1
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
2
|
Piñeyro MD, Chiribao ML, Arias DG, Robello C, Parodi-Talice A. Overoxidation and Oligomerization of Trypanosoma cruzi Cytosolic and Mitochondrial Peroxiredoxins. Pathogens 2023; 12:1273. [PMID: 37887789 PMCID: PMC10610341 DOI: 10.3390/pathogens12101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Peroxiredoxins (Prxs) have been shown to be important enzymes for trypanosomatids, counteracting oxidative stress and promoting cell infection and intracellular survival. In this work, we investigate the in vitro sensitivity to overoxidation and the overoxidation dynamics of Trypanosoma cruzi Prxs in parasites in culture and in the infection context. We showed that recombinant m-TXNPx, in contrast to what was observed for c-TXNPx, exists as low molecular mass forms in the overoxidized state. We observed that T. cruzi Prxs were overoxidized in epimastigotes treated with oxidants, and a significant proportion of the overoxidized forms were still present at least 24 h after treatment suggesting that these forms are not actively reversed. In in vitro infection experiments, we observed that Prxs are overoxidized in amastigotes residing in infected macrophages, demonstrating that inactivation of at least part of the Prxs by overoxidation occurs in a physiological context. We have shown that m-TXNPx has a redox-state-dependent chaperone activity. This function may be related to the increased thermotolerance observed in m-TXNPx-overexpressing parasites. This study suggests that despite the similarity between protozoan and mammalian Prxs, T. cruzi Prxs have different oligomerization dynamics and sensitivities to overoxidation, which may have implications for their function in the parasite life cycle and infection process.
Collapse
Affiliation(s)
- María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego G. Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, UNL-CONICET, Santa Fe 3000, Argentina;
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
3
|
Wanvimonsuk S, Somboonwiwat K. Peroxiredoxin-4 supplementation modulates the immune response, shapes the intestinal microbiome, and enhances AHPND resistance in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023:108915. [PMID: 37355217 DOI: 10.1016/j.fsi.2023.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Peroxiredoxin-4 from Penaeus vannamei (LvPrx4) is considered a damage-associated molecular pattern (DAMP) that can activate the expression of immune-related genes through the Toll pathway. We previously demonstrated that the recombinant LvPrx4 (rLvPrx4) can enhance shrimp resistance against Vibrio parahaemolyticus, causing acute hepatopancreatic necrosis disease (VPAHPND), which causes great production losses in shrimp farming. Herein, we showed that the rLvPrx4 had a thermal tolerance of around 60 °C and that the ionic strength had no noticeable effect on its activity. We discovered that feeding a diet containing rLvPrx4 to shrimp for three weeks increased the expression of the immune-related genes LvPEN4 and LvVago5. Furthermore, pre-treatment with rLvPrx4 feeding could significantly prolong shrimp survival following the VPAHPND challenge. The shrimp intestinal microbiome was then characterized using PCR amplification of the 16S rRNA gene and Illumina sequencing. Three weeks of rLvPrx4 supplementation altered the bacterial community structure (beta diversity) and revealed the induction of differentially abundant families, including Cryomorphaceae, Flavobacteriaceae, Pirellulaceae, Rhodobacteraceae, and Verrucomicrobiaceae, in the rLvPrx4 group. Metagenomic predictions indicated that some amino acid metabolism pathways, such as arginine and proline metabolism, and genetic information processing were significantly elevated in the rLvPrx4 group compared to the control group. This study is the first to describe the potential use of rLvPrx4 supplementation to enhance shrimp resistance to VPAHPND and alter the composition of a beneficial bacterial community in shrimp, making rLvPrx4 a promising feed supplement as an alternative to antibiotics for controlling VPAHPND infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Morita K, Sasaki R, Jindai M, Yamada Y, Konno H. Elucidation of the Binding Mechanism of Anionic Phospholipids to Antioxidant Protein Peroxiredoxin 2. Biochemistry 2023. [PMID: 37220271 DOI: 10.1021/acs.biochem.2c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Peroxiredoxins (Prxs) belong to a family of ubiquitously expressed peroxidases that detoxify reactive oxygen species. In addition to their enzymatic function, Prxs also function as molecular chaperones. This functional switch is related to their degree of oligomerization. We have previously revealed that Prx2 interacts with anionic phospholipids and that the anionic phospholipid-containing Prx2 oligomer forms a high molecular weight (HMW) complex in a nucleotide-dependent manner. However, the detailed mechanism of the oligomer and HMW complex formation remains unclear. In this study, we investigated the anionic phospholipid binding site in Prx2 using site-directed mutagenesis to understand the mechanism of the oligomer formation. Our findings demonstrated that six binding site residues in Prx2 are important for the binding of anionic phospholipids.
Collapse
Affiliation(s)
- Kouki Morita
- Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Rino Sasaki
- College of Science and Engineering, School of Natural System, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mami Jindai
- College of Science and Engineering, School of Natural System, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yutaro Yamada
- Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR. J Am Chem Soc 2023; 145:10700-10711. [PMID: 37140345 PMCID: PMC10197130 DOI: 10.1021/jacs.3c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.
Collapse
Affiliation(s)
- Laura Troussicot
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| | - Alicia Vallet
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
| | - Mikael Molin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Department
of Life Sciences, Chalmers University of
Technology, SE-405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Paul Schanda
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro. PHOTONICS 2022. [DOI: 10.3390/photonics9050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The contact of blood with the bioincompatible membranes of the dialyzer, which is part of the extracorporeal circuit during hemodialysis (HD), causes upregulation of various cellular and non-cellular processes, including massive generation and release of reactive oxygen species (ROS), (which is one of the primary causes of anemia in chronic renal failure). We hypothesize that near-infrared (NIR) radiation possesses antioxidant properties and is considered to protect the red blood cell (RBC) membrane by enhancing its resilience to negative pressures. Our experimental setup consisted of an HD machine equipped with a dialyzer with a polyamide membrane; whole bovine blood was examined in vitro in blood-treated circulation. Blood samples were taken at 0, 5, 15, and 30 min during the HD therapy. We also assessed osmotic fragility, hematocrit, hemolysis, and oxidative stress as a concentration of reactive thiobarbituric acid substances (TBARS). Our results have shown that RBC membrane peroxidation increased significantly after 30 min of circulation, whereas the TBARS level in NIR-treated blood remained relatively steady throughout the experiment. The osmotic fragility of NIR-irradiated samples during dialysis was decreased compared to control samples. Our studies confirm that in vitro, blood photobiomodulation using NIR light diminishes oxidative damage during HD and can be considered a simultaneous pretreatment strategy for HD.
