1
|
Baek HS, Kim N, Park JW, Kwon TK, Kim S. The role of Pim-1 kinases in inflammatory signaling pathways. Inflamm Res 2024; 73:1671-1685. [PMID: 39079978 PMCID: PMC11457682 DOI: 10.1007/s00011-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE AND DESIGN This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT None. METHODS Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/β and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-β-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam University, Gwangju, 61469, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
2
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Gao C, Zhu H, Gong P, Wu C, Xu X, Zhu X. The functions of FOXP transcription factors and their regulation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194992. [PMID: 37797785 DOI: 10.1016/j.bbagrm.2023.194992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Honglin Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| | - Xuefei Zhu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
9
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
10
|
Liu A, Cui Q, Yang S. Induced regulatory T cells remain suppressive capability on effector T cells and synovial fibroblasts in collagen-induced arthritis. Immunol Res 2023; 71:628-638. [PMID: 36940087 DOI: 10.1007/s12026-023-09370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disorder initiated by inflammatory synovitis. Hyperproliferation of destructive synovial fibroblasts (SFs) is one of the pathogenic mechanisms of RA. Abnormalities in regulatory T cells (Tregs) may also play a critical role in this progression. To date, it is unclear whether both natural Tregs (nTregs) and induced Tregs (iTregs) share similar characteristics in RA progression and whether Tregs directly suppress the autoaggressive activities of SFs. In this study, we compared suppressive effects on effector T cells (Teffs) and inflamed SFs between nTregs and iTregs in a collagen-induced arthritis (CIA) model. Our results demonstrated that iTregs but not nTregs maintained a suppressive effect on Teffs after adoptive transfer into CIA mice. Additionally, we discovered that iTregs directly inhibited the destructive activities of CIA-SFs. Thus, this study suggests that administration of the iTreg subset has great potential for treatment of RA in the clinic in the future.
Collapse
Affiliation(s)
- Aiqun Liu
- Department of Neurology, First Affiliated Hospital of Guangdong Pharmaceutical College, Guangzhou, 510000, China
| | - Qi Cui
- Department of Neurology, First Affiliated Hospital of Guangdong Pharmaceutical College, Guangzhou, 510000, China
| | - Sujuan Yang
- Department of Neurology, First Affiliated Hospital of Guangdong Pharmaceutical College, Guangzhou, 510000, China.
| |
Collapse
|
11
|
Baßler K, Schmidleithner L, Shakiba MH, Elmzzahi T, Köhne M, Floess S, Scholz R, Ohkura N, Sadlon T, Klee K, Neubauer A, Sakaguchi S, Barry SC, Huehn J, Bonaguro L, Ulas T, Beyer M. Identification of the novel FOXP3-dependent T reg cell transcription factor MEOX1 by high-dimensional analysis of human CD4 + T cells. Front Immunol 2023; 14:1107397. [PMID: 37559728 PMCID: PMC10407399 DOI: 10.3389/fimmu.2023.1107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
CD4+ T cells play a central role in the adaptive immune response through their capacity to activate, support and control other immune cells. Although these cells have become the focus of intense research, a comprehensive understanding of the underlying regulatory networks that orchestrate CD4+ T cell function and activation is still incomplete. Here, we analyzed a large transcriptomic dataset consisting of 48 different human CD4+ T cell conditions. By performing reverse network engineering, we identified six common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes which led us to the identification of the transcription factor MEOX1 in Treg cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells revealed a profound impact on downstream gene expression programs and Treg cell suppressive capacity. These findings in the context of CD4+ T cells contribute to a better understanding of the transcriptional networks and biological mechanisms controlling CD4+ T cell functionality, which opens new avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin Baßler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Lisa Schmidleithner
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Tarek Elmzzahi
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maren Köhne
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rebekka Scholz
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Naganari Ohkura
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Norwich Centre, North Adelaide, SA, Australia
| | - Kathrin Klee
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Anna Neubauer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Norwich Centre, North Adelaide, SA, Australia
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Golzari-Sorkheh M, Zúñiga-Pflücker JC. Development and function of FOXP3+ regulators of immune responses. Clin Exp Immunol 2023; 213:13-22. [PMID: 37085947 PMCID: PMC10324550 DOI: 10.1093/cei/uxad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The Forkhead Box P3 (FOXP3) protein is an essential transcription factor for the development and function of regulatory T cells (Tregs), involved in the maintenance of immunological tolerance. Although extensive research over the last decade has investigated the critical role of FOXP3+ cells in preserving immune homeostasis, our understanding of their specific functions remains limited. Therefore, unveiling the molecular mechanisms underpinning the up- and downstream transcriptional regulation of and by FOXP3 is crucial for developing Treg-targeted therapeutics. Dysfunctions in FOXP3+ Tregs have also been found to be inherent drivers of autoimmune disorders and have been shown to exhibit multifaceted functions in the context of cancer. Recent research suggests that these cells may also be involved in tissue-specific repair and regeneration. Herein, we summarize current understanding of the thymic-transcriptional regulatory landscape of FOXP3+ Tregs, their epigenetic modulators, and associated signaling pathways. Finally, we highlight the contributions of FOXP3 on the functional development of Tregs and reflect on the clinical implications in the context of pathological and physiological immune responses.
