated that miR-17/92 cluster might be of critical importance in HbF regulation. The findings of our study thus identify key miRNAs that can be extrinsically manipulated to elevate HbF levels in β-hemoglobinopathies.
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tuphan Kanti Dolai
- Haematology Department, Nilratan Sircar Medical College and Hospital, Kolkata, West Bengal 700014, India
| | - Anish Chatterjee
- Department of Pediatric Medicine, Rampurhat Government Medical College and Hospital, Rampurhat, Birbhum, West Bengal 731224, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
23
|
Águila S, Cuenca-Zamora E, Martínez C, Teruel-Montoya R. MicroRNAs in Platelets: Should I Stay or Should I Go? Platelets 2020. [DOI: 10.5772/intechopen.93181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we discuss different topics always using the microRNA as the guiding thread of the review. MicroRNAs, member of small noncoding RNAs family, are an important element involved in gene expression. We cover different issues such as their importance in the differentiation and maturation of megakaryocytes (megakaryopoiesis), as well as the role in platelets formation (thrombopoiesis) focusing on the described relationship between miRNA and critical myeloid lineage transcription factors such as RUNX1, chemokines receptors as CRCX4, or central hormones in platelet homeostasis like TPO, as well as its receptor (MPL) and the TPO signal transduction pathway, that is JAK/STAT. In addition to platelet biogenesis, we review the microRNA participation in platelets physiology and function. This review also introduces the use of miRNAs as biomarkers of platelet function since the detection of pathogenic situations or response to therapy using these noncoding RNAs is getting increasing interest in disease management. Finally, this chapter describes the participation of platelets in cellular interplay, since extracellular vesicles have been demonstrated to have the ability to deliver microRNAs to others cells, modulating their function through intercellular communication, redefining the extracellular vesicles from the so-called “platelet dust” to become mediators of intercellular communication.
Collapse
|
24
|
Zhao X, Liu Z, Shen J, Yong L, Xia Y, Bian M. microRNA-196a Overexpression Inhibits Apoptosis in Hemin-Induced K562 Cells. DNA Cell Biol 2020; 39:235-243. [PMID: 31913716 DOI: 10.1089/dna.2019.5061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
microRNAs (miRNAs) have a crucial role in erythropoiesis. However, the understanding of the apoptosis of erythroid lineage remains poorly understood. Hence, an additional examination is required. K562 cell lines can be differentiated into early erythrocytes by hemin and the model of early erythrocytes can be established, consequently. miR-196a has been proven to take part in antiapoptosis in many cell lines. However, the role of miR-196a associated with the apoptosis in hemin-induced K562 cells remains unclear. To study the potential function of miR-196a involved in the common progenitor of erythroblasts, miR-196a mimics and microRNA-small hairpin negative control (miRNA-ShNC) were transfected into hemin-induced K562 cells with lentiviruses. After that, the viability of the transfected hemin-induced K562 cells was tested by CCK-8 assay, and the alteration of cell cycle and apoptosis rate were detected by flow cytometry. Furthermore, bioinformatics and dual-luciferase report system verified that p27kip1 is a target gene of miR-196a. Additionally, the expression of some proteins associated with cell cycle and apoptosis was tested by Western blotting assays. It was found that after overexpressing miR-196a, the proliferation of hemin-induced K562 cells was promoted while the apoptosis inhibited. Furthermore, miR-196a combines with the 3'UTR of p27kip1 directly. Additionally, the relationship between miR-196a and the protein level of p27kip1 is negative. After restoring the expression of p27kip1, the growth rate of hemin-induced K562 cells was not as high as before and the inhibition of apoptosis was alleviated. The present study validates that miR-196a overexpression inhibits apoptosis in hemin-induced K562 cells through downregulating p27kip1.
Collapse
Affiliation(s)
- Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenfei Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Hefei, China
| | - Liang Yong
- Institute and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Xia
- Medical Genetics Center, Anhui Women and Child Health Care Hospital, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Ablation of miR-146b in mice causes hematopoietic malignancy. Blood Adv 2019; 2:3483-3491. [PMID: 30530754 DOI: 10.1182/bloodadvances.2018017954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 12/23/2022] Open
Abstract
Excessive and constitutive activation of nuclear factor-κB (NF-κB) leads to abnormal cell proliferation and differentiation, leading to the development of malignant tumors, including lymphoma. MicroRNA 146a (miR-146a) and miR-146b, both of which carry an identical seed sequence, have been shown to contribute to inflammatory diseases and tumors by suppressing the expression of key molecules required for NF-κB activation. However, the functional and physiological differences between miR-146a and miR-146b in disease onset have not been fully elucidated. In this study, we generated miR-146b-knockout (KO) and miR-146a-KO mice by genome editing and found that both strains developed hematopoietic malignancies such as B-cell lymphoma and acute myeloid leukemia during aging. However, the B-cell lymphomas observed in miR-146a- and miR-146b-KO mice were histologically different in their morphology, and the malignancy rate is lower in miR-146b mice than miR-146a mice. Upon mitogenic stimulation, the expression of miR-146a and miR-146b was increased, but miR-146b expression was lower than that of miR-146a. Using a previously developed screening system for microRNA targets, we observed that miR-146a and miR-146b could target the same mRNAs, including TRAF6, and inhibit subsequent NF-κB activity. Consistent with these findings, both miR-146a- and miR-146b-KO B cells showed a high proliferative capacity. Taken together, sustained NF-κB activation in miR-146b KO mice could lead to the development of hematopoietic malignancy with aging.
