1
|
Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells 2023; 12:cells12030445. [PMID: 36766787 PMCID: PMC9913802 DOI: 10.3390/cells12030445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Olga Troyanovska
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-Shi 279-0021, Japan
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| |
Collapse
|
2
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
3
|
Thofte O, Bettoni S, Su YC, Thegerström J, Jonsson S, Mattsson E, Sandblad L, Martí S, Garmendia J, Blom AM, Riesbeck K. Nontypeable Haemophilus influenzae P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. THE JOURNAL OF IMMUNOLOGY 2021; 207:1566-1577. [PMID: 34433620 PMCID: PMC8428749 DOI: 10.4049/jimmunol.2100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Exposure of P5 at the surface of NTHi positively correlates with C4BP binding. C4BP bound to the bacterial surface retains its complement inhibitory capacity. C4BP binding to P5 is important for NTHi serum resistance.
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Sara Martí
- Microbiology Department, Research Network for Respiratory Diseases, Bellvitge Institute for Biomedical Research, Bellvitge University Hospital, Barcelona, Spain; and
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden;
| |
Collapse
|
4
|
Sugimoto M, Kondo M, Yasuma T, D'Alessandro-Gabazza CN, Toda M, Imai H, Nakamura M, Gabazza EC. Increased expression of Protein S in eyes with diabetic retinopathy and diabetic macular edema. Sci Rep 2021; 11:10449. [PMID: 34001977 PMCID: PMC8129118 DOI: 10.1038/s41598-021-89870-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Protein S (PS) is a multifunctional glycoprotein that ameliorates the detrimental effects of diabetes mellitus (DM). The aim of this study was to evaluate the distribution of PS in diabetic retinopathy (DR) and diabetic macular edema (DME). This was a study of 50 eyes with DM (37 with DME, 6 with proliferative DR, and 7 with no DR) and 19 eyes without DM. The level of PS was measured by enzyme immunoassay and was compared between eyes with or without DM, with or without DME, and with severe DME (≥ 350 μm) or mild DME (< 350 μm). We also performed immunohistopathologic evaluations of post-mortem eyes and the cystoid lesions excised during surgery. The aqueous free PS was significantly higher with DM (7.9 ± 1.2 ng/ml, P < 0.01) than without DM (6.1 ± 0.7). The aqueous free PS was significantly elevated with DME (8.2 ± 1.2, P < 0.05) compared to proliferative DR (7.0 ± 1.0) and no DR (7.0 ± 0.7). Eyes with severe DME had significantly higher aqueous free PS than mild DME (8.5 ± 1.3 vs. 7.7 ± 1.0, P < 0.05). Immunohistochemistry showed PS in the outer plexiform layer of the retina and cystoid lesion. The higher expression of PS with DR and DME suggests that PS is involved in their pathogenesis.
Collapse
Affiliation(s)
- Masahiko Sugimoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hisanori Imai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
5
|
Schmidt FL, Sürth V, Berg TK, Lin YP, Hovius JW, Kraiczy P. Interaction between Borrelia miyamotoi variable major proteins Vlp15/16 and Vlp18 with plasminogen and complement. Sci Rep 2021; 11:4964. [PMID: 33654183 PMCID: PMC7925540 DOI: 10.1038/s41598-021-84533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Borrelia miyamotoi, a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi, produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi. Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein–protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi.
Collapse
Affiliation(s)
- Frederik L Schmidt
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Tim K Berg
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, NY, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany.
| |
Collapse
|
6
|
Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med 2020; 217:133866. [PMID: 32159743 PMCID: PMC7144526 DOI: 10.1084/jem.20191865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Plasminogen and its active form, plasmin, have diverse functions related to the inflammatory response in mammals. Due to these roles in inflammation, plasminogen has been implicated in the progression of a wide range of diseases with an inflammatory component. In this review, we discuss the functions of plasminogen in inflammatory regulation and how this system plays a role in the pathogenesis of diseases spanning organ systems throughout the body.