Collapse
Affiliation(s)
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
13
|
Stone TW, Williams RO. Interactions of IDO and the Kynurenine Pathway with Cell Transduction Systems and Metabolism at the Inflammation-Cancer Interface. Cancers (Basel) 2023; 15:cancers15112895. [PMID: 37296860 DOI: 10.3390/cancers15112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanisms underlying a relationship between inflammation and cancer are unclear, but much emphasis has been placed on the role of tryptophan metabolism to kynurenine and downstream metabolites, as these make a substantial contribution to the regulation of immune tolerance and susceptibility to cancer. The proposed link is supported by the induction of tryptophan metabolism by indoleamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO), in response to injury, infection or stress. This review will summarize the kynurenine pathway and will then focus on the bi-directional interactions with other transduction pathways and cancer-related factors. The kynurenine pathway can interact with and modify activity in many other transduction systems, potentially generating an extended web of effects other than the direct effects of kynurenine and its metabolites. Conversely, the pharmacological targeting of those other systems could greatly enhance the efficacy of changes in the kynurenine pathway. Indeed, manipulating those interacting pathways could affect inflammatory status and tumor development indirectly via the kynurenine pathway, while pharmacological modulation of the kynurenine pathway could indirectly influence anti-cancer protection. While current efforts are progressing to account for the failure of selective IDO1 inhibitors to inhibit tumor growth and to devise means of circumventing the issue, it is clear that there are wider factors involving the relationship between kynurenines and cancer that merit detailed consideration as alternative drug targets.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
14
|
Gao Y, Duan R, Li H, Jiang L, Tao T, Liu X, Zhu L, Li Z, Chen B, Zheng S, Lin X, Su W. Single-cell analysis of immune cells on gingiva-derived mesenchymal stem cells in experimental autoimmune uveitis. iScience 2023; 26:106729. [PMID: 37216113 PMCID: PMC10192653 DOI: 10.1016/j.isci.2023.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Songguo Zheng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| |
Collapse
|
15
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
16
|
Clements AN, Warfel NA. Targeting PIM Kinases to Improve the Efficacy of Immunotherapy. Cells 2022; 11:3700. [PMID: 36429128 PMCID: PMC9688203 DOI: 10.3390/cells11223700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is a family of serine/threonine kinases that regulates numerous signaling networks that promote cell growth, proliferation, and survival. PIM kinases are commonly upregulated in both solid tumors and hematological malignancies. Recent studies have demonstrated that PIM facilitates immune evasion in cancer by promoting an immunosuppressive tumor microenvironment that suppresses the innate anti-tumor response. The role of PIM in immune evasion has sparked interest in examining the effect of PIM inhibition in combination with immunotherapy. This review focuses on the role of PIM kinases in regulating immune cell populations, how PIM modulates the immune tumor microenvironment to promote immune evasion, and how PIM inhibitors may be used to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ 85724, USA
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
17
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
18
|
Xu Z, Jiang X, Dai X, Li B. The Dynamic Role of FOXP3+ Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection. Front Immunol 2022; 13:916411. [PMID: 35874688 PMCID: PMC9305488 DOI: 10.3389/fimmu.2022.916411] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/03/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been raging all around the world since the beginning of 2020, and leads to acute respiratory distress syndrome (ARDS) with strong cytokine storm which contributes to widespread tissue damage and even death in severe patients. Over-activated immune response becomes one of the characteristics of severe COVID-19 patients. Regulatory T cells (Treg) play an essential role in maintaining the immune homeostasis, which restrain excessive inflammation response. So FOXP3+ Tregs might participate in the suppression of inflammation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Besides suppressive function, tissue resident Tregs are also responsible for tissue repair. In this review, we mainly summarize the latest research focusing on the change of FOXP3+ Tregs in the COVID-19 patients, discuss the relationship between disease severity and number change of Tregs and speculate the potential role of FOXP3+ Tregs during SARS-CoV-2 infection. Furthermore, we introduce some potential Treg-based therapies to improve patients’ outcomes, which include small molecular drugs, antibody drugs, CAR-Treg and cytokine treatment. We hope to reduce tissue damage of severe COVID-19 patients and offer better prognosis through Treg-based therapy.
Collapse
Affiliation(s)
- Zhan Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xueyu Dai, ; Bin Li,
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Department of Integrated TCM and Western Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, China
- *Correspondence: Xueyu Dai, ; Bin Li,
| |
Collapse
|
19
|
Yin F, Zhao R, Gorja DR, Fu X, Lu N, Huang H, Xu B, Chen H, Shim JH, Liu K, Li Z, Laster KV, Dong Z, Lee MH. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm Sin B 2022; 12:4122-4137. [PMID: 36386480 PMCID: PMC9643289 DOI: 10.1016/j.apsb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.
