1
|
Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: Modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol 2024; 38:e23636. [PMID: 38229314 DOI: 10.1002/jbt.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. J Cell Commun Signal 2023; 17:793-811. [PMID: 36696010 PMCID: PMC10409964 DOI: 10.1007/s12079-022-00720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/β/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/β. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Esra Aydogdu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
3
|
Nadel CM, Thwin AC, Callahan M, Lee K, Connelly E, Craik CS, Southworth DR, Gestwicki JE. The E3 Ubiquitin Ligase, CHIP/STUB1, Inhibits Aggregation of Phosphorylated Proteoforms of Microtubule-associated Protein Tau (MAPT). J Mol Biol 2023; 435:168026. [PMID: 37330289 PMCID: PMC10491737 DOI: 10.1016/j.jmb.2023.168026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Hyper-phosphorylated tau accumulates as insoluble fibrils in Alzheimer's disease (AD) and related dementias. The strong correlation between phosphorylated tau and disease has led to an interest in understanding how cellular factors discriminate it from normal tau. Here, we screen a panel of chaperones containing tetratricopeptide repeat (TPR) domains to identify those that might selectively interact with phosphorylated tau. We find that the E3 ubiquitin ligase, CHIP/STUB1, binds 10-fold more strongly to phosphorylated tau than unmodified tau. The presence of even sub-stoichiometric concentrations of CHIP strongly suppresses aggregation and seeding of phosphorylated tau. We also find that CHIP promotes rapid ubiquitination of phosphorylated tau, but not unmodified tau, in vitro. Binding to phosphorylated tau requires CHIP's TPR domain, but the binding mode is partially distinct from the canonical one. In cells, CHIP restricts seeding by phosphorylated tau, suggesting that it could be an important barrier in cell-to-cell spreading. Together, these findings show that CHIP recognizes a phosphorylation-dependent degron on tau, establishing a pathway for regulating the solubility and turnover of this pathological proteoform.
Collapse
Affiliation(s)
- Cory M Nadel
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Aye C Thwin
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Matthew Callahan
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Kanghyun Lee
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Emily Connelly
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA
| | - Charles S Craik
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA
| | - Daniel R Southworth
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA.
| | - Jason E Gestwicki
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA.
| |
Collapse
|
4
|
Erzurumlu Y, Catakli D, Dogan HK. Circadian Oscillation Pattern of Endoplasmic Reticulum Quality Control (ERQC) Components in Human Embryonic Kidney HEK293 Cells. J Circadian Rhythms 2023; 21:1. [PMID: 37033333 PMCID: PMC10077977 DOI: 10.5334/jcr.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates the “push-pull” of the molecular signaling mechanisms that arrange the rhythmic organization of the physiology to maintain cellular homeostasis. In mammals, molecular clock genes tightly arrange cellular rhythmicity. It has been shown that this circadian clock optimizes various biological processes, including the cell cycle and autophagy. Hence, we explored the dynamic crosstalks between the circadian rhythm and endoplasmic reticulum (ER)-quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the most important parts of the ERQC system and is an elaborate surveillance system that eliminates misfolded proteins. It regulates the steady-state levels of several physiologically crucial proteins, such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and the metastasis suppressor KAI1/CD82. However, the circadian oscillation of ERQC members and their roles in cellular rhythmicity requires further investigation. In the present study, we provided a thorough investigation of the circadian rhythmicity of the fifteen crucial ERQC members, including gp78, Hrd1, p97/VCP, SVIP, Derlin1, Ufd1, Npl4, EDEM1, OS9, XTP3B, Sel1L, Ufd2, YOD1, VCIP135 and FAM8A1 in HEK293 cells. We found that mRNA and protein accumulation of the ubiquitin conjugation, binding and processing factors, retrotranslocation-dislocation, substrate recognition and targeting components of ERQC exhibit oscillation under the control of the circadian clock. Moreover, we found that Hrd1 and gp78 have a possible regulatory function on Bmal1 turnover. The findings of the current study indicated that the expression level of ERQC components is fine-tuned by the circadian clock and major ERAD E3 ligases, Hrd1 and gp78, may influence the regulation of circadian oscillation by modulation of Bmal1 stability.