Collapse
|
7
|
Beaussart A, Canonico F, Mazon H, Hidalgo J, Cianférani S, Le Cordier H, Kriznik A, Rahuel-Clermont S. Probing the mechanism of the peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. NANOSCALE HORIZONS 2022; 7:515-525. [PMID: 35234779 DOI: 10.1039/d2nh00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peroxiredoxins from the Prx1 subfamily (Prx) are highly regulated multifunctional proteins involved in oxidative stress response, redox signaling and cell protection. Prx is a homodimer that associates into a decamer. The monomer C-terminus plays intricate roles in Prx catalytic functions, decamer stability and interaction with its redox partner, the small reductase sulfiredoxin (Srx), that regulates the switching between Prx cellular functions. As only static structures of covalent Prx-Srx complexes have been reported, whether Srx binding dissociates the decameric assembly and how Prx subunit flexibility impacts complex formation are unknown. Here, we assessed the non-covalent interaction mechanism and dynamics in the solution of Saccharomyces cerevisiae Srx with the ten subunits of Prx Tsa1 at the decamer level via a combination of multiscale biophysical approaches including native mass spectrometry. We show that the ten subunits of the decamer can be saturated by ten Srx molecules and that the Tsa1 decamer in complex with Srx does not dissociate in solution. Furthermore, the binding events of atomic force microscopy (AFM) tip-grafted Srx molecules to Tsa1 individual subunits were relevant to the interactions between free molecules in solution. Combined with protein engineering and rapid kinetics, the observation of peculiar AFM force-distance signatures revealed that Tsa1 C-terminus flexibility controls Tsa1/Srx two-step binding and dynamics and determines the force-induced dissociation of Srx from each subunit of the decameric complex in a sequential or concerted mode. This combined approach from the solution to the single-molecule level offers promising prospects for understanding oligomeric protein interactions with their partners.
Collapse
Affiliation(s)
| | | | - Hortense Mazon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Jorge Hidalgo
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS CEA, 67087 Strasbourg, France
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| | - Sophie Rahuel-Clermont
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| |
Collapse
|
8
|
Tairum CA, Santos MC, Breyer CA, de Oliveira ALP, Cabrera VIM, Toledo-Silva G, Mori GM, Toyama MH, Netto LES, de Oliveira MA. Effects of Serine or Threonine in the Active Site of Typical 2-Cys Prx on Hyperoxidation Susceptibility and on Chaperone Activity. Antioxidants (Basel) 2021; 10:1032. [PMID: 34202406 PMCID: PMC8300647 DOI: 10.3390/antiox10071032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.
Collapse
Affiliation(s)
- Carlos A. Tairum
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 01049-010, Brazil
| | - Melina Cardoso Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Carlos Alexandre Breyer
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Ana Laura Pires de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Vitoria Isabela Montanhero Cabrera
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Guilherme Toledo-Silva
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Gustavo Maruyama Mori
- Laboratório de Ecologia Molecular, Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil;
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 01049-010, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil; (C.A.T.); (M.C.S.); (C.A.B.); (A.L.P.d.O.); (V.I.M.C.); (M.H.T.)
| |
Collapse
|
9
|
Yoda T, Furuta M, Tsutsumi T, Ikeda S, Yukizawa S, Arai S, Morita A, Yamatoya K, Nakata K, Tomoshige S, Ohgane K, Furuyama Y, Sakaguchi K, Sugawara F, Kobayashi S, Ikekita M, Kuramochi K. Epo-C12 inhibits peroxiredoxin 1 peroxidase activity. Bioorg Med Chem 2021; 41:116203. [PMID: 34015702 DOI: 10.1016/j.bmc.2021.116203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Epo-C12 is a synthetic derivative of epolactaene, isolated from Penicillium sp. BM 1689-P. Epo-C12 induces apoptosis in human acute lymphoblastoid leukemia BALL-1 cells. In our previous studies, seven proteins that bind to Epo-C12 were identified by a combination of pull-down experiments using biotinylated Epo-C12 (Bio-Epo-C12) and mass spectrometry. In the present study, the effect of Epo-C12 on peroxiredoxin 1 (Prx 1), one of the proteins that binds to Epo-C12, was investigated. Epo-C12 inhibited Prx 1 peroxidase activity. However, it did not suppress its chaperone activity. Binding experiments between Bio-Epo-C12 and point-mutated Prx 1s suggest that Epo-C12 binds to Cys52 and Cys83 in Prx 1. The present study revealed that Prx 1 is one of the target proteins through which Epo-C12 exerts an apoptotic effect in BALL-1 cells.
Collapse
Affiliation(s)
- Tomoka Yoda
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masateru Furuta
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiko Tsutsumi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seiki Ikeda
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shunsuke Yukizawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoshi Arai
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akinori Morita
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kenji Yamatoya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu-City, Chiba, 279-0021, Japan
| | - Kazuya Nakata
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Shusuke Tomoshige
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kenji Ohgane
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Susumu Kobayashi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masahiko Ikekita
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
10
|
López L, Chiribao ML, Girard MC, Gómez KA, Carasi P, Fernandez M, Hernandez Y, Robello C, Freire T, Piñeyro MD. The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi induces a pro-inflammatory Th1 immune response in a peroxidatic cysteine-dependent manner. Immunology 2021; 163:46-59. [PMID: 33410127 PMCID: PMC8044337 DOI: 10.1111/imm.13302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c-TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c-TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c-TXNPx and a mutant version (c-TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T-cell response by flow cytometry after injection into mice. Our results show that c-TXNPx, but not c-TXNPxC52S, induces the recruitment of IL-12/23p40-producing innate antigen-presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild-type c-TXNPx induces proliferation and high levels of IFN-γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c-TXNPx possesses pro-inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune-based strategies against Chagas disease.