Collapse
|
20
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
21
|
Le Menn G, Jabłońska A, Chen Z. The effects of post-translational modifications on Th17/Treg cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119223. [PMID: 35120998 DOI: 10.1016/j.bbamcr.2022.119223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T (Treg) cells and Th17 cells are subsets of CD4+ T cells which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance was shown to be implicated in the development and progression of several disorders such as autoimmune disease, inflammatory disease, and cancer. Multiple factors, including T cell receptor (TCR) signals, cytokines, metabolic and epigenetic regulators can influence the differentiation of Th17 and Treg cells and affect their balance. Accumulating evidence indicates that the activity of key molecules such as forkhead box P3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and signal transducer and activator of transcription (STAT)s are modulated by the number of post-translational modifications (PTMs) such as phosphorylation, methylation, nitrosylation, acetylation, glycosylation, lipidation, ubiquitination, and SUMOylation. PTMs might affect the protein folding efficiency and protein conformational stability, and consequently determine protein structure, localization, and function. Here, we review the recent progress in our understanding of how PTMs modify the key molecules involved in the Th17/Treg cell differentiation, regulate the Th17/Treg balance, and initiate autoimmune diseases caused by dysregulation of the Th17/Treg balance. A better understanding of Th17/Treg regulation may help to develop novel potential therapeutics to treat immune-related diseases.
Collapse
Affiliation(s)
- Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| |
Collapse
|
22
|
Pham TX, Lee J, Guan J, Caporarello N, Meridew JA, Jones DL, Tan Q, Huang SK, Tschumperlin DJ, Ligresti G. Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight 2022; 7:153672. [PMID: 35167499 PMCID: PMC8986080 DOI: 10.1172/jci.insight.153672] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and its target nuclear factor of activated T cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation, and this effect was attenuated by NFATc1 inhibition. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Interruption of PIM1 signaling in IPF lung explants ex vivo inhibited prosurvival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.
Collapse
Affiliation(s)
- Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jisu Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Dakota L. Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven K. Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel J. Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Shang G, Han L, Wang Z, Song M, Wang D, Tan Y, Li Y, Li Y, Zhang W, Zhong M. Pim1 knockout alleviates sarcopenia in aging mice via reducing adipogenic differentiation of PDGFRα + mesenchymal progenitors. J Cachexia Sarcopenia Muscle 2021; 12:1741-1756. [PMID: 34435457 PMCID: PMC8718082 DOI: 10.1002/jcsm.12770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcopenia widely exists in elderly people and triggers numerous age-related events. The essential pathologic change lies in the increased intramuscular adipose tissue after aging with no exception to non-obese objects. Pim1 appears to be associated with adipogenic differentiation in recent studies, inspiring us to explore whether it regulates adipogenesis in aging muscles and affects sarcopenia. METHODS Wild-type and Pim1 knockout C57/BL6J mice were randomized into young and old groups. Histo-pathological and molecular biological methods were applied to assess the intramuscular adipose tissue content, the atrophy and regeneration, and the expressions of Pim1 and adipogenic transcription factors. PDGFRα+ mesenchymal progenitors were separated and their replicative aging model were established. Different time of adipogenic induction and different amounts of Pim1 inhibitor were applied, after which the adipogenic potency were evaluated. The expressions of Pim1 and adipogenic transcription factors were measured through western blotting. RESULTS The aging mice demonstrated decreased forelimb grip strength (P = 0.0003), hanging impulse (P < 0.0001), exhaustive running time (P < 0.0001), tetanic force (P = 0.0298), lean mass (P = 0.0008), and percentage of gastrocnemius weight in body weight (P < 0.0001), which were improved by Pim1 knockout (P = 0.0015, P = 0.0222, P < 0.0001, P = 0.0444, P = 0.0004, and P = 0.0003, respectively). To elucidate the mechanisms, analyses showed that Pim1 knockout decreased the fat mass (P = 0.0005) and reduced the intramuscular adipose tissue content (P = 0.0008) by inhibiting the C/EBPδ pathway (P = 0.0067) in aging mice, resulting in increased cross-sectional area of all and fast muscle fibres (P = 0.0017 and 0.0024 respectively), decreased levels of MuRF 1 and atrogin 1 (P = 0.0001 and 0.0329 respectively), and decreased content of Pax7 at the basal state (P = 0.0055). In vitro, senescent PDGFRα+ mesenchymal progenitors showed significantly increased the intracellular adipose tissue content (OD510) compared with young cells after 6 days of adipogenic induction (P < 0.0001). The Pim1 expression was elevated during adipogenic differentiation, and Pim1 inhibition significantly reduced the OD510 in senescent cells (P = 0.0040) by inhibiting the C/EBPδ pathway (P = 0.0047). CONCLUSIONS Pim1 knockout exerted protective effects in sarcopenia by inhibiting the adipogenic differentiation of PDGFRα+ mesenchymal progenitors induced by C/EBPδ activation and thus reducing the intramuscular adipose tissue content in aging mice. These results provide a potential target for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Guo‐kai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of General Practice, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zhi‐hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong University; Shandong key Laboratory of Cardiovascular ProteomicsJinanShandongChina