Collapse
|
5
|
Erzurumlu Y, Aydogdu E, Dogan HK, Catakli D, Muhammed MT, Buyuksandic B. 1,25(OH) 2 D 3 induced vitamin D receptor signaling negatively regulates endoplasmic reticulum-associated degradation (ERAD) and androgen receptor signaling in human prostate cancer cells. Cell Signal 2023; 103:110577. [PMID: 36567009 DOI: 10.1016/j.cellsig.2022.110577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Steroid hormone signaling is critical in the tumor progression and the regulation of physiological mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer. 1,25(OH)2 D3 is an active metabolite of vitamin D classified as a steroid hormone. It exhibits anti-tumor effects, including angiogenesis and suppression of cell cycle progression. Moreover, progressively reducing expression levels of vitamin D receptor (VDR) are observed in many cancer types, including the prostate. In the present study, we investigated the molecular action of 1,25(OH)2 D3 on ERAD, UPR and androgenic signaling. We found that 1,25(OH)2 D3 negatively regulated the expression level of ERAD components and divergently controlled the inositol-requiring enzyme 1⍺ (IRE1⍺) and protein kinase RNA-like ER kinase (PERK) branches of UPR in LNCaP human prostate cancer cells. Also, similar results were obtained with another human prostate cancer cell line, 22Rv1. More strikingly, we found that androgenic signaling is negatively regulated by VDR signaling. Also, molecular docking supported the inhibitory effect of 1,25(OH)2 D3 on AR signaling. Moreover, we found VDR signaling suppressed tumor progression by decreasing c-Myc expression and reducing the epithelial-mesenchymal transition (EMT). Additionally, 1,25(OH)2 D3 treatment significantly inhibited the 3D-tumor formation of LNCaP cells. Our results suggest that further molecular characterization of the action of VDR signaling in other cancer types such as estrogenic signal in breast cancer will provide important contributions to a better understanding of the roles of steroid hormone receptors in carcinogenesis processes.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Esra Aydogdu
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Buket Buyuksandic
- Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
6
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
8
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
10
|
Characterization of the structural determinants of the ubiquitin-dependent proteasomal degradation of human hepatic tryptophan 2,3-dioxygenase. Biochem J 2021; 478:1999-2017. [PMID: 33960368 DOI: 10.1042/bcj20210213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Human hepatic tryptophan 2,3-dioxygenase (hTDO) is a homotetrameric hemoprotein. It is one of the most rapidly degraded liver proteins with a half-life (t1/2) of ∼2.3 h, relative to an average t1/2 of ∼2-3 days for total liver protein. The molecular mechanism underlying the poor longevity of hTDO remains elusive. Previously, we showed that hTDO could be recognized and ubiquitinated by two E3 ubiquitin (Ub) ligases, gp78/AMFR and CHIP, and subsequently degraded via Ub-dependent proteasomal degradation pathway. Additionally, we identified 15 ubiquitination K-sites and demonstrated that Trp-binding to an exosite impeded its proteolytic degradation. Here, we further established autophagic-lysosomal degradation as an alternative back-up pathway for cellular hTDO degradation. In addition, with protein kinases A and C, we identified 13 phosphorylated Ser/Thr (pS/pT) sites. Mapping these pS/pT sites on the hTDO surface revealed their propinquity to acidic Asp/Glu (D/E) residues engendering negatively charged DEpSpT clusters vicinal to the ubiquitination K-sites over the entire protein surface. Through site-directed mutagenesis of positively charged patches of gp78, previously documented to interact with the DEpSpT clusters in other target proteins, we uncovered the likely role of the DEpSpT clusters in the molecular recognition of hTDO by gp78 and plausibly other E3 Ub-ligases. Furthermore, cycloheximide-chase analyses revealed the critical structural relevance of the disordered N- and C-termini not only in the Ub-ligase recognition, but also in the proteasome engagement. Together, the surface DEpSpT clusters and the N- and C-termini constitute an intrinsic bipartite degron for hTDO physiological turnover.