Collapse
Affiliation(s)
- Lucía López
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
| | - María Laura Chiribao
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Magalí C. Girard
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Paula Carasi
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Marisa Fernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Carlos Robello
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - María Dolores Piñeyro
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| |
Collapse
|
11
|
Unique Cellular and Biochemical Features of Human Mitochondrial Peroxiredoxin 3 Establish the Molecular Basis for Its Specific Reaction with Thiostrepton. Antioxidants (Basel) 2021; 10:antiox10020150. [PMID: 33498547 PMCID: PMC7909569 DOI: 10.3390/antiox10020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
A central hallmark of tumorigenesis is metabolic alterations that increase mitochondrial reactive oxygen species (mROS). In response, cancer cells upregulate their antioxidant capacity and redox-responsive signaling pathways. A promising chemotherapeutic approach is to increase ROS to levels incompatible with tumor cell survival. Mitochondrial peroxiredoxin 3 (PRX3) plays a significant role in detoxifying hydrogen peroxide (H2O2). PRX3 is a molecular target of thiostrepton (TS), a natural product and FDA-approved antibiotic. TS inactivates PRX3 by covalently adducting its two catalytic cysteine residues and crosslinking the homodimer. Using cellular models of malignant mesothelioma, we show here that PRX3 expression and mROS levels in cells correlate with sensitivity to TS and that TS reacts selectively with PRX3 relative to other PRX isoforms. Using recombinant PRXs 1–5, we demonstrate that TS preferentially reacts with a reduced thiolate in the PRX3 dimer at mitochondrial pH. We also show that partially oxidized PRX3 fully dissociates to dimers, while partially oxidized PRX1 and PRX2 remain largely decameric. The ability of TS to react with engineered dimers of PRX1 and PRX2 at mitochondrial pH, but inefficiently with wild-type decameric protein at cytoplasmic pH, supports a novel mechanism of action and explains the specificity of TS for PRX3. Thus, the unique structure and propensity of PRX3 to form dimers contribute to its increased sensitivity to TS-mediated inactivation, making PRX3 a promising target for prooxidant cancer therapy.
Collapse
|
12
|
Peskin AV, Meotti FC, de Souza LF, Anderson RF, Winterbourn CC, Salvador A. Intra-dimer cooperativity between the active site cysteines during the oxidation of peroxiredoxin 2. Free Radic Biol Med 2020; 158:115-125. [PMID: 32702382 DOI: 10.1016/j.freeradbiomed.2020.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin 2 (Prdx2) and other typical 2-Cys Prdxs function as homodimers in which hydrogen peroxide oxidizes each active site cysteine to a sulfenic acid which then condenses with the resolving cysteine on the alternate chain. Previous kinetic studies have considered both sites as equally reactive. Here we have studied Prdx2 using a combination of non-reducing SDS-PAGE to separate reduced monomers and dimers with one and two disulfide bonds, and stopped flow analysis of tryptophan fluorescence, to investigate whether there is cooperativity between the sites. We have observed positive cooperativity when H2O2 is added as a bolus and oxidation of the second site occurs while the first site is present as a sulfenic acid. Modelling of this reaction showed that the second site reacts 2.2 ± 0.1 times faster. In contrast, when H2O2 was generated slowly and the first active site condensed to a disulfide before the second site reacted, no cooperativity was evident. Conversion of the sulfenic acid to the disulfide showed negative cooperativity, with modelling of the exponential rise in tryptophan fluorescence yielding a rate constant of 0.75 ± 0.08 s-1 when the alternate active site was present as a sulfenic acid and 2.29 ± 0.08-fold lower when it was a disulfide. No difference in the rate of hyperoxidation at the two sites was detected. Our findings imply that oxidation of one active site affects the conformation of the second site and influences which intermediate forms of the protein are favored under different cellular conditions.
Collapse
Affiliation(s)
- Alexander V Peskin
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Flávia C Meotti
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo-SP, Brazil
| | - Luiz F de Souza
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo-SP, Brazil
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Armindo Salvador
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, Coimbra, Portugal; CQC, Department of Chemistry, And University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Abstract
Peroxiredoxins are most central to the cellular adaptation against oxidative stress. They act as oxidant scavengers, stress sensors, transmitters of signals, and chaperones, and they possess a unique quaternary switch that is intimately related to these functions. However, so far it has not been possible to monitor peroxiredoxin structural changes in the intact cellular environment. This study presents genetically encoded probes, based on homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization, that allow following these quaternary changes in real time, in living cells. We envisage that these probes can be used to address a broad range of questions related to the function of peroxiredoxins. Peroxiredoxins are central to cellular redox homeostasis and signaling. They serve as peroxide scavengers, sensors, signal transducers, and chaperones, depending on conditions and context. Typical 2-Cys peroxiredoxins are known to switch between different oligomeric states, depending on redox state, pH, posttranslational modifications, and other factors. Quaternary states and their changes are closely connected to peroxiredoxin activity and function but so far have been studied, almost exclusively, outside the context of the living cell. Here we introduce the use of homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization to monitor dynamic changes in peroxiredoxin quaternary structure inside the crowded environment of living cells. Using the approach, we confirm peroxide- and thioredoxin-related quaternary transitions to take place in cellulo and observe that the relationship between dimer–decamer transitions and intersubunit disulfide bond formation is more complex than previously thought. Furthermore, we demonstrate the use of the approach to compare different peroxiredoxin isoforms and to identify mutations and small molecules affecting the oligomeric state inside cells. Mutagenesis experiments reveal that the dimer–decamer equilibrium is delicately balanced and can be shifted by single-atom structural changes. We show how to use this insight to improve the design of peroxiredoxin-based redox biosensors.
Collapse
|
14
|
Narayanan N, Banerjee A, Jain D, Kulkarni DS, Sharma R, Nirwal S, Rao DN, Nair DT. Tetramerization at Low pH Licenses DNA Methylation Activity of M.HpyAXI in the Presence of Acid Stress. J Mol Biol 2020; 432:324-342. [DOI: 10.1016/j.jmb.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022]
|
15
|
Vazquez DS, Zeida A, Agudelo WA, Montes MR, Ferrer-Sueta G, Santos J. Exploring the conformational transition between the fully folded and locally unfolded substates of Escherichia coli thiol peroxidase. Phys Chem Chem Phys 2020; 22:9518-9533. [DOI: 10.1039/d0cp00140f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Temporal acquisition of the fully folded conformational substate of the Escherichia coli thiol peroxidase by accelerated molecular dynamics simulations.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Laboratorio de Expresión y Plegado de Proteínas
- Departamento de Ciencia y Tecnología
- Universidad Nacional de Quilmes
- Buenos Aires
- Argentina
| | - Ari Zeida
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO)
- Facultad de Medicina
- Universidad de la República
- Montevideo
- Uruguay
| | - William A. Agudelo
- Fundación Instituto de Inmunología de Colombia (FIDIC)
- Bogotá D.C
- Colombia
| | - Mónica R. Montes
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)
- “Prof. Dr Alejandro C. Paladini”
- Universidad de Buenos Aires and CONICET
- Ciudad Autónoma de Buenos Aires
- Argentina
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica
- Instituto de Química Biológica and CEINBIO
- Facultad de Ciencias
- Universidad de la República
- Montevideo
| | - Javier Santos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Ciudad Autónoma de Buenos Aires
- Argentina
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3)
- Departamento de Fisiología y Biología Molecular y Celular
| |
Collapse
|
16
|
Elko EA, Cunniff B, Seward DJ, Chia SB, Aboushousha R, van de Wetering C, van der Velden J, Manuel A, Shukla A, Heintz NH, Anathy V, van der Vliet A, Janssen-Heininger YMW. Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxid Redox Signal 2019; 31:1070-1091. [PMID: 30799628 PMCID: PMC6767868 DOI: 10.1089/ars.2019.7752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults, including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is critical to the cellular antioxidant defense system. Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH, sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Furthermore, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox regulation and control of cellular biology exerted by this class of proteins. Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pulmonary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate secretion, redox status, and immune response to PRDXs. Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung inflammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state, configuration, and client proteins that govern these processes is needed.