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yan‐min Tan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi‐hui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yu‐lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| |
Collapse
|
24
|
Zhu H, Liu Z, An J, Zhang M, Qiu Y, Zou MH. Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention. Cell Mol Immunol 2021; 18:2609-2617. [PMID: 34728795 DOI: 10.1038/s41423-021-00790-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Regulatory T cells (Treg cells) are crucial for maintaining immune tolerance. Compromising the regulatory function of Treg cells can lead to autoimmune liver disease. However, how Treg cell function is regulated has not been fully clarified. Here, we report that mice with AMP-activated protein kinase alpha 1 (AMPKα1) globally knocked out spontaneously develop immune-mediated liver injury, with massive lymphocyte infiltration in the liver, elevated serum alanine aminotransferase levels, and greater production of autoantibodies. Both transplantation of wild-type bone marrow and adoptive transfer of wild-type Treg cells can prevent liver injury in AMPKα1-KO mice. In addition, Treg cell-specific AMPKα1-KO mice display histological features similar to those associated with autoimmune liver disease, greater production of autoantibodies, and hyperactivation of CD4+ T cells. AMPKα1 deficiency significantly impairs Treg cell suppressive function but does not affect Treg cell differentiation or proliferation. Furthermore, AMPK is activated upon T cell receptor (TCR) stimulation, which triggers Foxp3 phosphorylation, suppressing Foxp3 ubiquitination and proteasomal degradation. Importantly, the frequency of Treg cells and the phosphorylation levels of AMPK at T172 in circulating blood are significantly lower in patients with autoimmune liver diseases. Conclusion: Our data suggest that AMPK maintains the immunosuppressive function of Treg cells and confers protection against autoimmune liver disease.
Collapse
Affiliation(s)
- Huaiping Zhu
- The First Affiliated Hospital of USTC, Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Zhaoyu Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA. .,Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P.R. China.
| | - Junqing An
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Yu Qiu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
25
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
26
|
Maney NJ, Lemos H, Barron‐Millar B, Carey C, Herron I, Anderson AE, Mellor AL, Isaacs JD, Pratt AG. Pim Kinases as Therapeutic Targets in Early Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1820-1830. [DOI: 10.1002/art.41744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola J. Maney
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Henrique Lemos
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Ben Barron‐Millar
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Christopher Carey
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Ian Herron
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Amy E. Anderson
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Andrew L. Mellor
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - John D. Isaacs
- Newcastle University Translational and Clinical Research Institute Newcastle University, and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Arthur G. Pratt
- Newcastle University Translational and Clinical Research Institute Newcastle University, and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| |
Collapse
|
27
|
Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, Li B. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol 2021; 51:2137-2150. [PMID: 34322865 DOI: 10.1002/eji.202048794] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells and T helper type 17 (Th17) cells play important roles in adaptive immune responses, antagonizing each other in immune disorders. Th17/Treg balance is critical to maintaining the immune homeostasis of human bodies and is tightly regulated under healthy conditions. The transcription factors that are required for driving Th17 and Treg cell lineages differentiation respectively, RORγt and FOXP3 are tightly regulated under different tissue microenvironment, especially the transcriptional induction, posttranslational modifications, and dynamic enzymatic cofactors binding. The imbalance caused by alteration of the quantity or properties of RORγt+ Th17 or FOXP3+ Treg can contribute to inflammatory disorders in humans. Restoring Th17/Treg balance by modifying the enzymatic activities of RORγt and FOXP3 binding partners may be therapeutically applied to treat severe immune disorders. In this review, we focus on the transcriptional and posttranslational regulations of Th17/Treg balance, immune disorders caused by Th17/Treg imbalance, and new therapeutic strategies for restoring immune homeostasis.
Collapse
Affiliation(s)
- Weiqi Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunting Gu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Liu X, Tian N, Huang Q, Xu Z, Cheng H, Liu X, Li D, Liang R, Li B, Dai X. hnRNPA1 enhances FOXP3 stability to promote the differentiation and functions of regulatory T cells. FEBS Lett 2021; 595:1962-1974. [PMID: 34080184 DOI: 10.1002/1873-3468.14142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Regulatory T cells (Tregs) are indispensable for the maintenance of immunological self-tolerance and homeostasis. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is required for optimal Treg induction. Here, we reveal that human-induced Tregs (iTregs) lacking hnRNPA1 show reduced expression of the transcription factor FOXP3, increased ubiquitination level of FOXP3, and impaired suppressive abilities. Human naïve CD4 T cells with hnRNPA1 knockdown show a decreased Treg differentiation ratio. hnRNPA1 could interact with FOXP3 as well as with the E3 ligase Stub1. The phosphorylation at hnRNPA1 S199 could increase both interactions. The overexpression of FOXP3 in Tregs containing shhnRNPA1 could not recover the phenotype caused by hnRNPA1 knockdown. Therefore, there might be multiple essential pathways regulated by hnRNPA1 in Tregs. In conclusion, we present a new role of hnRNPA1 in promoting Treg function, indicating it as a promising target for tumor therapies.