Collapse
Affiliation(s)
- Sarah K Baker
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| |
Collapse
|
7
|
Syed S, Viazmina L, Mager R, Meri S, Haapasalo K. Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 2020; 594:2570-2585. [PMID: 32594520 DOI: 10.1002/1873-3468.13872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022]
Abstract
Streptococci are a broad group of Gram-positive bacteria. This genus includes various human pathogens causing significant morbidity and mortality. Two of the most important human pathogens are Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A streptococcus or GAS). Streptococcal pathogens have evolved to express virulence factors that enable them to evade complement-mediated attack. These include factor H-binding M (S. pyogenes) and pneumococcal surface protein C (PspC) (S. pneumoniae) proteins. In addition, S. pyogenes and S. pneumoniae express cytolysins (streptolysin and pneumolysin), which are able to destroy host cells. Sometimes, the interplay between streptococci, the complement, and antistreptococcal immunity may lead to an excessive inflammatory response or autoimmune disease. Understanding the fundamental role of the complement system in microbial clearance and the bacterial escape mechanisms is of paramount importance for understanding microbial virulence, in general, and, the conversion of commensals to pathogens, more specifically. Such insights may help to identify novel antibiotic and vaccine targets in bacterial pathogens to counter their growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Larisa Viazmina
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland.,Humanitas University, Milano, Italy
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
8
|
Corbacho-Alonso N, Baldán-Martín M, López JA, Rodríguez-Sánchez E, Martínez PJ, Mourino-Alvarez L, Martin-Rojas T, Sastre-Oliva T, Madruga F, Vázquez J, Padial LR, Alvarez-Llamas G, Vivanco F, Ruiz-Hurtado G, Ruilope LM, Barderas MG. Novel molecular plasma signatures on cardiovascular disease can stratify patients throughout life. J Proteomics 2020; 222:103816. [DOI: 10.1016/j.jprot.2020.103816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
9
|
The utility of complement assays in clinical immunology: A comprehensive review. J Autoimmun 2018; 95:191-200. [PMID: 30391025 DOI: 10.1016/j.jaut.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
The multi-tasking organ liver, which is the major synthesis site of most serum proteins, supplies humoral components of the innate, - including proteins of the complement system; and, less intensely, also of the acquired immune system. In addition to hepatocyte origins, C1q, factor D, C3, C7 and other protein components of the complement system are produced at various body locations by monocytes/macrophages, lymphocytes, adipocytes, endometrium, enterocytes, keratinocytes and epithelial cells; but the contribution of these alternate sites to the total serum concentrations is slight. The two major exceptions are factor D, which cleaves factor B of the alternative pathway derived largely from adipocytes, and C7, derived largely from polymorphonuclear leukocytes and monocytes/macrophages. Whereas the functional meaning of the extrahepatic synthesis of factor D remains to be elucidated, the local contribution of C7 may up- or downregulate the complement attack. The liver, however, is not classified as part of the immune system but is rather seen as victim of autoimmune diseases, a point that needs apology. Recent histological and cell marker technologies now turn the hands to also conceive the liver as proactive autoimmune disease catalyst. Hosting non-hepatocytic cells, e.g. NK cells, macrophages, dendritic cells as well as T and B lymphocytes, the liver outreaches multiple sites of the immune system. Immunopharmacological follow up of liver transplant recipients teaches us on liver-based presence of ABH-glycan HLA phenotypes and complement mediated ischemia/regeneration processes. In clinical context, the adverse reactions of the complement system can now be curbed by specific drug therapy. This review extends on the involvement of the complement system in liver autoimmune diseases and should allow to direct therapeutic opportunities.