Collapse
Affiliation(s)
- Evan A Elko
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Shi Biao Chia
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Allison Manuel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nicholas H Heintz
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
17
|
Oligomerization dynamics and functionality of Trypanosoma cruzi cytosolic tryparedoxin peroxidase as peroxidase and molecular chaperone. Biochim Biophys Acta Gen Subj 2019; 1863:1583-1594. [DOI: 10.1016/j.bbagen.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022]
|
18
|
Yang Y, Davis I, Matsui T, Rubalcava I, Liu A. Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity. J Biol Chem 2019; 294:11609-11621. [PMID: 31189654 PMCID: PMC6663868 DOI: 10.1074/jbc.ra119.009035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
α-Amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) plays an important role in l-tryptophan degradation via the kynurenine pathway. ACMSD forms a homodimer and is functionally inactive as a monomer because its catalytic assembly requires an arginine residue from a neighboring subunit. However, how the oligomeric state and self-association of ACMSD are controlled in solution remains unexplored. Here, we demonstrate that ACMSD from Pseudomonas fluorescens can self-assemble into homodimer, tetramer, and higher-order structures. Using size-exclusion chromatography coupled with small-angle X-ray scattering (SEC-SAXS) analysis, we investigated the ACMSD tetramer structure, and fitting the SAXS data with X-ray crystal structures of the monomeric component, we could generate a pseudo-atomic structure of the tetramer. This analysis revealed a tetramer model of ACMSD as a head-on dimer of dimers. We observed that the tetramer is catalytically more active than the dimer and is in equilibrium with the monomer and dimer. Substituting a critical residue of the dimer-dimer interface, His-110, altered the tetramer dissociation profile by increasing the higher-order oligomer portion in solution without changing the X-ray crystal structure. ACMSD self-association was affected by pH, ionic strength, and other electrostatic interactions. Alignment of ACMSD sequences revealed that His-110 is highly conserved in a few bacteria that utilize nitrobenzoic acid as a sole source of carbon and energy, suggesting a dedicated functional role of ACMSD's self-assembly into the tetrameric and higher-order structures. These results indicate that the dynamic oligomerization status potentially regulates ACMSD activity and that SEC-SAXS coupled with X-ray crystallography is a powerful tool for studying protein self-association.
Collapse
Affiliation(s)
- Yu Yang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025
| | - Ivan Rubalcava
- Department of Chemistry, University of Texas, San Antonio, Texas 78249
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, To whom correspondence should be addressed. Tel.:
210-458-7062; E-mail:
| |
Collapse
|
19
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Teixeira F, Tse E, Castro H, Makepeace KAT, Meinen BA, Borchers CH, Poole LB, Bardwell JC, Tomás AM, Southworth DR, Jakob U. Chaperone activation and client binding of a 2-cysteine peroxiredoxin. Nat Commun 2019; 10:659. [PMID: 30737390 PMCID: PMC6368585 DOI: 10.1038/s41467-019-08565-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023] Open
Abstract
Many 2-Cys-peroxiredoxins (2-Cys-Prxs) are dual-function proteins, either acting as peroxidases under non-stress conditions or as chaperones during stress. The mechanism by which 2-Cys-Prxs switch functions remains to be defined. Our work focuses on Leishmania infantum mitochondrial 2-Cys-Prx, whose reduced, decameric subpopulation adopts chaperone function during heat shock, an activity that facilitates the transition from insects to warm-blooded host environments. Here, we have solved the cryo-EM structure of mTXNPx in complex with a thermally unfolded client protein, and revealed that the flexible N-termini of mTXNPx form a well-resolved central belt that contacts and encapsulates the unstructured client protein in the center of the decamer ring. In vivo and in vitro cross-linking studies provide further support for these interactions, and demonstrate that mTXNPx decamers undergo temperature-dependent structural rearrangements specifically at the dimer-dimer interfaces. These structural changes appear crucial for exposing chaperone-client binding sites that are buried in the peroxidase-active protein.
Collapse
Affiliation(s)
- Filipa Teixeira
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, 94158, CA, USA
| | - Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal
| | - Karl A T Makepeace
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, V8P 5C2, BC, Canada.,Genome British Columbia Proteomics Centre, University of Victoria, Victoria, V8Z 7X8, BC, Canada
| | - Ben A Meinen
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, 48109-1085, MI, USA
| | - Christoph H Borchers
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, V8P 5C2, BC, Canada.,Genome British Columbia Proteomics Centre, University of Victoria, Victoria, V8Z 7X8, BC, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, H4A 3T2, QC, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, QC, Canada
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - James C Bardwell
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, 48109-1085, MI, USA
| | - Ana M Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4050-313, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, 94158, CA, USA.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental, University of Michigan, Ann Arbor, 48109-1085, MI, USA.
| |
Collapse
|
21
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
22
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Basel) 2019; 8:antiox8010011. [PMID: 30609657 PMCID: PMC6356878 DOI: 10.3390/antiox8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.
