1
|
Yanagisawa S, Bukhari ZA, Parra KJ, Frasch WD. Eukaryotic yeast V 1-ATPase rotary mechanism insights revealed by high-resolution single-molecule studies. Front Mol Biosci 2024; 11:1269040. [PMID: 38567099 PMCID: PMC10985318 DOI: 10.3389/fmolb.2024.1269040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Vacuolar ATP-dependent proton pumps (V-ATPases) belong to a super-family of rotary ATPases and ATP synthases. The V1 complex consumes ATP to drive rotation of a central rotor that pumps protons across membranes via the Vo complex. Eukaryotic V-ATPases are regulated by reversible disassembly of subunit C, V1 without C, and VO. ATP hydrolysis is thought to generate an unknown rotary state that initiates regulated disassembly. Dissociated V1 is inhibited by subunit H that traps it in a specific rotational position. Here, we report the first single-molecule studies with high resolution of time and rotational position of Saccharomyces cerevisiae V1-ATPase lacking subunits H and C (V1ΔHC), which resolves previously elusive dwells and angular velocity changes. Rotation occurred in 120° power strokes separated by dwells comparable to catalytic dwells observed in other rotary ATPases. However, unique V1ΔHC rotational features included: 1) faltering power stroke rotation during the first 60°; 2) a dwell often occurring ∼45° after the catalytic dwell, which did not increase in duration at limiting MgATP; 3) a second dwell, ∼2-fold longer occurring 112° that increased in duration and occurrence at limiting MgATP; 4) limiting MgATP-dependent decreases in power stroke angular velocity where dwells were not observed. The results presented here are consistent with MgATP binding to the empty catalytic site at 112° and MgADP released at ∼45°, and provide important new insight concerning the molecular basis for the differences in rotary positions of substrate binding and product release between V-type and F-type ATPases.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zain A. Bukhari
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Karlett J. Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Wayne D. Frasch
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
3
|
Andreani J, Schulz F, Di Pinto F, Levasseur A, Woyke T, La Scola B. Morphological and Genomic Features of the New Klosneuvirinae Isolate Fadolivirus IHUMI-VV54. Front Microbiol 2021; 12:719703. [PMID: 34621250 PMCID: PMC8490762 DOI: 10.3389/fmicb.2021.719703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Since the discovery of Mimivirus, viruses with large genomes encoding components of the translation machinery and other cellular processes have been described as belonging to the nucleocytoplasmic large DNA viruses. Recently, genome-resolved metagenomics led to the discovery of more than 40 viruses that have been grouped together in a proposed viral subfamily named Klosneuvirinae. Members of this group had genomes of up to 2.4Mb in size and featured an expanded array of translation system genes. Yet, despite the large diversity of the Klosneuvirinae in metagenomic data, there are currently only two isolates available. Here, we report the isolation of a novel giant virus known as Fadolivirus from an Algerian sewage site and provide morphological data throughout its replication cycle in amoeba and a detailed genomic characterization. The Fadolivirus genome, which is more than 1.5Mb in size, encodes 1,452 predicted proteins and phylogenetic analyses place this viral isolate as a near relative of the metagenome assembled Klosneuvirus and Indivirus. The genome encodes for 66 tRNAs, 23 aminoacyl-tRNA synthetases and a wide range of transcription factors, surpassing Klosneuvirus and other giant viruses. The Fadolivirus genome also encodes putative vacuolar-type proton pumps with the domains D and A, potentially constituting a virus-derived system for energy generation. The successful isolation of Fadolivirus will enable future hypothesis-driven experimental studies providing deeper insights into the biology of the Klosneuvirinae.