Collapse
|
26
|
Gao K, Wang Z, Qiu X, Song J, Wang H, Zhao C, Wang X, Chang Y. Transcriptome analysis of body wall reveals growth difference between the largest and smallest individuals in the pure and hybrid populations of Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100591. [PMID: 31078435 DOI: 10.1016/j.cbd.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022]
Abstract
Long-term inbreeding of sea cucumber has resulted in a decrease in its growth rate, which has severely affected yield and economic efficiency. In this study, three Apostichopus japonicus families were constructed and screened into the weight of smallest and largest, which included Russian, Chinese, and their hybrids (RC). We examined the transcriptional profiles of hybrid (RC) and purebred (CC and RR). A total of 49.69 Gb clean reads were obtained, and the Q30 base percentage was above 90.47%. A total of 5191 novel genes were discovered, of which 2592 genes were annotated. Differentially expressed genes (DEGs) were identified, and functional annotation and enrichment analysis were performed. Approximately 1874 DEGs were screened in the Chinese sea cucumber (CC) difference group; 2591 DEGs were obtained in the hybrid sea cucumber difference group (RC), and 3006 DEGs were obtained in the Russian sea cucumber difference group (RR). In Gene Ontology (GO) analysis, highest DEG enrichment was observed for the functional categories of cellular process and metabolic process. In terms of cellular components, DEG enrichment was observed in cell part, cell; for molecular function, DEG enrichment was detected in catalytic activity, binding, hydrolase activity, transferase activity. According to the differential expression analysis, we found that 15 heat shock protein (HSP) genes that have the same expression trends, which were upregulated in the smallest weight of three sea cucumber lines. In addition, COG analysis of defense genes was conducted. All defense genes (ATP-binding cassette transporters (ABCs), multidrug resistance protein (MRPs), and beta-lactamase) showed the same expression trend, which was significantly upregulated in smallest individuals compared to that of largest individuals in RC lines, which implied the smallest individuals are exposed to more pressure during growth. These results may lead to the smallest individuals showing slow growth. Additionally, we selected 12 DEGs to validate the result by qPCR. Those DEGs were included in growth-related and resistance genes. Sequencing of the A. japonicus transcriptome improves our understanding of the transcriptional regulatory apparatus that controls individual development and growth.
Collapse
Affiliation(s)
- Kailun Gao
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhicheng Wang
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Haoze Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in the North China Sea, Smaistry of Agriculture, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
27
|
Choi Y, Hur EH, Moon JH, Goo BK, Choi DR, Lee JH. Expression and prognostic significance of microRNAs in Korean patients with myelodysplastic syndrome. Korean J Intern Med 2019; 34:390-400. [PMID: 29132200 PMCID: PMC6406090 DOI: 10.3904/kjim.2016.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 06/17/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Various alterations of microRNA (miRNA) expression have been reported in myelodysplastic syndrome (MDS). We aimed to investigate the unique patterns and prognostic significance of miRNA expression in Korean patients with MDS. METHODS Bone marrow mononuclear cells were collected from eight healthy controls and 26 patients with MDS, and miRNAs were isolated and assessed via quantitative real-time polymerase chain reaction for selected miRNAs, including miR-21, miR-124a, miR-126, miR-146b-5p, miR-155, miR-182, miR-200c, miR-342-5p, miR-708, and Let-7a. RESULTS MiR-124a, miR-155, miR-182, miR-200c, miR-342-5p, and Let-7a were significantly underexpressed in patients with MDS, compared to healthy controls. MiR-21, miR-126, 146b-5p, and miR-155 transcript levels were significantly lower in international prognostic scoring system lower (low and intermediate-1) risk MDS than in higher (intermediate-2 and high) risk MDS. Higher expression levels of miR-126 and miR-155 correlated with significantly shorter overall survival and leukemia-free survival. Higher miR-124a expression also tended to be related to shorter survivals. CONCLUSION Although our study was limited by the relatively small number of patients included, we identified several miRNAs associated with pathogenesis, leukemic transformation, and prognosis in MDS.