Collapse
Affiliation(s)
- Xu Liu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Qianru Huang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Zhan Xu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Hao Cheng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Xinnan Liu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Rui Liang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Bin Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Xueyu Dai
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
30
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
32
|
Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, Guillonneau C, Wagner DL, Anegon I. Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Front Immunol 2021; 11:611638. [PMID: 33717052 PMCID: PMC7945682 DOI: 10.3389/fimmu.2020.611638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory Tcells (Treg) are essential components of peripheral immune homeostasis. Adoptive Treg cell therapy has shown efficacy in a variety of immune-mediated diseases in preclinical studies and is now moving from phase I/IIa to larger phase II studies aiming to demonstrate efficacy. However, hurdles such as in vivo stability and efficacy remain to be addressed. Nevertheless, preclinical models have shown that Treg function and specificity can be increased by pharmacological substances or gene modifications, and even that conventional T cells can be converted to Treg potentially providing new sources of Treg and facilitating Treg cell therapy. The exponential growth in genetic engineering techniques and their application to T cells coupled to a large body of knowledge on Treg open numerous opportunities to generate Treg with "superpowers". This review summarizes the genetic engineering techniques available and their applications for the next-generation of Super-Treg with increased function, stability, redirected specificity and survival.
Collapse
Affiliation(s)
- Leila Amini
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Séverine Bézie
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carole Guillonneau
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dimitrios L. Wagner
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
33
|
Deng B, Zhang W, Zhu Y, Li Y, Li D, Li B. FOXP3 + regulatory T cells and age-related diseases. FEBS J 2021; 289:319-335. [PMID: 33529458 DOI: 10.1111/febs.15743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells are critical for the maintenance of immune homeostasis. Dysregulation of Treg cells has been implicated in the pathogenesis of autoimmunity and chronic inflammation, while aging is characterized by an accumulation of inflammatory markers in the peripheral blood, a phenomenon known as 'inflammaging'. The relationship between Treg cells and age-related diseases remains to be further studied. Increasing evidence revealed that Treg cells' dysfunction occurs in aged patients, suggesting that immune therapies targeting Treg cells may be a promising approach to treat diseases such as cancers and autoimmune diseases. Furthermore, drugs targeting Treg cells show encouraging results and contribute to CD8+ T-cell-mediated cytotoxic killing of tumor and infected cells. In general, a better understanding of Treg cell function may help us to develop new immune therapies against aging. In this review, we discuss potential therapeutic strategies to modify immune responses of relevance for aging to prevent and treat age-related diseases, as well as the challenges posed by the translation of novel immune therapies into clinical practice.
Collapse
Affiliation(s)
- Biaolong Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Weiqi Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yicheng Zhu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yangyang Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
34
|
Huang Z, Li W, Su W. Tregs in Autoimmune Uveitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:205-227. [PMID: 33523450 DOI: 10.1007/978-981-15-6407-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenli Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
35
|
Grover P, Goel PN, Piccirillo CA, Greene MI. FOXP3 and Tip60 Structural Interactions Relevant to IPEX Development Lead to Potential Therapeutics to Increase FOXP3 Dependent Suppressor T Cell Functions. Front Pediatr 2021; 9:607292. [PMID: 33614551 PMCID: PMC7888439 DOI: 10.3389/fped.2021.607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a regulator for Treg development and function. Mutations in the FOXP3 gene can lead to autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of life and a scurfy like phenotype in Foxp3 mutant mice. We discuss biochemical features of the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional, and post-translational modifications) and molecular functions. The studies also highlight the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting this interaction for the therapeutic manipulation of Treg activity.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, Xie C, Hou X, Ren J, Wu X, Meng J, Zhang Y, Fu J, Kou W, Gao Y, Chen Z, Liang R, Tsun A, Li D, Guo W, Zhang S, Zheng S, Niu J, Galardy P, Tong X, Shi G, Li H, Pan F, Li B. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep 2020; 21:e50308. [PMID: 32644293 PMCID: PMC7507386 DOI: 10.15252/embr.202050308] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-β induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.
Collapse
|
37
|
Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy 2020; 75:1918-1926. [PMID: 32124987 DOI: 10.1111/all.14257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells potentially suppress the deleterious activities of effector T cells and maintain a state of tolerance against antigens in the airway mucosa. A decrease in the number and function of Treg cells is observed in T helper 2 (Th2)-biased allergic airway diseases. However, adoptive transfer of naturally occurring Treg (tTreg) cells or peripherally derived Treg (pTreg) cells in asthmatic mouse models did not yield satisfactory results in any previous studies. Here, we review the recent progress in the identification and plasticity of tTreg and pTreg cells in Th2-biased airway diseases and summarize the factors affecting the stability and function of Treg cells. This review may serve as foundation for understanding the molecular mechanisms underlying the stability of tTreg and pTreg cells and development of effective strategies for treating allergic airway diseases.