Collapse
Affiliation(s)
- Julien Andreani
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Fabrizio Di Pinto
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Bernard La Scola
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Zubareva VM, Lapashina AS, Shugaeva TE, Litvin AV, Feniouk BA. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. BIOCHEMISTRY (MOSCOW) 2021; 85:1613-1630. [PMID: 33705299 DOI: 10.1134/s0006297920120135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
Collapse
Affiliation(s)
- V M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Litvin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
6
|
Shin J, Singal B, Sony Subramanian Manimekalai M, Wei Chen M, Ragunathan P, Grüber G. Atomic structure of, and valine binding to the regulatory ACT domain of the Mycobacterium tuberculosis Rel protein. FEBS J 2020; 288:2377-2397. [PMID: 33067840 DOI: 10.1111/febs.15600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
The stringent response, regulated by the bifunctional (p)ppGpp synthetase/hydrolase Rel in mycobacteria, is critical for long-term survival of the drug-tolerant dormant state of Mycobacterium tuberculosis. During amino acid starvation, MtRel senses a drop in amino acid concentration and synthesizes the messengers pppGpp and ppGpp, collectively called (p)ppGpp. Here, we investigate the role of the regulatory 'Aspartokinase, Chorismate mutase and TyrA' (ACT) domain in MtRel. Using NMR spectroscopy approaches, we report the high-resolution structure of dimeric MtRel ACT which selectively binds to valine out of all other branched-chain amino acids tested. A set of MtRel ACT mutants were generated to identify the residues required for maintaining the head-to-tail dimer. Through NMR titrations, we determined the crucial residues for binding of valine and show structural rearrangement of the MtRel ACT dimer in the presence of valine. This study suggests the direct involvement of amino acids in (p)ppGpp accumulation mediated by MtRel independent to interactions with stalled ribosomes. Database Structural data are available in the PDB database under the accession number 6LXG.
Collapse
Affiliation(s)
- Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Bharti Singal
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | | | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
7
|
Kannaian B, Sharma B, Phillips M, Chowdhury A, Manimekalai MSS, Adav SS, Ng JTY, Kumar A, Lim S, Mu Y, Sze SK, Grüber G, Pervushin K. Abundant neuroprotective chaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid-β fibrils. Sci Rep 2019; 9:12579. [PMID: 31467325 PMCID: PMC6715741 DOI: 10.1038/s41598-019-48819-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Misfolding of Amyloid β (Aβ) peptides leads to the formation of extracellular amyloid plaques. Molecular chaperones can facilitate the refolding or degradation of such misfolded proteins. Here, for the first time, we report the unique ability of Lipocalin-type Prostaglandin D synthase (L-PGDS) protein to act as a disaggregase on the pre-formed fibrils of Aβ(1-40), abbreviated as Aβ40, and Aβ(25-35) peptides, in addition to inhibiting the aggregation of Aβ monomers. Furthermore, our proteomics results indicate that L-PGDS can facilitate extraction of several other proteins from the insoluble aggregates extracted from the brain of an Alzheimer's disease patient. In this study, we have established the mode of binding of L-PGDS with monomeric and fibrillar Aβ using Nuclear Magnetic Resonance (NMR) Spectroscopy, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Our results confirm a direct interaction between L-PGDS and monomeric Aβ40 and Aβ(25-35), thereby inhibiting their spontaneous aggregation. The monomeric unstructured Aβ40 binds to L-PGDS via its C-terminus, while the N-terminus remains free which is observed as a new domain in the L-PGDS-Aβ40 complex model.
Collapse
Affiliation(s)
- Bhuvaneswari Kannaian
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Anup Chowdhury
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Malathy S S Manimekalai
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Justin T Y Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
8
|
Ng IHW, Chan KWK, Tan MJA, Gwee CP, Smith KM, Jeffress SJ, Saw WG, Swarbrick CMD, Watanabe S, Jans DA, Grüber G, Forwood JK, Vasudevan SG. Zika Virus NS5 Forms Supramolecular Nuclear Bodies That Sequester Importin-α and Modulate the Host Immune and Pro-Inflammatory Response in Neuronal Cells. ACS Infect Dis 2019; 5:932-948. [PMID: 30848123 DOI: 10.1021/acsinfecdis.8b00373] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Zika virus (ZIKV) epidemic in the Americas was alarming because of its link with microcephaly in neonates and Guillain-Barré syndrome in adults. The unusual pathologies induced by ZIKV infection and the knowledge that the flaviviral nonstructural protein 5 (NS5), the most conserved protein in the flavivirus proteome, can modulate the host immune response during ZIKV infection prompted us to investigate the subcellular localization of NS5 during ZIKV infection and explore its functional significance. A monopartite nuclear localization signal (NLS) sequence within ZIKV NS5 was predicted by the cNLS Mapper program, and we observed localization of ZIKV NS5 in the nucleus of infected cells by immunostaining with specific antibodies. Strikingly, ZIKV NS5 forms spherical shell-like nuclear bodies that exclude DNA. The putative monopartite NLS 390KRPR393 is necessary to direct FLAG-tagged NS5 to the nucleus as the NS5 390ARPA393 mutant protein accumulates in the cytoplasm. Furthermore, coimmunostaining experiments reveal that NS5 localizes with and sequesters importin-α, but not importin-β, in the observed nuclear bodies during virus infection. Structural and biochemical data demonstrate binding of ZIKV NS5 with importin-α and reveal important binding determinants required for their interaction and formation of complexes that give rise to the supramolecular nuclear bodies. Significantly, we demonstrate a neuronal-specific activation of the host immune response to ZIKV infection and a possible role of ZIKV NS5's nuclear localization toward this activation. This suggests that ZIKV pathogenesis may arise from a tissue-specific host response to ZIKV infection.