Collapse
Affiliation(s)
- Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Hyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Ro Choi
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Je-Hwan Lee, M.D. Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3218 Fax: +82-2-3010-6885 E-mail:
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Fang X, Shen F, Lechauve C, Xu P, Zhao G, Itkow J, Wu F, Hou Y, Wu X, Yu L, Xiu H, Wang M, Zhang R, Wang F, Zhang Y, Wang D, Weiss MJ, Yu D. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica 2017; 103:406-416. [PMID: 29269522 PMCID: PMC5830375 DOI: 10.3324/haematol.2017.177394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
The microRNAs miR-144 and -451 are encoded by a bicistronic gene that is strongly induced during red blood cell formation (erythropoiesis). Ablation of the miR-144/451 gene in mice causes mild anemia under baseline conditions. Here we show that miR-144/451−/− erythroblasts exhibit increased apoptosis during recovery from acute anemia. Mechanistically, miR-144/451 depletion increases the expression of the miR-451 target mRNA Cab39, which encodes a co-factor for the serine-threonine kinase LKB1. During erythropoietic stress, miR-144/451−/− erythroblasts exhibit abnormally increased Cab39 protein, which activates LKB1 and its downstream AMPK/mTOR effector pathway. Suppression of this pathway via drugs or shRNAs enhances survival of the mutant erythroblasts. Thus, miR-144/451 facilitates recovery from acute anemia by repressing Cab39/AMPK/mTOR. Our findings suggest that miR-144/451 is a key protector of erythroblasts during pathological states associated with dramatically increased erythropoietic demand, including acute blood loss and hemolytic anemia.
Collapse
Affiliation(s)
- Xiao Fang
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Feiyang Shen
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peng Xu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guowei Zhao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacobi Itkow
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Fan Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Yaying Hou
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Xiaohui Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China.,Department of Pediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, China
| | - Lingling Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China.,Department of Pediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, China
| | - Huiqing Xiu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Mengli Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Ruiling Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Fangfang Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Yanqing Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China
| | - Daxin Wang
- Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, University School of Medicine, China .,Institute of Comparative Medicine, Yangzhou University, China.,Institute of Translational Medicine, Yangzhou University School of Medicine, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| |
Collapse
|
30
|
Seiki T, Naito M, Hishida A, Takagi S, Matsunaga T, Sasakabe T, Hattori Y, Kawai S, Okada R, Yin G, Hamajima N, Wakai K. Association of genetic polymorphisms with erythrocyte traits: Verification of SNPs reported in a previous GWAS in a Japanese population. Gene 2017; 642:172-177. [PMID: 29133146 DOI: 10.1016/j.gene.2017.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/18/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
Erythrocyte count and volume are the commonly used hematological indices for anemia that change in various diseases. To date, however, only one study ever exists that addressed erythrocyte trait-associated single nucleotide polymorphisms (SNPs) in a Japanese population. Because that study was performed in patients with various diseases, we confirmed the reported associations in a general population. Participants in the current study were from the Shizuoka component of the Japan Multi-Institutional Collaborative Cohort Study, which included 4971 men and women aged 35 to 69years who were recruited between 2006 and 2007. We analyzed the association of seven selected SNPs with the following erythrocyte traits: red blood cell count, hemoglobin (Hb) and hematocrit (Ht) levels, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration. The erythrocyte traits were regressed on a number of minor alleles of selected SNPs. Then we compared our findings with those from a genome-wide association study performed in a Japanese population. We replicated the association of ABO rs495828, PDGFRA-KIT rs218237, USP49-MED20-BSYL-CCND3 rs3218097, C6orf182-CD164 rs11966072, TERT rs2736100, and TMPRSS6 rs5756504 with erythrocyte traits in our independent Japanese population. In addition, we found a significant interaction between TERT rs2736100 and smoking habit that affected Hb and Ht levels.
Collapse
Affiliation(s)
- Toshio Seiki
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sahoko Takagi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Matsunaga
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Hattori
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Guang Yin
- Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, Kitakyushu, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
31
|
Chen DJ, Li LJ, Yang XK, Yu T, Leng RX, Pan HF, Ye DQ. Altered microRNAs expression in T cells of patients with SLE involved in the lack of vitamin D. Oncotarget 2017; 8:62099-62110. [PMID: 28977929 PMCID: PMC5617489 DOI: 10.18632/oncotarget.19062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
Vitamin D has been recognized as a potent immunomodulator and its deficiency is common in different population groups including patients with SLE. As miRNAs regulation plays a significant role in SLE, the present study aimed to evaluate the association between vitamin D status and miRNAs levels in patients with SLE. The serum concentrations of vitamin D (25-hydroxyvitamin D) and the levels of six miRNAs in T cells from patients with SLE were measured in 42 SLE cases and 48 healthy controls. Vitamin D treatment was also performed in isolated and cultured T cells from SLE patients in different times and doses. Vitamin D insufficiency (25-hydroxyvitamin D concentration <20 ng/ml) was more common in cases than in controls. Although age and BMI were similar, cases had significantly lower concentrations of miRNA-377, miRNA-342, miRNA-10a, miRNA-374b, miRNA-125a, and miRNA-410 than controls. Furthermore, a significant positive correlation was also observed between 25-hydroxyvitamin D concentrations and measured miRNAs levels. A significant difference in observed miRNAs levels was also observed in patients with 25-hydroxyvitamin D insufficiency compared with patients with 25-hydroxyvitamin D concentration ≥20 ng/ml. And 1α,25(OH)2D3 differentially regulated miRNAs expression in dose- and time- manner in vitro. Lower expressions of miRNA-377, miRNA-342, miRNA-10a, miRNA-374b, miRNA-125a, and miRNA-410 were found in SLE patients. And severe vitamin D deficiency is associated with decreased observed miRNAs levels in SLE patients. A 25-hydroxyvitamin D concentration value <20 ng/ml is suggested as the “cut-off” for such immunological alterations in patients with SLE.