Collapse
|
11
|
Liao Y, Liu Y, Xia X, Shao Z, Huang C, He J, Jiang L, Tang D, Liu J, Huang H. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Am J Cancer Res 2020; 10:3366-3381. [PMID: 32206096 PMCID: PMC7069092 DOI: 10.7150/thno.41849] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 01/09/2023] Open
Abstract
Rationale: Androgen receptor splice variant 7 (AR-V7) is a leading cause of the development of castration-resistant prostate cancer (CRPC). However, the regulation and function of AR-V7 at levels of post-translational modifications in prostate cancer therapy remain poorly understood. Here, we conducted a library screen of natural products to identify potential small molecules responsible for AR-V7 protein degradation in human prostate cancer cell lines. Methods: A natural product library was used to screen the inhibitor of AR-V7. Co-IP and biomass spectrum assays were used to identify the AR-V7-interacting proteins, whereas western blot, confocal microscopy, RNA interfering, and gene transfection were used to validate these interactions. Cell viability, EDU staining, and colony formation assays were employed to detect cell growth and proliferation. Flowcytometry assays were used to detect the distribution of cell cycle. Mouse xenograft models were used to study the anti-CRPC effects in vivo. Results: This screen identified rutaecarpine, one of the major components of the Chinese medicine Evodia rutaecarpa, as a novel chemical that selectively induces AR-V7 protein degradation via K48-linked ubiquitination. Mechanically, this effect relies on rutaecarpine inducing the formation of a GRP78-AR-V7 protein complex, which further recruits the E3 ligase SIAH2 to directly promote the ubiquitination of AR-V7. Consequently, the genetic and pharmacological activation of the GRP78-dependent AR-V7 protein degradation restores the sensitivity of castration-resistant prostate cancer to anti-androgen therapy in cell culture and animal models. Conclusions: These findings not only provide a new approach for overcoming castration-resistance in prostate cancer therapy, but also increase our understanding about the interplay between molecular chaperones and ubiquitin ligase in shaping protein stability.
Collapse
|
12
|
Kwon D, Kim SM, Correia MA. Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications. Acta Pharm Sin B 2020; 10:42-60. [PMID: 31993306 PMCID: PMC6976991 DOI: 10.1016/j.apsb.2019.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.
Collapse
Key Words
- 3MA, 3-methyladenine
- AAA, ATPases associated with various cellular activities
- ACC1, acetyl-CoA carboxylase 1
- ACC2, acetyl-CoA carboxylase 2
- ACHE, acetylcholinesterase
- ACOX1, acyl-CoA oxidase 1
- ALD, autophagic-lysosomal degradation
- AMPK1
- AP-1, activator protein 1
- ASK1, apoptosis signal-regulating kinase
- ATF2, activating transcription factor 2
- AdipoR1, gene of adiponectin receptor 1
- Atg14, autophagy-related 14
- CBZ, carbamazepine
- CHIP E3 ubiquitin ligase
- CHIP, carboxy-terminus of Hsc70-interacting protein
- Cytochromes P450
- Endoplasmic reticulum-associated degradation
- FOXO, forkhead box O
- Fas, fatty acid synthase
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- INH, isoniazid
- IRS1, insulin receptor substrate 1
- Il-1β, interleukin 1 β
- Il-6, interleukin 6
- Insig1, insulin-induced gene 1
- JNK1
- Lpl, lipoprotein lipase
- Mcp1, chemokine (C–C motif) ligand 1
- Non-alcoholic fatty liver disease
- Non-alcoholic steatohepatitis
- Pgc1, peroxisome proliferator-activated receptor coactivator 1
- SREBP1c, sterol regulatory element binding transcription factor 1c
- Scd1, stearoyl-coenzyme A desaturase
- Tnf, tumor necrosis factor
- UPD, ubiquitin (Ub)-dependent proteasomal degradation
- Ub, ubiquitin
- gp78/AMFR E3 ubiquitin ligase
- gp78/AMFR, autocrine motility factor receptor
- shRNAi, shRNA interference
Collapse
|
13
|