Collapse
|
10
|
Complement depletion and Coombs positivity in pneumococcal hemolytic uremic syndrome (pnHUS). Case series and plea to revisit an old pathogenetic concept. Int J Med Microbiol 2018; 308:1096-1104. [PMID: 30177469 DOI: 10.1016/j.ijmm.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Hemolytic uremic syndrome is a rare complication of invasive pneumococcal infection (pnHUS). Its pathogenesis is poorly understood, and treatment remains controversial. The emerging role of complement in various forms of HUS warrants a new look at this "old" disease. We performed a retrospective analysis of clinical and laboratory features of three sequential cases of pnHUS since 2008 associated with pneumonia/pleural empyema, two due to Streptococcus pneumoniae serotype 19 A. Profound depletion of complement C3 (and less of C4) was observed in two patients. One patient was Coombs test positive. Her red blood cells (RBCs) strongly agglutinated with blood group compatible donor serum at 0 °C, but not at 37 °C. All three patients were treated with hemodialysis, concentrated RBCs, and platelets. Patient 2 received frozen plasma for hepatic failure with coagulation factor depletion. Intravenous immunoglobulin infusion, intended to neutralize pneumococcal neuraminidase in patient 3, was associated with rapid normalization of platelets and cessation of hemolysis. Two patients recovered without sequelae or disease recurrence. Patient 2 died within 2½ days of admission due to complicating Pseudomonas aeruginosa sepsis and multiorgan failure. Our observations suggest that pnHUS can be associated with dramatic, transient complement consumption early in the course of the disease, probably via the alternative pathway. A critical review of the literature and the reported cases argue against the postulated pathological role of preformed antibodies against the neuraminidase-exposed Thomsen-Friedenreich neoantigen (T antigen) in pnHUS. The improved understanding of complement regulation and bacterial strategies of complement evasion allows to propose a testable, new pathogenetic model of pnHUS. This model shifts emphasis from the action of natural anti-T antibodies toward impaired Complement Factor H (CFH) binding and function on desialylated membranes. Removal of neuraminic acid residues converts (protected) self to non-self surfaces that supports membrane attack complex (MAC) assembly. Complement activation is potentially exacerbated by decreased CFH availability following tight CFH binding to pneumococcal evasion proteins and/or by the presence of genetic variants of complement regulator proteins. Detailed clinical and experimental investigations are warranted to better understand the role of unregulated complement activation in pnHUS. Instead of avoidance of plasma, a new, integrated model is evolving, which may include short-term therapeutic complement blockade, particularly where genetic or functional APC dysregulation is suspected, in addition to bacterial elimination and, potentially, neuraminidase neutralization.
Collapse
|
11
|
Jeffries CD, Perkins DO, Fournier M, Do KQ, Cuenod M, Khadimallah I, Domenici E, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Mathalon DH, McGlashan TH, Seidman LJ, Tsuang M, Walker EF, Woods SW. Networks of blood proteins in the neuroimmunology of schizophrenia. Transl Psychiatry 2018; 8:112. [PMID: 29875399 PMCID: PMC5990539 DOI: 10.1038/s41398-018-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/06/2018] [Accepted: 04/15/2018] [Indexed: 02/05/2023] Open
Abstract
Levels of certain circulating cytokines and related immune system molecules are consistently altered in schizophrenia and related disorders. In addition to absolute analyte levels, we sought analytes in correlation networks that could be prognostic. We analyzed baseline blood plasma samples with a Luminex platform from 72 subjects meeting criteria for a psychosis clinical high-risk syndrome; 32 subjects converted to a diagnosis of psychotic disorder within two years while 40 other subjects did not. Another comparison group included 35 unaffected subjects. Assays of 141 analytes passed early quality control. We then used an unweighted co-expression network analysis to identify highly correlated modules in each group. Overall, there was a striking loss of network complexity going from unaffected subjects to nonconverters and thence to converters (applying standard, graph-theoretic metrics). Graph differences were largely driven by proteins regulating tissue remodeling (e.g. blood-brain barrier). In more detail, certain sets of antithetical proteins were highly correlated in unaffected subjects (e.g. SERPINE1 vs MMP9), as expected in homeostasis. However, for particular protein pairs this trend was reversed in converters (e.g. SERPINE1 vs TIMP1, being synthetical inhibitors of remodeling of extracellular matrix and vasculature). Thus, some correlation signals strongly predict impending conversion to a psychotic disorder and directly suggest pharmaceutical targets.
Collapse
Affiliation(s)
- Clark D Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA.