Collapse
Affiliation(s)
- Dao-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Lan-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Tao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
32
|
Martiáñez Canales T, de Leeuw DC, Vermue E, Ossenkoppele GJ, Smit L. Specific Depletion of Leukemic Stem Cells: Can MicroRNAs Make the Difference? Cancers (Basel) 2017; 9:cancers9070074. [PMID: 28665351 PMCID: PMC5532610 DOI: 10.3390/cancers9070074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
For over 40 years the standard treatment for acute myeloid leukemia (AML) patients has been a combination of chemotherapy consisting of cytarabine and an anthracycline such as daunorubicin. This standard treatment results in complete remission (CR) in the majority of AML patients. However, despite these high CR rates, only 30–40% (<60 years) and 10–20% (>60 years) of patients survive five years after diagnosis. The main cause of this treatment failure is insufficient eradication of a subpopulation of chemotherapy resistant leukemic cells with stem cell-like properties, often referred to as “leukemic stem cells” (LSCs). LSCs co-exist in the bone marrow of the AML patient with residual healthy hematopoietic stem cells (HSCs), which are needed to reconstitute the blood after therapy. To prevent relapse, development of additional therapies targeting LSCs, while sparing HSCs, is essential. As LSCs are rare, heterogeneous and dynamic, these cells are extremely difficult to target by single gene therapies. Modulation of miRNAs and consequently the regulation of hundreds of their targets may be the key to successful elimination of resistant LSCs, either by inducing apoptosis or by sensitizing them for chemotherapy. To address the need for specific targeting of LSCs, miRNA expression patterns in highly enriched HSCs, LSCs, and leukemic progenitors, all derived from the same patients’ bone marrow, were determined and differentially expressed miRNAs between LSCs and HSCs and between LSCs and leukemic progenitors were identified. Several of these miRNAs are specifically expressed in LSCs and/or HSCs and associated with AML prognosis and treatment outcome. In this review, we will focus on the expression and function of miRNAs expressed in normal and leukemic stem cells that are residing within the AML bone marrow. Moreover, we will review their possible prospective as specific targets for anti-LSC therapy.
Collapse
Affiliation(s)
- Tania Martiáñez Canales
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - David C de Leeuw
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Eline Vermue
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The discovery of several genetic variants associated with erythroid traits and subsequent elucidation of their functional mechanisms are exemplars of the power of the new genetic and genomic technology. The present review highlights findings from recent genetic studies related to the control of erythropoiesis and dyserythropoiesis, and fetal hemoglobin, an erythroid-related trait. RECENT FINDINGS Identification of the genetic modulators of erythropoiesis involved two approaches: genome-wide association studies (GWASs) using single nucleotide polymorphism (SNP) arrays that revealed the common genetic variants associated with erythroid phenotypes (hemoglobin, red cell count, MCV, MCH) and fetal hemoglobin; and massive parallel sequencing such as whole genome sequencing (WGS) and whole exome sequencing (WES) that led to the discovery of the rarer variants (GFI1B, SBDS, RPS19, PKLR, EPO, EPOR, KLF1, GATA1). Functional and genomic studies aided by computational approaches and gene editing technology refined the regions encompassing the putative causative SNPs and confirmed their regulatory role at different stages of erythropoiesis. SUMMARY Five meta-analysis of GWASs identified 17 genetic loci associated with erythroid phenotypes, which are potential regulators of erythropoiesis. Some of these loci showed pleiotropy associated with multiple erythroid traits, suggesting undiscovered molecular mechanisms and challenges underlying erythroid biology. Other sequencing strategies (WGS and WES) further elucidated the role of rare variants in dyserythropoiesis. Integration of common and rare variant studies with functional assays involving latest genome-editing technologies will significantly improve our understanding of the genetics underlying erythropoiesis and erythroid disorders.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, Maryland, USA
| | | |
Collapse
|
34
|
Budd E, de Andrés MC, Sanchez-Elsner T, Oreffo ROC. MiR-146b is down-regulated during the chondrogenic differentiation of human bone marrow derived skeletal stem cells and up-regulated in osteoarthritis. Sci Rep 2017; 7:46704. [PMID: 28436462 PMCID: PMC5402270 DOI: 10.1038/srep46704] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage injury can result in chondrocyte loss and diminishment of specialised extracellular matrix, which can progress to an osteoarthritic (OA) phenotype. Stem cells have emerged as a favourable approach for articular cartilage regeneration. Identification of miRNAs which influence stem cell fate offers new approaches for application of miRNAs to regenerate articular cartilage. Skeletal stem cells (SSCs) isolated from human bone marrow were cultured as high density micromass' using TGF-β3 to induce chondrogenesis. qPCR and TaqMan qPCR were used to assess chondrogenic gene and miRNA expression. Target prediction algorithms identified potential targets of miR-146b. Transient transfection with miR-146b mimic and western blotting was used to analyse SOX5. Human OA articular chondrocytes were examined for miR-146b expression. Chondrogenic differentiation of human bone marrow derived SSCs resulted in significant down-regulation of miR-146b. Gain of miR-146b function resulted in down-regulation of SOX5. MiR-146b expression was up-regulated in OA chondrocytes. These findings demonstrate the functional role of miR-146b in the chondrogenic differentiation of human bone marrow derived SSCs. MiR-146b may play a role in the pathophysiology of OA. Application of miR-146b combined with stem cell therapy could enhance regeneration of cartilaginous tissue and serve as a potential therapeutic target in the treatment of OA.