Kwon D, Kim SM, Jacob P, Liu Y, Correia MA. Induction via Functional Protein Stabilization of Hepatic Cytochromes P450 upon gp78/Autocrine Motility Factor Receptor (AMFR) Ubiquitin E3-Ligase Genetic Ablation in Mice: Therapeutic and Toxicological Relevance. Mol Pharmacol 2019; 96:641-654. [PMID: 31492698 DOI: 10.1124/mol.119.117069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The hepatic endoplasmic reticulum (ER)-anchored monotopic proteins, cytochromes P450 (P450s), are enzymes that metabolize endobiotics (physiologically active steroids and fatty acids), as well as xenobiotics including therapeutic/chemotherapeutic drugs, nutrients, carcinogens, and toxins. Alterations of hepatic P450 content through synthesis, inactivation, or proteolytic turnover influence their metabolic function. P450 proteolytic turnover occurs via ER-associated degradation (ERAD) involving ubiquitin (Ub)-dependent proteasomal degradation (UPD) as a major pathway. UPD critically involves P450 protein ubiquitination by E2/E3 Ub-ligase complexes. We have previously identified the ER-polytopic gp78/AMFR (autocrine motility factor receptor) as a relevant E3 in CYP3A4, CYP3A23, and CYP2E1 UPD. We now document that liver-conditional genetic ablation of gp78/AMFR in male mice disrupts P450 ERAD, resulting in statistically significant stabilization of Cyp2a5 and Cyp2c, in addition to that of Cyp3a and Cyp2e1. More importantly, we establish that such stabilization is of the functionally active P450 proteins, leading to corresponding statistically significant enhancement of their drug-metabolizing capacities. Our findings, with clinically relevant therapeutic drugs (nicotine, coumarin, chlorzoxazone, and acetaminophen) and the prodrug (tamoxifen) as P450 substrates, reveal that P450 ERAD disruption could influence therapeutic drug response and/or toxicity, warranting serious consideration as a potential source of clinically relevant drug-drug interactions (DDIs). Because gp78/AMFR is not only an E3 Ub-ligase, but also a cell-surface prometastatic oncogene that is upregulated in various malignant cancers, our finding that hepatic gp78/AMFR knockout can enhance P450-dependent bioactivation of relevant cancer chemotherapeutic prodrugs is of therapeutic relevance and noteworthy in prospective drug design and development. SIGNIFICANCE STATEMENT: The cell-surface and ER transmembrane protein gp78/AMFR, a receptor for the prometastatic autocrine motility factor (AMF), as well as an E3 ubiquitin-ligase involved in the ER-associated degradation (ERAD) of not only the tumor metastatic suppressor KAI1 but also of hepatic cytochromes P450, is upregulated in various human cancers, enhancing their invasiveness, metastatic potential, and poor prognosis. Liver-specific gp78/AMFR genetic ablation results in functional protein stabilization of several hepatic P450s and consequently enhanced drug and prodrug metabolism, a feature that could be therapeutically exploited in the bioactivation of chemotherapeutic prodrugs through design and development of novel short-term gp78/AMFR chemical inhibitors.
Collapse
Affiliation(s)
- Doyoung Kwon
- Departments of Cellular and Molecular Pharmacology (D.K., S.-M.K., Y.L., M.A.C.), Pharmaceutical Chemistry (M.A.C.), and Bioengineering and Therapeutic Sciences (M.A.C.) and The Liver Center (M.A.C.), University of California San Francisco, San Francisco, California; and Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, Center for Tobacco Control Research and Education, University of California, San Francisco, California (P.J.)
| | - Sung-Mi Kim
- Departments of Cellular and Molecular Pharmacology (D.K., S.-M.K., Y.L., M.A.C.), Pharmaceutical Chemistry (M.A.C.), and Bioengineering and Therapeutic Sciences (M.A.C.) and The Liver Center (M.A.C.), University of California San Francisco, San Francisco, California; and Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, Center for Tobacco Control Research and Education, University of California, San Francisco, California (P.J.)
| | - Peyton Jacob
- Departments of Cellular and Molecular Pharmacology (D.K., S.-M.K., Y.L., M.A.C.), Pharmaceutical Chemistry (M.A.C.), and Bioengineering and Therapeutic Sciences (M.A.C.) and The Liver Center (M.A.C.), University of California San Francisco, San Francisco, California; and Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, Center for Tobacco Control Research and Education, University of California, San Francisco, California (P.J.)
| | - Yi Liu
- Departments of Cellular and Molecular Pharmacology (D.K., S.-M.K., Y.L., M.A.C.), Pharmaceutical Chemistry (M.A.C.), and Bioengineering and Therapeutic Sciences (M.A.C.) and The Liver Center (M.A.C.), University of California San Francisco, San Francisco, California; and Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, Center for Tobacco Control Research and Education, University of California, San Francisco, California (P.J.)