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Margot Fournier
- Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michel Cuenod
- Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ines Khadimallah
- Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology, and Microsoft Research, Centre for Computational Systems Biology, University of Trento, Trento, Italy
| | - Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, USA
| | | | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Daniel H Mathalon
- Department of Psychiatry, UCSF and San Francisco VA Healthcare System, San Francisco, CA, USA
| | | | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, Center for Behavioral Genomics UCSD, San Diego, CA, USA
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Baldan-Martin M, Lopez JA, Corbacho-Alonso N, Martinez PJ, Rodriguez-Sanchez E, Mourino-Alvarez L, Sastre-Oliva T, Martin-Rojas T, Rincón R, Calvo E, Vazquez J, Vivanco F, Padial LR, Alvarez-Llamas G, Ruiz-Hurtado G, Ruilope LM, Barderas MG. Potential role of new molecular plasma signatures on cardiovascular risk stratification in asymptomatic individuals. Sci Rep 2018; 8:4802. [PMID: 29555916 PMCID: PMC5859270 DOI: 10.1038/s41598-018-23037-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
The evaluation of cardiovascular (CV) risk is based on equations derived from epidemiological data in individuals beyond the limits of middle age such as the Framingham and SCORE risk assessments. Lifetime Risk calculator (QRisk®), estimates CV risk throughout a subjects’ lifetime, allowing those. A more aggressive and earlier intervention to be identified and offered protection from the consequences of CV and renal disease. The search for molecular profiles in young people that allow a correct stratification of CV risk would be of great interest to adopt preventive therapeutic measures in individuals at high CV risk. To improve the selection of subjects susceptible to intervention with aged between 30–50 years, we have employed a multiple proteomic strategy to search for new markers of early CV disease or reported CV events and to evaluate their relationship with Lifetime Risk. Blood samples from 71 patients were classified into 3 groups according to their CV risk (healthy, with CV risk factors and with a previously reported CV event subjects) and they were analyzed using a high through quantitative proteomics approach. This strategy allowed three different proteomic signatures to be defined, two of which were related to CV stratification and the third one involved markers of organ damage.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | - Juan A Lopez
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | - Paula J Martinez
- Departament of Immunology, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Elena Rodriguez-Sanchez
- Laboratory of Hypertension and Cardiovascular Risk, Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | - Raul Rincón
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | | | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, Madrid, Spain
| | - Fernando Vivanco
- Departament of Immunology, IIS-Fundacion Jimenez Diaz, Madrid, Spain.,Departamento de Bioquimica y Biologia Molecular I, Universidad Complutense, Madrid, Spain
| | - Luis R Padial
- Departamento de Cardiologia, Complejo Hospitalario de Toledo, SESCAM, Toledo, Spain
| | | | - Gema Ruiz-Hurtado
- Laboratory of Hypertension and Cardiovascular Risk, Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M Ruilope
- Laboratory of Hypertension and Cardiovascular Risk, Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain. .,Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ and CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain. .,School of Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain.
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain.
| |
Collapse
|
13
|
Lewis ML, Surewaard BGJ. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res 2017; 371:489-503. [PMID: 29204747 DOI: 10.1007/s00441-017-2737-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Abstract
Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.
Collapse
Affiliation(s)
- Megan L Lewis
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medical Microbiology, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
14
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
15
|
Wiegner R, Chakraborty S, Huber-Lang M. Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology 2016; 221:1073-9. [PMID: 27371975 DOI: 10.1016/j.imbio.2016.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The humoral serine proteases of the complement system and the coagulation system play central roles during the events of an inflammatory response. While the complement system confers immunoprotective and -regulatory functions, the coagulation cascade is responsible to ensure hemostatic maintenance. Although these two systems individually unfold during inflammation, several studies have reported on the "crosstalk" between components of the complement and the coagulation system in the fluid phase. However, both cascades are usually initiated on or in close proximity to foreign or activated surfaces, and there is increasing evidence for interacting complement and coagulation proteins on various superficial areas on endothelium, circulating entities like platelets, leukocytes, microparticles and pathogens, and even on artificial surfaces. This review aims at summarizing these interactions to complete the picture.
Collapse
Affiliation(s)
- Rebecca Wiegner
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Ulm, Germany
| | - Shinjini Chakraborty
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Ulm, Germany
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand-, Plastic- and Reconstructive Surgery, University Hospital of Ulm, Germany.