Collapse
Affiliation(s)
- Emma Budd
- Bone and Joint Research Group, Centre for Human Developmental, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - María C. de Andrés
- Bone and Joint Research Group, Centre for Human Developmental, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Tilman Sanchez-Elsner
- Junk RNA group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Developmental, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
35
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
36
|
Deng L, Wang X, Jiang L, Yang J, Zhou X, Lu Z, Hu H. Modulation of miR-185-5p expression by EBV-miR-BART6 contributes to developmental differences in ABCG4 gene expression in human megakaryocytes. Int J Biochem Cell Biol 2016; 81:105-111. [DOI: 10.1016/j.biocel.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
|
37
|
miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget 2016; 6:43033-47. [PMID: 26543232 PMCID: PMC4767489 DOI: 10.18632/oncotarget.5824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.
Collapse
|
38
|
Fornari TA, Lanaro C, Albuquerque DM, Ferreira R, Costa FF. Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian δβ-thalassemia, by BCL11A and SOX6-targeting microRNAs. Exp Biol Med (Maywood) 2016; 242:267-274. [PMID: 27591578 DOI: 10.1177/1535370216668052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hereditary persistence of fetal hemoglobin deletion type-2 (HPFH-2) and Sicilian-δβ-thalassemia are conditions described as large deletions of the human β-like globin cluster, with absent β-globin chains and a compensatory variable increase in γ-globin. HPFH, in general, may be distinguished from DB-Thalassemia by higher fetal hemoglobin (HbF) levels, absence of anemia and hypochromic and microcytic erythrocytes. MicroRNAs (miRNAs) regulate a range of cellular processes including erythropoiesis and regulation of transcription factors such as the BCL11A and SOX6 genes, which are related to the regulation of γ-globin expression. In this report, a possible association among the overexpression of miRNAs and the expression of the γ-globin gene was analyzed in these two conditions. Forty-nine differentially expressed miRNAs were identified by microarrays in CD34+-derived erythroid cells of two subjects heterozygous for Sicilian-δβ-thalassemia, 2 for HPFH-2 and 3 for controls after 13 days of culture. Some of these miRNAs may participate in γ-globin gene regulation and red blood cell function. The BCL11A gene was found to be potentially targeted by 12 miRNAs that were up-regulated in HPFH-2 or in DB-Thal. A down-regulation of BCL11A gene expression in HPFH-2 was verified by quantitative polymerase chain reaction. These data suggest an important action for miRNA that may partially explain the phenotypic differences between HPFH-2 and Sicilian δβ-thalassemia and the increased expression of γ-globin in these conditions.
Collapse
Affiliation(s)
- Thais A Fornari
- Hemocentro-UNICAMP - SP, Brazil, São Paulo 13083-878, Brazil
| | - Carolina Lanaro
- Hemocentro-UNICAMP - SP, Brazil, São Paulo 13083-878, Brazil
| | | | | | | |
Collapse
|
39
|
Hosokawa K, Kajigaya S, Feng X, Desierto MJ, Fernandez Ibanez MDP, Rios O, Weinstein B, Scheinberg P, Townsley DM, Young NS. A plasma microRNA signature as a biomarker for acquired aplastic anemia. Haematologica 2016; 102:69-78. [PMID: 27658437 DOI: 10.3324/haematol.2016.151076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
Aplastic anemia is an acquired bone marrow failure characterized by marrow hypoplasia, a paucity of hematopoietic stem and progenitor cells, and pancytopenia of the peripheral blood, due to immune attack on the bone marrow. In aplastic anemia, a major challenge is to develop immune biomarkers to monitor the disease. We measured circulating microRNAs in plasma samples of aplastic anemia patients in order to identify disease-specific microRNAs. A total of 179 microRNAs were analyzed in 35 plasma samples from 13 aplastic anemia patients, 11 myelodysplastic syndrome patients, and 11 healthy controls using the Serum/Plasma Focus microRNA Polymerase Chain Reaction Panel. Subsequently, 19 microRNAs from the discovery set were investigated in the 108 plasma samples from 41 aplastic anemia patients, 24 myelodysplastic syndrome patients, and 43 healthy controls for validation, confirming that 3 microRNAs could be validated as dysregulated (>1.5-fold change) in aplastic anemia, compared to healthy controls. MiR-150-5p (induction of T-cell differentiation) and miR-146b-5p (involvement in the feedback regulation of innate immune response) were elevated in aplastic anemia plasma, whereas miR-1 was decreased in aplastic anemia. By receiver operating characteristic curve analysis, we developed a logistic model with these 3 microRNAs that enabled us to predict the probability of a diagnosis of aplastic anemia with an area under the curve of 0.86. Dysregulated expression levels of the microRNAs became normal after immunosuppressive therapy at 6 months. Specifically, miR-150-5p expression was significantly reduced after successful immunosuppressive therapy, but did not change in non-responders. We propose 3 novel plasma biomarkers in aplastic anemia, in which miR-150-5p, miR-146b-5p, and miR-1 can serve for diagnosis and miR-150-5p for disease monitoring. Clinicaltrials.gov identifiers:00260689, 00217594, 00961064.