| | - Maria Almira Correia
- Departments of Cellular and Molecular Pharmacology (D.K., S.-M.K., Y.L., M.A.C.), Pharmaceutical Chemistry (M.A.C.), and Bioengineering and Therapeutic Sciences (M.A.C.) and The Liver Center (M.A.C.), University of California San Francisco, San Francisco, California; and Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, Center for Tobacco Control Research and Education, University of California, San Francisco, California (P.J.)
| |
Collapse
|
14
|
Wang S, Ekoue DN, Raj GV, Kittler R. Targeting the turnover of oncoproteins as a new avenue for therapeutics development in castration-resistant prostate cancer. Cancer Lett 2018; 438:86-96. [PMID: 30217566 PMCID: PMC6186492 DOI: 10.1016/j.canlet.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
The current therapeutic armamentarium for castration-resistant prostate cancer (CRPC) includes second-generation agents such as the Androgen Receptor (AR) inhibitor enzalutamide and the androgen synthesis inhibitor abiraterone acetate, immunotherapies like sipuleucel-T, chemotherapies including docetaxel and cabazitaxel and the radiopharmaceutical radium 223 dichloride. However, relapse of CRPC resistant to these therapeutic modalities occur rapidly. The mechanisms of resistance to these treatments are complex, including specific mutations or alternative splicing of oncogenic proteins. An alternative approach to treating CRPC may be to target the turnover of these molecular drivers of CRPC. In this review, the mechanisms by which protein stability of several oncoproteins such as AR, ERG, GR, CYP17A1 and MYC, will be discussed, as well as how these findings could be translated into novel therapeutic agents.
Collapse
Affiliation(s)
- Shan Wang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Dede N Ekoue
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Park JW, Lee CM, Cheng JS, Morgan ET. Posttranslational regulation of CYP2J2 by nitric oxide. Free Radic Biol Med 2018; 121:149-156. [PMID: 29715548 PMCID: PMC5978777 DOI: 10.1016/j.freeradbiomed.2018.04.576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is an essential signaling molecule in the body, regulating numerous biological processes. Beside its physiological roles, NO affects drug metabolism by modulating the activity and/or expression of cytochrome P450 enzymes. Previously, our lab showed that NO generation caused by inflammatory stimuli results in CYP2B6 degradation via the ubiquitin-proteasome pathway. In the current study, we tested the NO-mediated regulation of CYP2J2 that metabolizes arachidonic acids to bioactive epoxyeicosatrienoic acids, as well as therapeutic drugs such as astemizole and ebastine. To investigate the effects of NO on CYP2J2 expression and activity, Huh7 cells stably transduced with CYP2J2 with a C-terminal V5 tag were treated with dipropylenetriamine-NONOate (DPTA), a NO donor. The level of CYP2J2 proteins were decreased in a time- and concentration-dependent manner, and the activity was also rapidly inhibited. However, mRNA expression was not altered and the protein synthesis inhibitor cycloheximide did not attenuate DPTA-mediated downregulation of CYP2J2. Removal of DPTA from the culture media quickly restored the activity of remaining CYP2J2, and no further CYP2J2 degradation occurred. To determine the mechanism of CYP2J2 down-regulation by NO, cells were treated with DPTA in the presence or absence of protease inhibitors including proteasomal, lysosomal and calpain inhibitors. Remarkably, the down-regulation of CYP2J2 by NO was attenuated by calpeptin, a calpain inhibitor. However, other calpain inhibitors or calcium chelator show no inhibitory effects on the degradation. The proteasome inhibitor bortezomib showed small but significant restoration of CYP2J2 levels although stimulated ubiquitination of CYP2J2 was not detected. In conclusion, these data suggest that NO regulates CYP2J2 posttranslationally and NO-evoked CYP2J2 degradation undergoes ubiquitin-independent proteasomal degradation pathway unlike CYP2B6.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Joan S Cheng