Collapse
Affiliation(s)
- Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Reetta Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
23
|
Kusakisako K, Fujisaki K, Tanaka T. The multiple roles of peroxiredoxins in tick blood feeding. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:269-280. [PMID: 30030662 DOI: 10.1007/s10493-018-0273-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radicals (HO·) are generated through partial reduction of oxygen. The HO· are the most reactive and have a shorter half-life than H2O2, they are produced from comparatively stable H2O2 through Fenton reaction. Although controlling HO· is important and biologically advantageous for organisms, it may be difficult. Ticks are obligate hematophagous arthropods that need blood feeding for development. Ticks feed on vertebrate blood containing high levels of iron. Ticks also concentrate iron-containing host blood, leading to high levels of iron in ticks. Host-derived iron may react with oxygen in the tick body, resulting in high concentrations of H2O2. On the other hand, ticks have antioxidant enzymes, such as peroxiredoxins (Prxs), to scavenge H2O2. Gene silencing of Prxs in ticks affects their blood feeding, oviposition, and H2O2 concentration. Therefore, Prxs could play important roles in ticks' blood feeding and oviposition through the regulation of the H2O2 concentration. This review discusses the current knowledge of Prxs in hard ticks. Tick Prxs are also multifunctional molecules related to antioxidants and immunity like other organisms. In addition, tick Prxs play a role in regulating the host immune response for ticks' survival in the host body. Tick Prx also can induce Th2 immune response in the host. Thus, this review would contribute to the further understanding of the tick's antioxidant responses during blood feeding and the search for a candidate target for tick control.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
24
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs) are thiol peroxidases with multiple functions in the antioxidant defense and redox signaling network of the cell. Our progressing understanding assigns both local and global significance to plant Prxs, which are grouped in four Prx types. In plants they are localized to the cytosol, mitochondrion, plastid, and nucleus. Antioxidant defense is fundamentally connected to redox signaling, cellular communication, and acclimation. The thiol-disulfide network is central part of the stress sensing and processing response and integrates information input with redox regulation. Recent Advances: Prxs function both as redox sensory system within the network and redox-dependent interactors. The processes directly or indirectly targeted by Prxs include gene expression, post-transcriptional reactions, including translation, post-translational regulation, and switching or tuning of metabolic pathways, and other cell activities. The most advanced knowledge is available for the chloroplast 2-CysPrx wherein recently a solid interactome has been defined. An in silico analysis of protein structure and coexpression reinforces new insights into the 2-CysPrx functionality. CRITICAL ISSUES Up to now, Prxs often have been investigated for local properties of enzyme activity. In vitro and ex vivo work with mutants will reveal the ability of Prxs to interfere with multiple cellular components, including crosstalk with Ca2+-linked signaling pathways, hormone signaling, and protein homeostasis. FUTURE DIRECTIONS Complementation of the Prxs knockout lines with variants that mimic specific states, namely devoid of peroxidase activity, lacking the oligomerization ability, resembling the hyperoxidized decamer, or with truncated C-terminus, should allow dissecting the roles as thiol peroxidase, oxidant, interaction partner, and chaperone. Antioxid. Redox Signal. 28, 609-624.
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld , Bielefeld, Germany
| |
Collapse
|
25
|
Yewdall NA, Peskin AV, Hampton MB, Goldstone DC, Pearce FG, Gerrard JA. Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochem Biophys Res Commun 2018; 497:558-563. [PMID: 29438714 DOI: 10.1016/j.bbrc.2018.02.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
Peroxiredoxins are abundant peroxidase enzymes that are key regulators of the cellular redox environment. A major subgroup of these proteins, the typical 2-Cys peroxiredoxins, can switch between dimers and decameric or dodecameric rings, during the catalytic cycle. The necessity of this change in quaternary structure for function as a peroxidase is not fully understood. In order to explore this, human peroxiredoxin 3 (Prx3) protein was engineered to form both obligate dimers (S75E Prx3) and stabilised dodecameric rings (S78C Prx3), uncoupling structural transformations from the catalytic cycle. The obligate dimer, S75E Prx3, retained catalytic activity towards hydrogen peroxide, albeit significantly lower than the wildtype and S78C proteins, suggesting an evolutionary advantage of having higher order self-assemblies.
Collapse
Affiliation(s)
- N Amy Yewdall
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Alexander V Peskin
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Juliet A Gerrard
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington 6140, New Zealand; School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
26
|
Pan A, Balakrishna AM, Nartey W, Kohlmeier A, Dip PV, Bhushan S, Grüber G. Atomic structure and enzymatic insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit C. Free Radic Biol Med 2018; 115:252-265. [PMID: 29223533 DOI: 10.1016/j.freeradbiomed.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/14/2017] [Accepted: 12/03/2017] [Indexed: 11/20/2022]
Abstract
The Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) are of paramount importance to restore redox homeostasis. Recently, the novel phenomenon of swapping of the catalytic domains of EfAhpF was uncovered. Here, we visualized its counterpart EfAhpC (187 residues) from the vancomycin-resistant E. faecalis (V583) bacterium by electron microscopy and demonstrate, that in contrast to other bacterial AhpCs, EfAhpC forms a stable decamer-ring irrespective of the redox state. The first crystallographic structure (2.8Å resolution) of the C-terminal truncated form (EfAhpC1-172) confirms the decamer ring and provides new insight into a transition state in-between a fully folded to a locally unfolded conformation in the catalytic center due to redox modulation. Amino acid substitutions of residues in the N- and C-termini as well as the oligomeric interphase of EfAhpC provide information into their structural and enzymatic roles. Mutagenesis, enzymatic and biophysical studies reveal the effect of the unusual existence of four cysteines in EfAhpC, which might optimize the functional adaptation of the E. faecalis enzyme under various physiological conditions.
Collapse
Affiliation(s)
- Ankita Pan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Asha Manikkoth Balakrishna
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Andreas Kohlmeier
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Phat Vinh Dip
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Shashi Bhushan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
27
|
Schultz MA, Diaz AM, Smite S, Lay AR, DeCant B, McKinney R, Mascarinas WE, Xia Y, Neumann C, Bentrem D, Dawson DW, Grippo PJ. Thioredoxin system-mediated regulation of mutant Kras associated pancreatic neoplasia and cancer. Oncotarget 2017; 8:92667-92681. [PMID: 29190947 PMCID: PMC5696213 DOI: 10.18632/oncotarget.21539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Peroxiredoxin-1 (Prdx1), a member of the thioredoxin (Txn) system, is overexpressed and correlates with poor prognosis in pancreatic cancer patients and can suppress Kras signaling through redox-mediated inhibition of ERK and AKT in lung and breast cancer. Its redox function is maintained by Txn and sulfiredoxin (Srxn), and its tumor promoting functions are activated by post-translational modification. We studied the role of the Txn system in pancreatic neoplasia and cancer by determining how it regulates the phosphorylation of Kras effectors and by determining its association with patient survival. We found that elevated Prdx1 nuclear localization significantly correlated with better patient survival. Our data also demonstrate that the expression of the Txn system is dysregulated, with elevated Prdx1 expression and significantly decreased Txn and Srxn expression in pancreatic lesions of targeted mutant Kras mouse models. This correlated with distinct differences in the interconversion of Prdx1 oligomers that affect its ability to regulate ERK and AKT phosphorylation. Our data also suggest that Prdx1 post-translational modification and oligomerization suppress Prdx1 mediated redox regulation of ERK phosphorylation. We observed distinct differences in Txn expression and in the ability of pTyr-Prdx1 to bind to pERK in a PanIN model of pancreatic neoplasia as compared to an IPMN model, indicating a distinct difference in the function of post-translationally modified Prdx1 in cells with less Txn expression. Modified Txn system function and post-translational regulation may therefore play a significant role in pancreatic tumorigenesis by altering Kras effector phosphorylation and inhibiting the tumor suppressive redox functions of Prdx1.