Collapse
Affiliation(s)
- Kohei Hosokawa
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Marie J Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | | | - Olga Rios
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Barbara Weinstein
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Danielle M Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MA, USA
| |
Collapse
|
40
|
Li QQ, Zhang L, Wan HY, Liu M, Li X, Tang H. CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells. Oncotarget 2016; 6:34924-40. [PMID: 26472185 PMCID: PMC4741499 DOI: 10.18632/oncotarget.5318] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022] Open
Abstract
The altered expression of miRNAs in response to stresses contributes to cancer pathogenesis. However, little is known regarding the mechanism by which cellular stresses drive alterations in miRNA expression. Here, we found that serum starvation enhanced mitophagy by downregulating the mitophagy-associated protein voltage-dependent anion channel 1 (VDAC1) and by inducing the expression of miR-320a and the transcription factor cAMP responsive element binding protein 1(CREB1). Furthermore, we cloned the promoter of miR-320a and identified the core promoter of miR-320a in the upstream -16 to -130 region of pre-miR-320a. Moreover, CREB1 was found to bind to the promoter of miR-320a to activate its expression and to induce mitophagy during serum starvation. Collectively, our results reveal a new mechanism underlying serum starvation-induced mitophagy in which serum starvation induces CREB1 expression, in turn activating miR-320a expression, which then down-regulates VDAC1 expression to facilitate mitophagy. These findings may provide new insights into cancer cell survival in response to environmental stresses.
Collapse
Affiliation(s)
- Qin-Qin Li
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Le Zhang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hai-Ying Wan
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Liang B, Song Y, Zheng W, Ma W. miRNA143 Induces K562 Cell Apoptosis Through Downregulating BCR-ABL. Med Sci Monit 2016; 22:2761-7. [PMID: 27492780 PMCID: PMC4978212 DOI: 10.12659/msm.895833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Leukemia seriously threats human health and life. MicroRNA regulates cell growth, proliferation, apoptosis, and cell cycle. Whether microRNA could be treated as a target for leukemia is still unclear and the mechanism by which microRNA143 regulates K562 cells needs further investigation. Material/Methods miRNA143 and its scramble miRNA were synthesized and transfected to K562 cells. MTT assay was used to detect K562 cell proliferation. Flow cytometry and a caspase-3 activity detection kit were used to test K562 cell apoptosis. Western blot analysis was performed to determine breakpoint cluster region-Abelson (BCR-ABL) expression. BCR-ABL overexpression and siRNA were used to change BCR-ABL level, and cell apoptosis was detected again after lipofection transfection. Results miRNA143 transfection inhibited K562 cell growth and induced its apoptosis. miRNA143 transfection decreased BCR-ABL expression. BCR-ABL overexpression suppressed miRNA143-induced K562 cell apoptosis, while its reduction enhanced miRNA143-induced apoptosis. Conclusions miRNA143 induced K562 cell apoptosis through downregulating BCR-ABL. miRNA143 might be a target for a new leukemia therapy.