| |
Collapse
|
16
|
Nguyen VA, Carey LM, Giummarra L, Faou P, Cooke I, Howells DW, Tse T, Macaulay SL, Ma H, Davis SM, Donnan GA, Crewther SG. A Pathway Proteomic Profile of Ischemic Stroke Survivors Reveals Innate Immune Dysfunction in Association with Mild Symptoms of Depression - A Pilot Study. Front Neurol 2016; 7:85. [PMID: 27379006 PMCID: PMC4907034 DOI: 10.3389/fneur.2016.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
Depression after stroke is a common occurrence, raising questions as to whether depression could be a long-term biological and immunological sequela of stroke. Early explanations for post-stroke depression (PSD) focused on the neuropsychological/psychosocial effects of stroke on mobility and quality of life. However, recent investigations have revealed imbalances of inflammatory cytokine levels in association with PSD, though to date, there is only one published proteomic pathway analysis testing this hypothesis. Thus, we examined the serum proteome of stroke patients (n = 44, mean age = 63.62 years) and correlated these with the Montgomery–Åsberg Depression Rating Scale (MADRS) scores at 3 months post-stroke. Overall, the patients presented with mild depression symptoms on the MADRS, M = 6.40 (SD = 7.42). A discovery approach utilizing label-free relative quantification was employed utilizing an LC-ESI–MS/MS coupled to a LTQ-Orbitrap Elite (Thermo-Scientific). Identified peptides were analyzed using the gene set enrichment approach on several different genomic databases that all indicated significant downregulation of the complement and coagulation systems with increasing MADRS scores. Complement and coagulation systems are traditionally thought to play a key role in the innate immune system and are established precursors to the adaptive immune system through pro-inflammatory cytokine signaling. Both systems are known to be globally affected after ischemic or hemorrhagic stroke. Thus, our results suggest that lowered complement expression in the periphery in conjunction with depressive symptoms post-stroke may be a biomarker for incomplete recovery of brain metabolic needs, homeostasis, and inflammation following ischemic stroke damage. Further proteomic investigations are now required to construct the temporal profile, leading from acute lesion damage to manifestation of depressive symptoms. Overall, the findings provide support for the involvement of inflammatory and immune mechanisms in PSD symptoms and further demonstrate the value and feasibility of the proteomic approach in stroke research.
Collapse
Affiliation(s)
- Vinh A Nguyen
- Occupational Therapy, College of Science Health and Engineering, School of Allied Health, La Trobe University, Melbourne, VIC, Australia; Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Leeanne M Carey
- Occupational Therapy, College of Science Health and Engineering, School of Allied Health, La Trobe University, Melbourne, VIC, Australia; Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Loretta Giummarra
- School of Psychology and Public Health, La Trobe University , Melbourne, VIC , Australia
| | - Pierre Faou
- School of Molecular Sciences, La Trobe University , Melbourne, VIC , Australia
| | - Ira Cooke
- School of Molecular Sciences, La Trobe University , Melbourne, VIC , Australia
| | - David W Howells
- School of Medicine, University of Tasmania , Hobart, TAS , Australia
| | - Tamara Tse
- Occupational Therapy, College of Science Health and Engineering, School of Allied Health, La Trobe University, Melbourne, VIC, Australia; Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - S Lance Macaulay
- Commonwealth Science and Industrial Research Organisation (CSIRO) , Melbourne, VIC , Australia
| | - Henry Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - Stephen M Davis
- The University of Melbourne, Parkville, VIC, Australia; Department of Medicine, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Geoffrey A Donnan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; The University of Melbourne, Parkville, VIC, Australia
| | - Sheila G Crewther
- Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Ermert D, Blom AM. C4b-binding protein: The good, the bad and the deadly. Novel functions of an old friend. Immunol Lett 2015; 169:82-92. [PMID: 26658464 DOI: 10.1016/j.imlet.2015.11.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023]
Abstract
C4b-binding protein (C4BP) is best known as a potent soluble inhibitor of the classical and lectin pathways of the complement system. This large 500 kDa multimeric plasma glycoprotein is expressed mainly in the liver but also in lung and pancreas. It consists of several identical 75 kDa α-chains and often also one 40 kDa β-chain, both of which are mainly composed of complement control protein (CCP) domains. Structure-function studies revealed that one crucial binding site responsible for inhibition of complement is located to CCP1-3 of the α-chain. Binding of anticoagulant protein S to the CCP1 of the β-chain provides C4BP with the ability to strongly bind apoptotic and necrotic cells in order to prevent inflammation arising from activation of complement by these cells. Further, C4BP interacts strongly with various types of amyloid and enhances fibrillation of islet amyloid polypeptide secreted from pancreatic beta cells, which may attenuate pro-inflammatory and cytotoxic effects of this amyloid. Full deficiency of C4BP has not been identified but non-synonymous alterations in its sequence have been found in haemolytic uremic syndrome and recurrent pregnancy loss. Furthermore, C4BP is bound by several bacterial pathogens, notably Streptococcus pyogenes, which due to inhibition of complement and enhancement of bacterial adhesion to endothelial cells provides these bacteria with a survival advantage in the host. Thus, depending on the context, C4BP has a protective or detrimental role in the organism.
Collapse
Affiliation(s)
- David Ermert
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| |
Collapse
|