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Edward T Morgan
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Jonsson-Schmunk K, Schafer SC, Croyle MA. Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0376-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Joshi V, Upadhyay A, Kumar A, Mishra A. Gp78 E3 Ubiquitin Ligase: Essential Functions and Contributions in Proteostasis. Front Cell Neurosci 2017; 11:259. [PMID: 28890687 PMCID: PMC5575403 DOI: 10.3389/fncel.2017.00259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
As per the requirement of metabolism and fitness, normal cellular functions are controlled by several proteins, and their interactive molecular and signaling events at multiple levels. Protein quality control (PQC) mechanisms ensure the correct folding and proper utilization of these proteins to avoid their misfolding and aggregation. To maintain the optimum environment of complex proteome PQC system employs various E3 ubiquitin ligases for the selective degradation of aberrant proteins. Glycoprotein 78 (Gp78) is an E3 ubiquitin ligase that prevents multifactorial deleterious accumulation of different misfolded proteins via endoplasmic reticulum-associated degradation (ERAD). However, the precise role of Gp78 under stress conditions to avoid bulk misfolded aggregation is unclear, which can act as a crucial resource to establish the dynamic nature of the proteome. Present article systematically explains the detailed molecular characterization of Gp78 and also addresses its various cellular physiological functions, which could be crucial to achieving protein homeostasis. Here, we comprehensively represent the current findings of Gp78, which shows its PQC roles in different physiological functions and diseases; and thereby propose novel opportunities to better understand the unsolved questions for therapeutic interventions linked with different protein misfolding disorders.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology IndoreIndore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
18
|
Erzurumlu Y, Ballar P. Androgen Mediated Regulation of Endoplasmic Reticulum-Associated Degradation and its Effects on Prostate Cancer. Sci Rep 2017; 7:40719. [PMID: 28091582 PMCID: PMC5238502 DOI: 10.1038/srep40719] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) comprises thirty percent of the newly translated proteins in eukaryotic cells. The quality control mechanism within the ER distinguishes between properly and improperly folded proteins and ensures that unwanted proteins are retained in the ER and subsequently degraded through ER-associated degradation (ERAD). Besides cleaning of misfolded proteins ERAD is also important for physiological processes by regulating the abundance of normal proteins of the ER. Thus it is important to unreveal the regulation patterns of ERAD. Here, we describe that ERAD pathway is regulated by androgen, where its inhibitor SVIP was downregulated, all other ERAD genes were upregulated. Consistently, androgen treatment increased the degradation rate of ERAD substrates. Using several independent techniques, we showed that this regulation is through androgen receptor transactivation. ERAD genes found to be upregulated in prostate cancer tissues and silencing expression of Hrd1, SVIP, and gp78 reduced the in vitro migration and malignant transformation of LNCaP cells. Our data suggests that expression levels of ERAD components are regulated by androgens, that promotes ERAD proteolytic activity, which is positively related with prostate tumorigenesis.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Ege University, Faculty of Pharmacy, Biochemistry Department, Izmir, 35100 Turkey
| | - Petek Ballar
- Ege University, Faculty of Pharmacy, Biochemistry Department, Izmir, 35100 Turkey
| |
Collapse
|
19
|
Lewis-Ballester A, Forouhar F, Kim SM, Lew S, Wang Y, Karkashon S, Seetharaman J, Batabyal D, Chiang BY, Hussain M, Correia MA, Yeh SR, Tong L. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase. Sci Rep 2016; 6:35169. [PMID: 27762317 PMCID: PMC5071832 DOI: 10.1038/srep35169] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.