Collapse
Affiliation(s)
- Bing Liang
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Yanbin Song
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| |
Collapse
|
42
|
Dobrakowski M, Boroń M, Czuba ZP, Birkner E, Chwalba A, Hudziec E, Kasperczyk S. Blood morphology and the levels of selected cytokines related to hematopoiesis in occupational short-term exposure to lead. Toxicol Appl Pharmacol 2016; 305:111-117. [DOI: 10.1016/j.taap.2016.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/10/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
|
43
|
Wolenski FS, Shah P, Sano T, Shinozawa T, Bernard H, Gallacher MJ, Wyllie SD, Varrone G, Cicia LA, Carsillo ME, Fisher CD, Ottinger SE, Koenig E, Kirby PJ. Identification of microRNA biomarker candidates in urine and plasma from rats with kidney or liver damage. J Appl Toxicol 2016; 37:278-286. [PMID: 27397436 PMCID: PMC5298042 DOI: 10.1002/jat.3358] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNA) are short single‐stranded RNA sequences that have a role in the post‐transcriptional regulation of genes. The identification of tissue specific or enriched miRNAs has great potential as novel safety biomarkers. One longstanding goal is to associate the increase of miRNA in biofluids (e.g., plasma and urine) with tissue‐specific damage. Next‐generation sequencing (miR‐seq) was used to analyze changes in miRNA profiles of tissue, plasma and urine samples of rats treated with either a nephrotoxicant (cisplatin) or one of two hepatotoxicants (acetaminophen [APAP] or carbon tetrachloride [CCL4]). Analyses with traditional serum chemistry and histopathology confirmed that toxicant‐induced organ damage was specific. In animals treated with cisplatin, levels of five miRNAs were significantly altered in the kidney, 14 in plasma and six in urine. In APAP‐treated animals, five miRNAs were altered in the liver, 74 in plasma and six in urine; for CCL4 the changes were five, 20 and 6, respectively. Cisplatin treatment caused an elevation of miR‐378a in the urine, confirming the findings of other similar studies. There were 17 in common miRNAs elevated in the plasma after treatment with either APAP or CCL4. Four of these (miR‐122, −802, −31a and −365) are known to be enriched in the livers of rats. Interestingly, the increase of serum miR‐802 in both hepatotoxicant treatments was comparable to that of the well‐known liver damage marker miR‐122. Taken together, comparative analysis of urine and plasma miRNAs demonstrated their utility as biomarkers of organ injury. Copyright © 2016 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. MicroRNAs (miRNA) have great potential as novel safety biomarkers. Next‐generation sequencing was used to analyze changes in miRNA profiles of tissue, plasma and urine samples of rats treated with either a nephrotoxicant (cisplatin) or one of two hepatotoxicants (acetaminophen or carbon tetrachloride). Cisplatin treatment caused an elevation of miR‐378a in the urine, confirming the findings of other similar studies. Treatment with either acetaminophen or carbon tetrachloride caused a serum elevation of four liver‐enriched miRNAs (miR‐122, −802, −31a and −365).
Collapse
Affiliation(s)
- Francis S Wolenski
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Pooja Shah
- Molecular Pathology, Millennium Pharmaceuticals, Inc, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Tomoya Sano
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hugues Bernard
- Molecular Pathology, Millennium Pharmaceuticals, Inc, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Matt J Gallacher
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Shylah D Wyllie
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Georgianna Varrone
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Lisa A Cicia
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Mary E Carsillo
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Craig D Fisher
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Sean E Ottinger
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Erik Koenig
- Molecular Pathology, Millennium Pharmaceuticals, Inc, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| | - Patrick J Kirby
- Drug Safety Research & Evaluation, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
Ding N, Xi J, Li Y, Xie X, Shi J, Zhang Z, Li Y, Fang F, Wang S, Yue W, Pei X, Fang X. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation. Front Med 2016; 10:297-310. [PMID: 27272188 DOI: 10.1007/s11684-016-0452-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Abstract
Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present study, we compared the dynamics of coding genes, miRNA, and lncRNA expression profiles. To explore dynamic changes in erythropoiesis and potential mechanisms that control these changes in the transcriptome level, we took advantage of high throughput sequencing technologies to obtain transcriptome data from cord blood hematopoietic stem cells and the following four erythroid differentiation stages, as well as from mature red blood cells. Results indicated that lncRNAs were promising cell marker candidates for erythroid differentiation. Clustering analysis classified the differentially expressed genes into four subtypes that corresponded to dynamic changes during stemness maintenance, mid-differentiation, and maturation. Integrated analysis revealed that noncoding RNAs potentially participated in controlling blood cell maturation, and especially associated with heme metabolism and responses to oxygen species and DNA damage. These regulatory interactions were displayed in a comprehensive network, thereby inferring correlations between RNAs and their associated functions. These data provided a substantial resource for the study of normal erythropoiesis, which will permit further investigation and understanding of erythroid development and acquired erythroid disorders.
Collapse
Affiliation(s)
- Nan Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiafei Xi
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Yanming Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Xie
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Jian Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Li
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Fang Fang
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Sihan Wang
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Wen Yue
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Xuetao Pei
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
45
|
Akçakaya P, Lui WO. MicroRNAs and Gastrointestinal Stromal Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:51-70. [PMID: 26658996 DOI: 10.1007/978-3-319-23730-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most commonly diagnosed mesenchymal tumor in the gastrointestinal tract. This tumor type is driven by gain-of-function mutations in receptor tyrosine kinases (such as KIT, PDGFRA, and BRAF) or loss-of-function mutations in succinate dehydrogenase complex subunit genes (SDHx). Molecular studies on GIST have improved our understanding of the biology of the disease and have led to the use of targeted therapy approach, such as imatinib for KIT/PDGFRA-mutated GIST. Recently, microRNAs have emerged as important regulators of KIT expression, cancer cell behavior, and imatinib response in GIST. This chapter aims to provide an overview on current understanding of the biological roles of microRNAs in GIST and possible implications in prognosis and therapeutic response.