Collapse
Affiliation(s)
- Michelle A Schultz
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA.,Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Andrew M Diaz
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA
| | - Sharon Smite
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian DeCant
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA
| | - Ronald McKinney
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA
| | - Windel E Mascarinas
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Yinglin Xia
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA
| | - Carola Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh PA 15232, USA
| | - David Bentrem
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul J Grippo
- Division of Gastroenterology, Department of Medicine, University of Illinois-Chicago, Chicago IL 60612, USA.,Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| |
Collapse
|
28
|
Morais MAB, Giuseppe PO, Souza TACB, Castro H, Honorato RV, Oliveira PSL, Netto LES, Tomas AM, Murakami MT. Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites. J Biol Chem 2017; 292:7023-7039. [PMID: 28292930 PMCID: PMC5409470 DOI: 10.1074/jbc.m116.762039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.
Collapse
Affiliation(s)
- Mariana A B Morais
- From the Biosciences National Laboratory, National Center for Research in Energy and Materials, Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas/SP, Brazil
| | - Priscila O Giuseppe
- From the Biosciences National Laboratory, National Center for Research in Energy and Materials, Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas/SP, Brazil
| | - Tatiana A C B Souza
- the Proteomics and Protein Engineering Laboratory, Carlos Chagas Institute, Fiocruz, Rua Professor Algacyr Munhoz Mader 2135, 81310-020 Curitiba/PR, Brazil
| | - Helena Castro
- the i3S-Institute for Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- the Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rodrigo V Honorato
- From the Biosciences National Laboratory, National Center for Research in Energy and Materials, Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas/SP, Brazil
| | - Paulo S L Oliveira
- From the Biosciences National Laboratory, National Center for Research in Energy and Materials, Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas/SP, Brazil
| | - Luis E S Netto
- the Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of the State of São Paulo, Rua do Matão 14, 05508-090 São Paulo/SP, Brazil, and
| | - Ana M Tomas
- the i3S-Institute for Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- the Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- the Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mario T Murakami
- From the Biosciences National Laboratory, National Center for Research in Energy and Materials, Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas/SP, Brazil,
| |
Collapse
|
29
|
Si M, Wang T, Pan J, Lin J, Chen C, Wei Y, Lu Z, Wei G, Shen X. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum. Antioxid Redox Signal 2017; 26:1-14. [PMID: 27324811 DOI: 10.1089/ars.2016.6650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Eukaryotic typical 2-cysteine (Cys) peroxiredoxins (Prxs) are multifunctional proteins subjected to complex regulation and play important roles in oxidative stress resistance, hydrogen peroxide (H2O2) signaling modulation, aging, and cancer, but the information on the biochemical functions and regulation mechanisms of prokaryotic atypical 2-Cys Prxs is largely lacking. RESULTS In this study, we show that at low peroxide concentrations, the atypical 2-Cys Prx in Corynebacterium glutamicum (CgPrx) mainly exists as monomers and displays thioredoxin (Trx)-dependent peroxidase activity. Moderate oxidative stress causes reversible S-mycothiolation of the H2O2-sensing Cys63 residue, which keeps CgPrx exclusively in dimer form with neither peroxidase nor chaperone activity. Then, the increased levels of H2O2 could act as a messenger to oxidize the redox-sensitive regulator hydrogen peroxide-inducible gene activator, leading to activation of expression of the more efficient mycothiol peroxidase and catalase to eliminate excessive peroxide. If oxidative stress is too severe, the H2O2-sensing Cys63 becomes hyperoxidized to sulfonic acid, which irreversibly inactivates the peroxidase activity, and most of CgPrx will be converted to multimeric chaperones for salvage of damaged proteins. INNOVATION We demonstrate for the first time that atypical 2-Cys CgPrx acts as both a Trx-dependent peroxidase and a molecular chaperone and plays a regulatory role in modulating the peroxide-mediated signaling cascades. CONCLUSION These results reveal that CgPrx functions as a multifunctional protein crucial for adapting appropriate responses to different levels of oxidative challenge in C. glutamicum. Antioxid. Redox Signal. 26, 1-14.
Collapse
Affiliation(s)
- Meiru Si
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China .,2 College of Plant Protection, Northwest A&F University , Yangling, China
| | - Tietao Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Junfeng Pan
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Jinshui Lin
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Can Chen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Yahong Wei
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Zhiqiang Lu
- 2 College of Plant Protection, Northwest A&F University , Yangling, China
| | - Gehong Wei
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| | - Xihui Shen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling, China
| |
Collapse
|
30
|
Tairum CA, Santos MC, Breyer CA, Geyer RR, Nieves CJ, Portillo-Ledesma S, Ferrer-Sueta G, Toledo JC, Toyama MH, Augusto O, Netto LES, de Oliveira MA. Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms. Sci Rep 2016; 6:33133. [PMID: 27629822 PMCID: PMC5024103 DOI: 10.1038/srep33133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Prx structures in the fully folded (but not locally unfolded) form revealed a highly conserved, non-conventional hydrogen bond (CH-π) between the catalytic triad Thr of a dimer with an aromatic residue of an adjacent dimer. In contrast, structures of 2-Cys Prxs with a Ser in place of the Thr do not display this CH-π bond. Chromatographic and structural data indicate that the Thr (but not Ser) destabilizes the decamer structure in the oxidized state probably through steric hindrance. As a general trend, mutations in a yeast 2-Cys Prx (Tsa1) favoring the dimeric state also displayed a decreased catalytic activity. Remarkably, yeast naturally contains Thr-Ser variants (Tsa1 and Tsa2, respectively) with distinct oligomeric stabilities in their disulfide states.
