1
|
Samaja M, Malavalli A, Vandegriff KD. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes. Int J Mol Sci 2023; 24:14902. [PMID: 37834350 PMCID: PMC10573492 DOI: 10.3390/ijms241914902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The search for a clinically affordable substitute of human blood for transfusion is still an unmet need of modern society. More than 50 years of research on acellular hemoglobin (Hb)-based oxygen carriers (HBOC) have not yet produced a single formulation able to carry oxygen to hemorrhage-challenged tissues without compromising the body's functions. Of the several bottlenecks encountered, the high reactivity of acellular Hb with circulating nitric oxide (NO) is particularly arduous to overcome because of the NO-scavenging effect, which causes life-threatening side effects as vasoconstriction, inflammation, coagulopathies, and redox imbalance. The purpose of this manuscript is not to add a review of candidate HBOC formulations but to focus on the biochemical and physiological events that underly NO scavenging by acellular Hb. To this purpose, we examine the differential chemistry of the reaction of NO with erythrocyte and acellular Hb, the NO signaling paths in physiological and HBOC-challenged situations, and the protein engineering tools that are predicted to modulate the NO-scavenging effect. A better understanding of two mechanisms linked to the NO reactivity of acellular Hb, the nitrosylated Hb and the nitrite reductase hypotheses, may become essential to focus HBOC research toward clinical targets.
Collapse
Affiliation(s)
- Michele Samaja
- Department of Health Science, University of Milan, 20143 Milan, Italy
| | | | | |
Collapse
|
2
|
Kruczkowska W, Kciuk M, Pasieka Z, Kłosiński K, Płuciennik E, Elmer J, Waszczykowska K, Kołat D, Kałuzińska-Kołat Ż. The artificial oxygen carrier erythrocruorin-characteristics and potential significance in medicine. J Mol Med (Berl) 2023; 101:961-972. [PMID: 37460699 PMCID: PMC10400677 DOI: 10.1007/s00109-023-02350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
The diminishing supply and increasing costs of donated blood have motivated research into novel hemoglobin-based oxygen carriers (HBOCs) that can serve as red blood cell (RBC) substitutes. HBOCs are versatile agents that can be used in the treatment of hemorrhagic shock. However, many of the RBC substitutes that are based on mammalian hemoglobins have presented key limitations such as instability and toxicity. In contrast, erythrocruorins (Ecs) are other types of HBOCs that may not suffer these disadvantages. Ecs are giant metalloproteins found in annelids, crustaceans, and some other invertebrates. Thus far, the Ecs of Lumbricus terrestris (LtEc) and Arenicola marina (AmEc) are the most thoroughly studied. Based on data from preclinical transfusion studies, it was found that these compounds not only efficiently transport oxygen and have anti-inflammatory properties, but also can be modified to further increase their effectiveness. This literature review focuses on the structure, properties, and application of Ecs, as well as their advantages over other HBOCs. Development of methods for both the stabilization and purification of erythrocruorin could confer to enhanced access to artificial blood resources.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Zbigniew Pasieka
- Department of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Poland
| | - Karol Kłosiński
- Department of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacob Elmer
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, USA
| | - Klaudia Waszczykowska
- Department of Functional Genomics, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136, Lodz, Poland.
| |
Collapse
|
3
|
Lee DN, Kim YR, Kim Y, Park BJ, Lee SJ, Kim SJ, Shin JH. Therapeutic Potency of NO Loaded into Anticancer Copper Metal-Organic Framework through Nonclassical Hydrogen Bonding. ACS APPLIED BIO MATERIALS 2022; 5:4301-4309. [PMID: 36041482 DOI: 10.1021/acsabm.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) are potential exogenous scaffolds for therapeutic nitric oxide (NO) delivery because they can store drug or bioactive gas molecules within pores or on active metal sites. Herein, we employed a Cu-MOF coordinated with glutarate (glu) and 1,2-bis(4-pyridyl)ethane (bpa) to obtain NO-loaded Cu-MOF (NO⊂Cu-MOF). NO loading transformed the space group of Cu-MOF from monoclinic C2/c to triclinic P-1 through nonclassical hydrogen bonding with glu and bpa. Cu-MOF showed good stability in deionized water and phosphate-buffered saline. NO⊂Cu-MOF released up to 1.10 μmol mg-1 NO over 14.6 h at 37 °C, which is suitable for therapeutic applications. NO⊂Cu-MOF showed moderate biocompatibility with L-929 cells and significant anticancer activity against HeLa cells, suggesting an apoptosis-mediated cell death mechanism. These insights into NO bonding modes with Cu-MOF that enable controlled NO release can inspire the design of functional MOFs as hybrid NO donors for drug delivery.