Collapse
Affiliation(s)
- Pinar Akçakaya
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| |
Collapse
|
46
|
Function and significance of MicroRNAs in benign and malignant human stem cells. Semin Cancer Biol 2015; 35:200-11. [DOI: 10.1016/j.semcancer.2015.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
|
47
|
Wang H, Jiang M, Xu Z, Huang H, Gong P, Zhu H, Ruan C. miR-146b-5p promotes VSMC proliferation and migration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12901-12907. [PMID: 26722482 PMCID: PMC4680427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play pivotal roles in the development of vascular diseases. While microRNAs are important in vascular pathologies, a few is known about their functional roles in VSMC phenotypes. We profiled microRNA expression in PDGF-BB treated VSMCs and found microRNA-146b-5p (miR-146b-5p) was upregulated. Inhibition of miR-146b-5p blocked in response to PDGF while reducing VSMC proliferation and migration. These studies implicate miR-146b-5p as necessary for PDGF-induced VSMC phenotype transition. Downstream miR-146b-5p targets modulating VSMC phenotypes will be further identified. Our study will help to understand the role of VSMCs in the pathology of vascular diseases.
Collapse
Affiliation(s)
- Hairong Wang
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Mei Jiang
- Department of Neurology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Zhenxing Xu
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Hui Huang
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Peihua Gong
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Hua Zhu
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| | - Changwu Ruan
- Department of Cardiology, Shanghai Pudong New Area Gongli HospitalShanghai, China
| |
Collapse
|
48
|
|
49
|
Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA. DICER Inactivation Identifies Pancreatic β-Cell "Disallowed" Genes Targeted by MicroRNAs. Mol Endocrinol 2015; 29:1067-79. [PMID: 26038943 PMCID: PMC4484783 DOI: 10.1210/me.2015-1059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β-cells are the body's sole source of circulating insulin and essential for the maintenance of blood glucose homeostasis. Levels of up to 66 “disallowed” genes, which are strongly expressed and play housekeeping roles in most other mammalian tissues, are unusually low in β-cells. The molecular mechanisms involved in repressing these genes are largely unknown. Here, we explore the role in gene disallowance of microRNAs (miRNAs), a type of small noncoding RNAs that silence gene expression at the posttranscriptional level and are essential for β-cell development and function. To selectively deplete miRNAs from adult β-cells, the miRNA-processing enzyme DICER was inactivated by deletion of the RNase III domain with a tamoxifen-inducible Pdx1CreER transgene. In this model, β-cell dysfunction was apparent 2 weeks after recombination and preceded a decrease in insulin content and loss of β-cell mass. Of the 14 disallowed genes studied, quantitative RT-quantitative real-time PCR revealed that 6 genes (Fcgrt, Igfbp4, Maf, Oat, Pdgfra, and Slc16a1) were up-regulated (1.4- to 2.1-fold, P < .05) at this early stage. Expression of luciferase constructs bearing the 3′-untranslated regions of the corresponding mRNAs in wild-type or DICER-null β-cells demonstrated that Fcgrt, Oat, and Pdgfra are miRNA direct targets. We thus reveal a role for miRNAs in the regulation of disallowed genes in β-cells and provide evidence for a novel means through which noncoding RNAs control the functional identity of these cells independently of actions on β-cell mass.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
50
|
Jiang W, Liu J, Dai Y, Zhou N, Ji C, Li X. MiR-146b attenuates high-fat diet-induced non-alcoholic steatohepatitis in mice. J Gastroenterol Hepatol 2015; 30:933-43. [PMID: 25559563 DOI: 10.1111/jgh.12878] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In this study, we investigated the role of miR-146b in the Toll-like receptor-4 signaling pathway and high-fat diet (HFD)-induced NASH in vivo and in vitro. METHODS The effect of miR-146b on the expression of IL-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in RAW264.7 cells and HepG2 was studied, and the effect of miR-146b on lipid accumulation in HepG2 was also studied in vitro. The levels of IRAK1, TRAF6, NF-κB, and pro-inflammatory cytokines, as well as the histologic features and lipid accumulation in the livers of HFD-induced non-alcoholic steatohepatitis (NASH) and an miR-146b-administered HFD mouse model, were studied in vivo. RESULTS After miR-146b administration, TRAF6 and IRAK1 mRNA and protein levels in macrophages after lipopolysaccharide administration and in HepG2 cells after oleic acid (OA) administration were significantly decreased in 146b group compared with control group (P < 0.001). The lipid accumulation in HepG2 cells exposed to OA was also decreased by inactivation of IRAK1 and TRAF6, then downregulation of the downstream molecules (NF-κB) and upregulation of the tension homolog deleted on chromosome 10 (PTEN) level. In vivo, after administration of miR-146b, TRAF6 and IRAK1 mRNA and protein levels as well as TNF-α and IL-6 mRNA and protein levels were decreased, and hematoxylin and eosin staining showed that the 146b group had low average adipose cell cross-sectional areas compared with control group. CONCLUSION MiR-146b ameliorated HFD-induced NASH by directly suppressing IRAK1 and TRAF6.
Collapse
Affiliation(s)
- Weiwei Jiang
- Institute of Pediatric Research, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China; Department of Neonatal Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|