Collapse
Affiliation(s)
- Carlos A Tairum
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, São Paulo, 11330-900, Brazil
| | - Melina Cardoso Santos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, São Paulo, 11330-900, Brazil
| | - Carlos A Breyer
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, São Paulo, 11330-900, Brazil
| | - R Ryan Geyer
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Cecilia J Nieves
- Facultad de Ciencias - Universidad de la República - Montevideo, Uruguay
| | | | | | - José Carlos Toledo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto - SP, 14040-901, Brazil
| | - Marcos H Toyama
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, São Paulo, 11330-900, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Marcos A de Oliveira
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, São Vicente, São Paulo, 11330-900, Brazil
| |
Collapse
|
31
|
Liebthal M, Strüve M, Li X, Hertle Y, Maynard D, Hellweg T, Viehhauser A, Dietz KJ. Redox-Dependent Conformational Dynamics of Decameric 2-Cysteine Peroxiredoxin and its Interaction with Cyclophilin 20-3. PLANT & CELL PHYSIOLOGY 2016; 57:1415-1425. [PMID: 26872837 DOI: 10.1093/pcp/pcw031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/23/2016] [Indexed: 05/20/2023]
Abstract
2-Cysteine peroxiredoxins (2-CysPrxs) switch between functions as a thiol peroxidase, chaperone, an interaction partner and possibly a proximity-based oxidase in a redox-dependent manner. In photosynthetic eukaryotes, 2-CysPrx localizes to the plastid, functions in the context of photosynthesis and enables an ascorbate peroxidase-independent water-water cycle for detoxifying H2O2 The high degree of evolutionary conservation of 2-CysPrx suggests that the switching is an essential characteristic and needed to transduce redox information to downstream pathways and regulation. The study aimed at exploring the dissociation behavior of 2-CysPrx and its interactions with cyclophilin depending on bulk phase conditions. Isothermal titration microcalorimetry (ITC), dynamic light scattering and size exclusion chromatography (SEC) proved the previously suggested model that reduced 2-CysPrx below a critical transition concentration (CTC) exists in its dimeric state, and above the CTC adopts the decameric state. The presence of cyclophilin 20-3 (Cyp20-3) affected the CTC of a 2-CysPrx decamer suggesting interaction which was further quantified by direct titration of 2-CysPrx with Cyp20-3, and in overlays. Finally catalytic inactivation assays showed the higher catalytic efficiency of 2-CysPrx at pH 8 compared with pH 7.2, but also revealed increased inactivation by hyperoxidation at pH 8. Interestingly, calculation of the average turnover number until inactivation gave rather similar values of 243 and 268 catalytic cycles at pH 8 and pH 7.2, respectively. These quantitative data support a model where 2-CysPrx and Cyp20-3, by interaction, form a redox-sensitive regulatory module in the chloroplast which is under control of the photosynthesis-linked stromal pH value, the redox state and additional stromal protein factor(s).
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Marcel Strüve
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Xin Li
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Yvonne Hertle
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Andrea Viehhauser
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| |
Collapse
|
32
|
Kim KH, Lee W, Kim EE. Crystal structures of human peroxiredoxin 6 in different oxidation states. Biochem Biophys Res Commun 2016; 477:717-722. [PMID: 27353378 DOI: 10.1016/j.bbrc.2016.06.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
Peroxiredoxins (Prxs) are a family of antioxidant enzymes found ubiquitously. Prxs function not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Since reactive oxygen species are involved in many cellular metabolic and signaling processes, Prxs play important roles in various diseases. Prxs can be hyperoxidized to the sulfinic acid (SO2H) or sulfonic acid (SO3H) forms in the presence of high concentrations of H2O2. It is known that oligomerization of Prx is changed accompanying oxidation states, and linked to the function. Among the six Prxs in mammals, Prx6 is the only 1-Cys Prx. It is found in all organs in humans, unlike some 2-Cys Prxs, and is present in all species from bacteria to humans. In addition, Prx6 has Ca(2+)-independent phospholipase A2 (PLA2) activity. Thus far only the crystal structure of Prx in the oxidized state has been reported. In this study, we present the crystal structures of human Prx6 in the reduced (SH) and the sulfinic acid (SO2H) forms.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
33
|
Angelucci F, Miele AE, Ardini M, Boumis G, Saccoccia F, Bellelli A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol Biochem Parasitol 2016; 206:2-12. [PMID: 27002228 DOI: 10.1016/j.molbiopara.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets. However, the multiplicity of roles played by Prxs constitutes an unexpected obstacle to drug development. Indeed, selective inhibitors of some of the functions of Prxs are known (namely of the peroxidase and holdase functions) and are here reported. However, it is often unclear which function is the most relevant in each pathogen, hence which one is most desirable to inhibit. Indeed there are evidences that the main physiological role of Prxs may not be the same in different parasites. We here review which functions of Prxs have been demonstrated to be relevant in different human parasites, finding that the peroxidase and chaperone activities figure prominently, whereas other known functions of Prxs have rarely, if ever, been observed in parasites, or have largely escaped detection thus far.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adriana Erica Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matteo Ardini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fulvio Saccoccia
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
34
|
Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A. Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized form. Arch Biochem Biophys 2016; 590:101-108. [PMID: 26612102 PMCID: PMC9123601 DOI: 10.1016/j.abb.2015.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
Peroxiredoxins are cys-based peroxidases that function in peroxide detoxification and H2O2-induced signaling. Human Prx2 is a typical 2-Cys Prx arranged as pentamers of head-to-tail homodimers. During the catalytic mechanism, the active-site cysteine (CP) cycles between reduced, sulfenic and disulfide state involving conformational as well as oligomeric changes. Several post-translational modifications were shown to affect Prx activity, in particular CP overoxidation which leads to inactivation. We have recently reported that nitration of Prx2, a post-translational modification on non-catalytic tyrosines, unexpectedly increases its peroxidase activity and resistance to overoxidation. To elucidate the cross-talk between this post-translational modification and the enzyme catalysis, we investigated the structural changes of Prx2 after nitration. Analytical ultracentrifugation, UV absorption, circular dichroism, steady-state and time-resolved fluorescence were used to connect catalytically relevant redox changes with tyrosine nitration. Our results show that the reduced nitrated Prx2 structurally resembles the disulfide-oxidized native form of the enzyme favoring a locally unfolded conformation that facilitates disulfide formation. These results provide structural basis for the kinetic analysis previously reported, the observed increase in activity and the resistance to overoxidation of the peroxynitrite-treated enzyme.