Collapse
Affiliation(s)
- Feng Lan
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| | - Nan Zhang
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
38
|
Wang A, Yang M, Liang R, Zhu F, Zhu F, Liu X, Han Y, Lin R, Wang X, Li D, Li H, Yuan X, Zhao H, Li B. Mouse Double Minute 2 Homolog-Mediated Ubiquitination Facilitates Forkhead Box P3 Stability and Positively Modulates Human Regulatory T Cell Function. Front Immunol 2020; 11:1087. [PMID: 32636834 PMCID: PMC7318079 DOI: 10.3389/fimmu.2020.01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/05/2020] [Indexed: 01/29/2023] Open
Abstract
Regulatory T cells (Treg cells) are essential for maintaining immune tolerance, and the dysfunction of Treg cells may cause autoimmune diseases and tumors. Forkhead box P3 (FOXP3) is the key transcription factor controlling Treg cell development and suppressive function. Mouse double minute 2 homolog (MDM2), an E3 ubiquitin ligase, has been identified as an oncoprotein that mediates the ubiquitination and degradation of tumor suppressor p53; however, whether it has functions in Treg cells remains unknown. Here, we demonstrate that MDM2 positively regulates human Treg cell suppressive function via its mediated ubiquitination and stabilization of FOXP3. Knockdown of MDM2 with shRNA in human primary Treg cells leads to the impaired ability of FOXP3 to regulate the expression levels of downstream genes and the attenuated suppressive capacity of Treg cells, due to FOXP3 instability. Consistently, MDM2 overexpression in human Treg cells enhances FOXP3 stability and Treg cell suppressive capacity. Mechanistically, MDM2 interacts with FOXP3, and mainly mediates monoubiquitination and polyubiquitination of FOXP3, thus stabilizing the protein level of FOXP3. We have also found lysine residues in FOXP3 required for MDM2-mediated ubiquitination. In addition, TCR/CD28 signaling upregulates the expression level of MDM2 and its mediated FOXP3 ubiquitination in human Treg cells. Therefore, our findings reveal that MDM2 in Treg cells could be a potential therapeutic target for treating autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Aiting Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengdi Yang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangming Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Fuxiang Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ, Sytwu HK. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases. Int J Mol Sci 2020; 21:ijms21093207. [PMID: 32369982 PMCID: PMC7246881 DOI: 10.3390/ijms21093207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Chao-Yuan Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Shin-Huei Fu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Molecular Cell Biology, Taiwan International Graduate Program, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shyi-Jou Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18539); Fax: +886-2-8792-1774
| |
Collapse
|
40
|
Zhu L, Song H, Zhang L, Meng H. Characterization of IL-17-producing Treg cells in type 2 diabetes patients. Immunol Res 2020; 67:443-449. [PMID: 31713831 DOI: 10.1007/s12026-019-09095-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The association between type 2 diabetes (T2D) pathogenesis and immune-mediated tissue damage and insulin resistance suggests that T2D patients might benefit from the suppression of pathogenic inflammation. Foxp3+ Treg cells are crucial suppressors of inflammation, but the differentiation of Foxp3+ Treg cells is not static and is subject to conversion into IL-17-producing Th17-like cells upon receiving external signals. In this study, we examined the production of IL-17 by Treg cells. Compared to non-T2D controls, T2D patients presented significantly higher levels of IL-17-expressing cells in both Foxp3- CD4 T cells and Foxp3+ Treg cells. The frequencies of IL-17-nonexpressing Foxp3+ Treg cells, on the other hand, were not changed. Interestingly, IL-17-expressing Foxp3+ Treg cells were mutually exclusive from IL-10-expressing and TGF-β-expressing Foxp3+ Treg cells, suggesting that multiple subpopulations exist within the Foxp3+ Treg cells from T2D patients. In T2D patients, the frequencies of IL-17-expressing Foxp3+ Treg cells were positively correlated with the body mass index (BMI) and the HbA1c levels of T2D patients. The frequencies of IL-10-expressing Treg cells, on the other hand, were inversely associated with the BMI of both non-T2D controls and T2D patients. In addition, the suppressive activity of Treg cells was significantly lower in T2D patients than in non-T2D controls. Together, our study uncovered a dysregulation in Foxp3+ Treg cells from T2D patients, characterized by high IL-17 expression and low suppression activity.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Endocrinology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China.
| | - Haihan Song
- DICAT Biomedical Computation Centre, Vancouver, British Columbia, Canada
| | - Li Zhang
- Department of Endocrinology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China
| | - Haiyan Meng
- Department of Cardiology, Shandong Provincial Third Hospital, 11 Wuyingshan Middle Road, Jinan, Shandong, China.