Collapse
Affiliation(s)
- Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Yeong Rim Kim
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Youngmee Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Bong Joo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul01897, Republic of Korea
| | - Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Sung-Jin Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
4
|
Dybas J, Berkowicz P, Proniewski B, Dziedzic-Kocurek K, Stanek J, Baranska M, Chlopicki S, Marzec KM. Spectroscopy-based characterization of Hb-NO adducts in human red blood cells exposed to NO-donor and endothelium-derived NO. Analyst 2019; 143:4335-4346. [PMID: 30109873 DOI: 10.1039/c8an00302e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb-NO adducts. This work presents a complementary approach based on Resonance Raman Spectroscopy (RRS) supported by Blood Gas Analysis, Electron Paramagnetic Resonance Spectroscopy, UV-Vis Absorption Spectroscopy and Mössbauer Spectroscopy to characterize the formation of various Hb species, with a focus on the Hb-NO adducts formed inside isolated human RBCs exposed to NO, under the experimental conditions of low and high levels of oxygen Hb saturation. In the present work, we induced Hb-NO adducts using PAPA-NONOate, a NO-donor with known chemistry and kinetics of NO release, and confirmed the formation of Hb-NO adducts in RBCs incubated with Human Aortic Endothelial Cells (HAECs) stimulated to produce NO. Our results provide a new insight into the formation of Hb-NO adducts after the exposure of RBCs with high oxyHb content to exogenous NO with special attention to the formation of LSHbIIINO in addition to LSHbIINO and metHb (HS/LSHbIIIH2O). We also point out that reliable characterization of Hb-NO adducts requires complementary techniques. Among them, RRS, as a label-free and non-destructive tool, appears to be an important discrimination technique in the studies of Hb-NO adducts inside intact RBCs.
Collapse
Affiliation(s)
- Jakub Dybas
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rajesh A, Zimmerman D, Spivack K, Abdulmalik O, Elmer J. Glutaraldehyde cross-linking increases the stability of Lumbricus terrestris erythrocruorin. Biotechnol Prog 2017; 34:521-528. [PMID: 29226612 DOI: 10.1002/btpr.2593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/02/2017] [Indexed: 11/11/2022]
Abstract
Since donated red blood cells must be constantly refrigerated, they are not available in remote areas and battlefields. We have previously shown that the hemoglobin of the earthworm Lumbricus terrestris (LtEc) is an effective and safe substitute for donated blood that is stable enough to be stored for long periods at the relatively high temperatures that may be encountered in remote areas. The goal of this study was to further increase the thermal stability of LtEc by covalently cross-linking LtEc with glutaraldehyde (gLtEc). Our results show that the melting temperatures of the gLtEc samples steadily increase as the molar ratio of glutaraldehyde to heme increases (from Tm = 57°C for native LtEc up to Tm = 68°C at a ratio of 128:1). In addition, while native LtEc is susceptible to subunit dissociation at alkaline pH (8-10), cross-linking with glutaraldehyde completely prevents dissociation of gLtEc at pH 10. Increasing the molar ratio of glutaraldehyde:heme also significantly increased the oxygen affinity of gLtEc, but this effect was decreased by cross-linking gLtEc in the deoxygenated T state. Finally, while gLtEc samples cross-linked at low G:H ratios (e.g., 2:1) exhibited slight increases in oxidation rate in Tris buffer, no significant difference in oxidation rate was observed between native LtEc and the gLtEc samples in Ringer's Solution, which contains antioxidants. Overall, cross-linking LtEc with glutaraldehyde significantly increases its thermal and structural stability without any loss of function, making gLtEc an attractive blood substitute for deployment in remote areas and battlefields. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:521-528, 2018.