Collapse
Affiliation(s)
- Ariel Lewis-Ballester
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Farhad Forouhar
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Sung-Mi Kim
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Scott Lew
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - YongQiang Wang
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Shay Karkashon
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Jayaraman Seetharaman
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Dipanwita Batabyal
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Bing-Yu Chiang
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Munif Hussain
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Maria Almira Correia
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Liang Tong
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| |
Collapse
|
20
|
Kim SM, Grenert JP, Patterson C, Correia MA. CHIP(-/-)-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications. Sci Rep 2016; 6:29423. [PMID: 27406999 PMCID: PMC4942616 DOI: 10.1038/srep29423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Genetic ablation of C-terminus of Hsc70-interacting protein (CHIP) E3 ubiquitin-ligase impairs hepatic cytochrome P450 CYP2E1 degradation. Consequent CYP2E1 gain of function accelerates reactive O2 species (ROS) production, triggering oxidative/proteotoxic stress associated with sustained activation of c-Jun NH2-terminal kinase (JNK)-signaling cascades, pro-inflammatory effectors/cytokines, insulin resistance, progressive hepatocellular ballooning and microvesicular steatosis. Despite this, little evidence of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) was found in CHIP(-/-)-mice over the first 8-9-months of life. We herein document that this lack of tissue injury is largely due to the concurrent up-regulation and/or activation of the adiponectin-5'-AMP-activated protein kinase (AMPK)-forkhead box O (FOXO)-signaling axis stemming from at the least three synergistic features: Up-regulated expression of adipose tissue adiponectin and its hepatic adipoR1/adipoR2 receptors, stabilization of hepatic AMPKα1-isoform, identified herein for the first time as a CHIP-ubiquitination substrate (unlike its AMPKα2-isoform), as well as nuclear stabilization of FOXOs, well-known CHIP-ubiquitination targets. Such beneficial predominance of the adiponectin-AMPK-FOXO-signaling axis over the sustained JNK-elevation and injurious insulin resistance in CHIP(-/-)-livers apparently counteracts/delays rapid progression of the hepatic microvesicular steatosis to the characteristic macrovesicular steatosis observed in clinical NASH and/or rodent NASH-models.
Collapse
Affiliation(s)
- Sung-Mi Kim
- Department of Cellular &Molecular Pharmacology, University of California San Francisco, San Francisco CA 94158-2517, USA
| | - James P Grenert
- Department of Pathology, University of California San Francisco, San Francisco CA 94158-2517, USA.,The Liver Center, University of California San Francisco, San Francisco CA 94158-2517, USA
| | - Cam Patterson
- Department of Medicine, Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| | - Maria Almira Correia
- Department of Cellular &Molecular Pharmacology, University of California San Francisco, San Francisco CA 94158-2517, USA.,The Liver Center, University of California San Francisco, San Francisco CA 94158-2517, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco CA 94158-2517, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco CA 94158-2517, USA
| |
Collapse
|
21
|
Zhang MX, Zhang J, Zhang H, Tang H. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway. PLoS One 2016; 11:e0158433. [PMID: 27351203 PMCID: PMC4924841 DOI: 10.1371/journal.pone.0158433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3’UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.
Collapse
Affiliation(s)
- Ming-xue Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Jie Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| |
Collapse
|
22
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
23
|
Kwon OK, Sim J, Kim SJ, Sung E, Kim JY, Jeong TC, Lee S. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes. J Proteome Res 2015; 14:5215-24. [PMID: 26487105 DOI: 10.1021/acs.jproteome.5b00812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - JuHee Sim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Eunji Sung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center, Korea Basic Science Institute , Ochang, Chungbuk 28115, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan 38541, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| |
Collapse
|
24
|
Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2015; 35:1517-28. [PMID: 26119938 DOI: 10.1038/onc.2015.214] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
Abstract
Heat-shock protein 5 (HSPA5) is a marker for poor prognosis in breast cancer patients and has an important role in cancer progression, including promoting drug resistance and metastasis. In this study, we identify that the specific lysine residue 447 (K447) of HSPA5 could be modified with polyubiquitin for subsequent degradation through the ubiquitin proteasomal system, leading to the suppression of cell migration and invasion of breast cancer. We further found that GP78, an E3 ubiquitin ligase, interacted with the C-terminal region of HSPA5 and mediated HSPA5 ubiquitination and degradation. Knock down of GP78 significantly increased the expression of HSPA5 and enhanced migration/invasive ability of breast cancer cells. Knock down of histone deacetylase-6 (HDAC6) increased the acetylation of HSPA5 at lysine residues 353 (K353) and reduced GP78-mediated ubiquitination of HSPA5 at K447 and then increased cell migration/invasion. In addition, we demonstrate that E3 ubiquitin ligase GP78 preferentially binds to deacetylated HSPA5. Notably, the expression levels of GP78 inversely correlated with HSPA5 levels in breast cancer patients. Patients with low GP78 expression significantly correlated with invasiveness of breast cancer, advanced tumor stages and poor clinical outcome. Taken together, our results provide new mechanistic insights into the understanding that deacetylation of HSPA5 by HDAC6 facilitates GP78-mediated HSPA5 ubiquitination and suggest that post-translational regulation of HSPA5 protein is critical for HSPA5-mediated metastatic properties of breast cancer.
Collapse
|