| |
Collapse
|
41
|
Zhang X, Olsen N, Zheng SG. The progress and prospect of regulatory T cells in autoimmune diseases. J Autoimmun 2020; 111:102461. [PMID: 32305296 DOI: 10.1016/j.jaut.2020.102461] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Regulatory T cells (Treg) are an important immune cell population, playing a crucial role in regulating immune tolerance and preventing autoimmune diseases. These cells consist of various cell sub-populations and generally have an immunoregulatory or suppressive role against immune responses. They also have a different cell heterogeneity and each populations has own biological characteristics. Treg deficiency, reduction, instability, reduced vitality and dysfunction all account for multiple autoimmune diseases. In this review, we have systemically reviewed Treg classification, phenotypic features, regulation of Foxp3 expression, plasticity and stability of Treg as well as their relationship with several important autoimmune diseases. We particularly focus on why and how inflammatory and diet environments affect the functional capacity and underlying mechanisms of Treg cell populations. We also summarize new advances in technologies which help to analyze and dissect these cells in molecular levels in-depth. We also clarify the possible clinical relevance on application of these cells in patients with autoimmune diseases. The advantages and weaknesses have been carefully discussed as well. We also propose the possible approaches to overcome these weaknesses of Treg cells in complicate environments. Thus, we have displayed the updated knowledge of Treg cells, which provides an overall insight into the role and mechanisms of Treg cells in autoimmune diseases.
Collapse
Affiliation(s)
- Ximei Zhang
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA, 43201, USA
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, 17033, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA, 43201, USA.
| |
Collapse
|
42
|
Wu W, Xiao Z, Chen Y, Deng Y, Zeng D, Liu Y, Huang F, Wang J, Liu Y, Bellanti JA, Rong L, Zheng SG. CD39 Produced from Human GMSCs Regulates the Balance of Osteoclasts and Osteoblasts through the Wnt/β-Catenin Pathway in Osteoporosis. Mol Ther 2020; 28:1518-1532. [PMID: 32304668 PMCID: PMC7264439 DOI: 10.1016/j.ymthe.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a disease in which the density and quality of bone are reduced, causing bones to become weak and so brittle that a fall or even mild stresses can cause a fracture. Current drug treatment consists mainly of antiresorptive agents that are unable to stimulate new bone formation. Our recent studies have defined a critical role of gingiva-derived mesenchymal stem cells (GMSCs) in attenuating autoimmune arthritis through inhibition of osteoclast formation and activities, but it remains to be ruled out whether the administration of GMSCs to patients with osteoporosis could also regulate osteoblasts and eventually affect bone formation and protection. With the use of an ovariectomized mouse model, we here demonstrated that adoptive transfer of GMSCs regulated the balance of osteoclasts and osteoblasts, eventually contributing to dynamic bone formation. Validation by RNA sequencing (RNA-seq), single-cell sequencing, revealed a unique population of CD39+ GMSC that plays an important role in promoting bone formation. We further demonstrated that CD39 produced from GMSC exerted its osteogenic capacity through the Wnt/β-catenin pathway. Our results not only establish a previously unidentified role and mechanism of GMSC for bone promotion but also a potential therapeutic target for management of patients with osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ye Chen
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanan Deng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Liu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanying Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology and the International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC 20057, USA
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
44
|
Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020; 5:7. [PMID: 32296034 PMCID: PMC6992635 DOI: 10.1038/s41392-020-0109-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future.
Collapse
Affiliation(s)
- Sabina Luszczak
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Christopher Kumar
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Kathy A Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Dublin, Ireland
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK.
| |
Collapse
|
45
|
Huang Q, Liu X, Zhang Y, Huang J, Li D, Li B. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. J Genet Genomics 2020; 47:17-26. [PMID: 32081609 DOI: 10.1016/j.jgg.2019.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/02/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Regulatory T (Treg) cells, a subtype of immunosuppressive CD4+ T cells, are vital for maintaining immune homeostasis in healthy people. Forkhead box protein P3 (FOXP3), a member of the forkhead-winged-helix family, is the pivotal transcriptional factor of Treg cells. The expression, post-translational modifications, and protein complex of FOXP3 present a great impact on the functional stability and immune plasticity of Treg cells in vivo. In particular, the mutation of FOXP3 can result in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is a rare genetic disease mostly diagnosed in early childhood and can soon be fatal. IPEX syndrome is related to several manifestations, including dermatitis, enteropathy, type 1 diabetes, thyroiditis, and so on. Here, we summarize some recent findings on FOXP3 regulation and Treg cell function. We also review the current knowledge about the underlying mechanism of FOXP3 mutant-induced IPEX syndrome and some latest clinical prospects. At last, this review offers a novel insight into the role played by the FOXP3 complex in potential therapeutic applications in IPEX syndrome.