Collapse
Affiliation(s)
- Athul Rajesh
- Dept. of Chemical Engineering, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085
| | - Devon Zimmerman
- Dept. of Chemical Engineering, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085
| | - Kyle Spivack
- Dept. of Chemical Engineering, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085
| | - Osheiza Abdulmalik
- Div. of Hematology, The Children's Hospital of Philadelphia, Abramson Research Center Suite 302F, 3615 Civic Center Blvd, Philadelphia, PA, 19104
| | - Jacob Elmer
- Dept. of Chemical Engineering, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085
| |
Collapse
|
6
|
Ascenzi P, Bocedi A, Gioia M, Fanali G, Fasano M, Coletta M. Warfarin inhibits allosterically the reductive nitrosylation of ferric human serum heme-albumin. J Inorg Biochem 2017; 177:63-75. [PMID: 28926756 DOI: 10.1016/j.jinorgbio.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
Human serum heme-albumin (HSA-heme-Fe) displays heme-based ligand binding and (pseudo-)enzymatic properties. Here, the effect of the prototypical drug warfarin on kinetics and thermodynamics of NO binding to ferric and ferrous HSA-heme-Fe (HSA-heme-Fe(III) and HSA-heme-Fe(II), respectively) and on the NO-mediated reductive nitrosylation of the heme-Fe atom is reported; data were obtained between pH5.5 and 9.5 at 20.0°C. Since warfarin is a common drug, its effect on the reactivity of HSA-heme-Fe represents a relevant issue in the pharmacological therapy management. The inhibition of NO binding to HSA-heme-Fe(III) and HSA-heme-Fe(II) as well as of the NO-mediated reductive nitrosylation of the heme-Fe(III) atom by warfarin has been ascribed to drug binding to the fatty acid binding site 2 (FA2), shifting allosterically the penta-to-six coordination equilibrium of the heme-Fe atom toward the low reactive species showing the six-coordinated metal center by His146 and Tyr161 residues. These data: (i) support the role of HSA-heme-Fe in trapping NO, (ii) highlight the modulation of the heme-Fe-based reactivity by drugs, and (iii) could be relevant for the modulation of HSA functions by drugs in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, I-00146 Roma, Italy.
| | - Alessio Bocedi
- Department of Chemical Sciences and Technology, University of Roma "Tor Vergata", I-00133 Roma, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, I-21052 Busto Arsizio, VA, Italy; Neuroscience Research Center, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| |
Collapse
|
7
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
8
|
Helms CC, Liu X, Kim-Shapiro DB. Recent insights into nitrite signaling processes in blood. Biol Chem 2017; 398:319-329. [PMID: 27611767 DOI: 10.1515/hsz-2016-0263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.
Collapse
|
9
|
Abstract
Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals' systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the colloid osmotic pressure or blood volume expansion capacity compared to LtEc, due to LtEc's already large molecular size. Taken together, these results further encourage the development of PEG-LtEc as an O2 carrying therapeutic.
Collapse
|
10
|
Marzec KM, Dybas J, Chlopicki S, Baranska M. Resonance Raman in Vitro Detection and Differentiation of the Nitrite-Induced Hemoglobin Adducts in Functional Human Red Blood Cells. J Phys Chem B 2016; 120:12249-12260. [PMID: 27934219 DOI: 10.1021/acs.jpcb.6b08359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents in vitro studies of the functional, isolated human red blood cells (RBCs) treated with various concentrations of Na14NO2 and Na15NO2 with the use of resonance Raman spectroscopy (RRS) at two different laser excitations supported by absorption spectrophotometry (UV-vis). The products of the reaction between oxyhemoglobin (oxyHb) in isolated RBCs with NaNO2 were analyzed and identified in situ. The metHb-H2O was found to be the major product of this reaction; however, additional adducts were also clearly observed. Vibrational analysis allowed identification of various Hb3+NO2 species (Fe3+-O-N=O with O-binding mode of nitrite ion to the Fe3+ core and nitrovinyl adducts with 2-vinyl nitration favored over 4-vinyl nitration) as well as the Fe3+-NO adduct. In addition, we were able to visualize in situ the Hb-NO2 species inside functional RBCs with the use of Raman imaging.
Collapse
Affiliation(s)
- Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Faculty of Chemistry, Jagiellonian University , Ingardena 3, Krakow 30-060, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Department of Experimental Pharmacology, Jagiellonian University Medical College , Grzegorzecka 16, Krakow 31-531, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Faculty of Chemistry, Jagiellonian University , Ingardena 3, Krakow 30-060, Poland
| |
Collapse
|
11
|
Chen G, Mo L, Lin F, Zhang X, Liu J, Wang H, Yang C. Development, validation and application of an HPLC method for reduced vitamin C qualification in HBOCs solution. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:456-61. [DOI: 10.3109/21691401.2015.1115412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|