Collapse
Affiliation(s)
- Lía Randall
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno Manta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Javier Santos
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
35
|
Wei Z, Xu Z, Liu X, Lo WS, Ye F, Lau CF, Wang F, Zhou JJ, Nangle LA, Yang XL, Zhang M, Schimmel P. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase. Nucleic Acids Res 2016; 44:1247-55. [PMID: 26773056 PMCID: PMC4756856 DOI: 10.1093/nar/gkw002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/03/2016] [Indexed: 11/15/2022] Open
Abstract
Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues.
Collapse
Affiliation(s)
- Zhiyi Wei
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Departmentof Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Zhiwen Xu
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Xiaotian Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wing-Sze Lo
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ching-Fun Lau
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Feng Wang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Jie J Zhou
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Leslie A Nangle
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Xiang-Lei Yang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China The Scripps Laboratories for tRNA Synthetase Research and the Departments of Chemical Physiology and of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Paul Schimmel
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China The Scripps Laboratories for tRNA Synthetase Research and the Departments of Cell and Molecular Biology, and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA The Scripps Laboratories for tRNA Synthetase Research and Departments of Metabolism & Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
36
|
Nielsen MH, Kidmose RT, Jenner LB. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:158-67. [DOI: 10.1107/s2059798315023815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
Saccharomyces cerevisiaeTSA2 belongs to the family of typical 2-Cys peroxiredoxins, a ubiquitously expressed family of redox-active enzymes that utilize a conserved peroxidatic cysteine to reduce peroxides. Typical 2-Cys peroxiredoxins have been shown to be involved in protection against oxidative stress and in hydrogen peroxide signalling. Furthermore, several 2-Cys peroxiredoxins, includingS. cerevisiaeTSA1 and TSA2, are able to switch to chaperone activity upon hyperoxidation of their peroxidatic cysteine. This makes the sensitivity to hyperoxidation of the peroxidatic cysteine a very important determinant for the cellular function of a peroxiredoxin under different cellular conditions. Typical 2-Cys peroxiredoxins exist as dimers, and in the course of the reaction the peroxidatic cysteine forms a disulfide with a resolving cysteine located in the C-terminus of its dimeric partner. This requires a local unfolding of the active site and the C-terminus. The balance between the fully folded and locally unfolded conformations is of key importance for the reactivity and sensitivity to hyperoxidation of the different peroxiredoxins. Here, the structure of a C48S mutant of TSA2 fromS. cerevisiaethat mimics the reduced state of the peroxidatic cysteine has been determined. The structure reveals a novel conformation for the strictly conserved Pro41, which is likely to affect the delicate balance between the fully folded and locally unfolded conformations of the active site, and therefore the reactivity and the sensitivity to hyperoxidation. Furthermore, the structure also explains the observed difference in the pKavalues of the peroxidatic cysteines ofS. cerevisiaeTSA1 and TSA2 despite their very high sequence identity.
Collapse
|
37
|
Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochem J 2015; 473:411-21. [PMID: 26614766 DOI: 10.1042/bj20150572] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
Mammalian 2-cysteine peroxiredoxins (Prxs) are susceptible to hyperoxidation by excess H2O2. The cytoplasmic family member Prx2 hyperoxidizes more readily than mitochondrial Prx3 due to slower dimerization of the sulfenic acid (SpOH) intermediate. Four variant amino acids near the C-terminus have been shown to contribute to this difference. We have performed kinetic analysis of the relationship between hyperoxidation and disulfide formation, using whole-protein MS and comparing wild-type (WT) Prx2 and Prx3 with tail-swap mutants in which the four amino acids were reversed. These changes make Prx3 more sensitive and Prx2 less sensitive to hyperoxidation and accounted for ∼70% of the difference between the two proteins. The tail swap mutant of Prx3 was also more susceptible when expressed in the mitochondria of HeLa cells. The hyperoxidized product at lower excesses of H2O2 was a semi-hyperoxidized dimer with one active site disulfide and the other a sulfinic acid. For Prx2, increasing the H2O2 concentration resulted in complete hyperoxidation. In contrast, only approximately half the Prx3 active sites underwent hyperoxidation and, even with high H2O2, the predominant product was the hyperoxidized dimer. Size exclusion chromatography (SEC) showed that the oligomeric forms of all redox states of Prx3 dissociated more readily into dimeric units than their Prx2 counterparts. Notably the species with one disulfide and one hyperoxidized active site was decameric for Prx2 and dimeric for Prx3. Reduction and re-oxidation of the hyperoxidized dimer of Prx3 produced hyperoxidized monomers, implying dissociation and rearrangement of the subunits of the functional homodimer.
Collapse
|
38
|
Noichri Y, Palais G, Ruby V, D'Autreaux B, Delaunay-Moisan A, Nyström T, Molin M, Toledano MB. In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation. Redox Biol 2015; 6:326-333. [PMID: 26335398 PMCID: PMC4556779 DOI: 10.1016/j.redox.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/28/2022] Open
Abstract
2-Cys Prxs are H2O2-specific antioxidants that become inactivated by enzyme hyperoxidation at elevated H2O2 levels. Although hyperoxidation restricts the antioxidant physiological role of these enzymes, it also allows the enzyme to become an efficient chaperone holdase. The critical molecular event allowing the peroxidase to chaperone switch is thought to be the enzyme assembly into high molecular weight (HMW) structures brought about by enzyme hyperoxidation. How hyperoxidation promotes HMW assembly is not well understood and Prx mutants allowing disentangling its peroxidase and chaperone functions are lacking. To begin addressing the link between enzyme hyperoxidation and HMW structures formation, we have evaluated the in vivo 2-Cys Prxs quaternary structure changes induced by H2O2 by size exclusion chromatography (SEC) on crude lysates, using wild type (Wt) untagged and Myc-tagged S. cerevisiae 2-Cys Prx Tsa1 and derivative Tsa1 mutants or genetic conditions known to inactivate peroxidase or chaperone activity or altering the enzyme sensitivity to hyperoxidation. Our data confirm the strict causative link between H2O2-induced hyperoxidation and HMW formation/stabilization, also raising the question of whether CP hyperoxidation triggers the assembly of HMW structures by the stacking of decamers, which is the prevalent view of the literature, or rather, the stabilization of preassembled stacked decamers.
Collapse
Affiliation(s)
- Y Noichri
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - G Palais
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - V Ruby
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - B D'Autreaux
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - A Delaunay-Moisan
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - T Nyström
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| | - M Molin
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| | - M B Toledano
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|