Collapse
Affiliation(s)
- Qianru Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xu Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
46
|
Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:143-168. [PMID: 32312420 DOI: 10.1016/bs.apcsb.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
Collapse
Affiliation(s)
- Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Qiu Q, Yu X, Yao C, Hao Y, Fan L, Li C, Xu P, An G, Li Z, He Z. FOXP3 pathogenic variants cause male infertility through affecting the proliferation and apoptosis of human spermatogonial stem cells. Aging (Albany NY) 2019; 11:12581-12599. [PMID: 31855573 PMCID: PMC6949051 DOI: 10.18632/aging.102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Genetic causes of male infertility that is associated with aging are largely unknown. This study was designed to identify novel pathogenic variants of FOXP3 gene causing azoospermia. One homozygous (c.155 G > T) pathogenic variant of FOXP3 was identified in nine non-obstructive azoospermia patients, and one heterozygous (c.691 C > A) of FOXP3 was found in one non-obstructive azoospermia patient. Pedigrees studies indicated that the homozygous (c.155 G > T) FOXP3 pathogenic variant was inherited, while heterozygous (c.691 C > A) FOXP3 pathogenic variant was acquired. Human testis carrying pathogenic variant exhibited abnormal spermatogenesis. FOXP3 protein was expressed at a lower level or undetected in spermatocytes of mutant testis of non-obstructive azoospermia patients compared to obstructive azoospermia patients. FOXP3 stimulated the proliferation and inhibited the apoptosis of human spermatogonial stem cells, and we further analyzed the targets of FOXP3. We have identified two new pathogenic variants of FOXP3 in non-obstructive azoospermia patients with high incidence, and FOXP3 silencing inhibits the proliferation and enhances the apoptosis of human spermatogonial stem cells. This study provides new insights into the etiology of azoospermia and offers novel pathogenic variants for gene targeting of male infertility.
Collapse
Affiliation(s)
- Qianqian Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Yu
- Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chunyi Li
- Fertility Center, Shenyang Dongfang Jinghua Hospital, Shenyang, Liaoning, China
| | - Peng Xu
- Fertility Center, Shenyang Dongfang Jinghua Hospital, Shenyang, Liaoning, China
| | - Geng An
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zuping He
- Hunan Normal University School of Medicine, Changsha, Hunan, China.,Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
48
|
Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol 2019; 10:2486. [PMID: 31681337 PMCID: PMC6813729 DOI: 10.3389/fimmu.2019.02486] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) are engaged in maintaining immune homeostasis and preventing autoimmunity. Treg cells include thymic Treg cells and peripheral Treg cells, both of which can suppress the immune response via multiple distinct mechanisms. The differentiation, proliferation, suppressive function and survival of Treg cells are affected by distinct energy metabolic programs. Tissue-resident Treg cells hold unique features in comparison with the lymphoid organ Treg cells. Foxp3 transcription factor is a lineage master regulator for Treg cell development and suppressive activity. Accumulating evidence indicates that the activity of Foxp3 protein is modulated by various post-translational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation. These modifications affect multiple aspects of Foxp3 function. In this review, we define features of Treg cells and roles of Foxp3 in Treg biology, and summarize current research in PTMs of Foxp3 protein involved in modulating Treg function. This review also attempts to define Foxp3 dimer modifications relevant to mediating Foxp3 activity and Treg suppression. Understanding Foxp3 protein features and modulation mechanisms may help in the design of rational therapies for immune diseases and cancer.
Collapse
Affiliation(s)
- Guoping Deng
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Deng G, Song X, Greene MI. FoxP3 in T reg cell biology: a molecular and structural perspective. Clin Exp Immunol 2019; 199:255-262. [PMID: 31386175 PMCID: PMC7008219 DOI: 10.1111/cei.13357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Regulatory T cells (Tregs) are specialized in immune suppression and play a dominant role in peripheral immune tolerance. Treg cell lineage development and function maintenance is determined by the forkhead box protein 3 (FoxP3) transcriptional factor, whose activity is fine‐tuned by its post‐translational modifications (PTMs) and interaction partners. In this review, we summarize current studies in the crystal structures, the PTMs and interaction partners of FoxP3 protein, and discuss how these insights may provide a roadmap for new approaches to modulate Treg suppression, and new therapies to enhance immune tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- G Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - X Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - M I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Zhang X, Zeng D, Huang F, Wang J. A protocol for isolation and culture of mesenchymal stem cells from human gingival tissue. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2019; 8:21-26. [PMID: 31497379 PMCID: PMC6726972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) have been considered to be a better source of MSCs for cell therapy in some immunological diseases. We describe a protocol for isolation and culture of mesenchymal stem cells (MSCs) from human gingival tissue in detail, which provides a methodology to help clinical researches and clinical trial. GMSCs are generally isolated from a remnant or discarded tissue following a routine dental procedure, then cultured in complete culture medium at 37°C in a humidified tissue culture incubator with 5% CO2 and 95% O2. Non-adherent cells are removed after 48~72 h and the fresh medium is replaced. When primary cultures become 80%~90% confluent, the plastic-adherent cells are treated with 0.25% trypsin-EDTA and subcultured. A purified population of GMSCs can be obtained 2-3 weeks after the initiation of culture.
Collapse
Affiliation(s)
- Ximei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
- Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus 43210, Ohio, United States
| | - Donglan Zeng
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital at The Sun Yat-sen UniversityGuangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus 43210, Ohio, United States
| |
Collapse
|