Collapse
Affiliation(s)
- Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Genome Institute of Singapore, Agency for Science & Technology Research (A*STAR), 60 Biopolis Street, Singapore 138672
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kate M. Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Sarah J. Jeffress
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Crystall M. D. Swarbrick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
9
|
Saw WG, Chan KWK, Vasudevan SG, Grüber G. Zika virus nonstructural protein 5 residue R681 is critical for dimer formation and enzymatic activity. FEBS Lett 2019; 593:1272-1291. [PMID: 31090058 DOI: 10.1002/1873-3468.13437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/07/2022]
Abstract
Zika virus (ZIKV) relies on its nonstructural protein 5 (NS5) for capping and synthesis of the viral RNA. Recent small-angle X-ray scattering (SAXS) data of recombinant ZIKV NS5 protein showed that it is dimeric in solution. Here, we present insights into the critical residues responsible for its dimer formation. SAXS studies of the engineered ZIKV NS5 mutants revealed that R681A mutation on NS5 (NS5R681A ) disrupts the dimer formation and affects its RNA-dependent RNA polymerase activity as well as the subcellular localization of NS5R681A in mammalian cells. The critical residues involved in the dimer arrangement of ZIKV NS5 are discussed, and the data provide further insights into the diversity of flaviviral NS5 proteins in terms of their propensity for oligomerization.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- Nanyang Technological University, School of Biological Sciences, Singapore
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore
| |
Collapse
|
10
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Boon PLS, Saw WG, Lim XX, Raghuvamsi PV, Huber RG, Marzinek JK, Holdbrook DA, Anand GS, Grüber G, Bond PJ. Partial Intrinsic Disorder Governs the Dengue Capsid Protein Conformational Ensemble. ACS Chem Biol 2018; 13:1621-1630. [PMID: 29792674 DOI: 10.1021/acschembio.8b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 11 kDa, positively charged dengue capsid protein (C protein) exists stably as a homodimer and colocalizes with the viral genome within mature viral particles. Its core is composed of four alpha helices encompassing a small hydrophobic patch that may interact with lipids, but approximately 20% of the protein at the N-terminus is intrinsically disordered, making it challenging to elucidate its conformational landscape. Here, we combine small-angle X-ray scattering (SAXS), amide hydrogen-deuterium exchange mass spectrometry (HDXMS), and atomic-resolution molecular dynamics (MD) simulations to probe the dynamics of dengue C proteins. We show that the use of MD force fields (FFs) optimized for intrinsically disordered proteins (IDPs) is necessary to capture their conformational landscape and validate the computationally generated ensembles with reference to SAXS and HDXMS data. Representative ensembles of the C protein dimer are characterized by alternating, clamp-like exposure and occlusion of the internal hydrophobic patch, as well as by residual helical structure at the disordered N-terminus previously identified as a potential source of autoinhibition. Such dynamics are likely to determine the multifunctionality of the C protein during the flavivirus life cycle and hence impact the design of novel antiviral compounds.
Collapse
Affiliation(s)
- Priscilla L. S. Boon
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, #05-01, 28 Medical Drive, Singapore 117456
| | - Wuan Geok Saw
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| | - Xin Xiang Lim
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Palur Venkata Raghuvamsi
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Roland G. Huber
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
| | - Jan K. Marzinek
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Daniel A. Holdbrook
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
| | - Ganesh S. Anand
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| | - Gerhard Grüber
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| | - Peter J. Bond
- Bioinformatics institute (BII), Agency for Science, Technology and Research (A*STAR), #07-01 Matrix, 30 Biopolis Street, Singapore 138671
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543
| |
Collapse
|
12
|
Kumar A, Subramanian Manimekalai MS, Grüber G. Substrate-induced structural alterations of Mycobacterial mycothione reductase and critical residues involved. FEBS Lett 2018; 592:568-585. [PMID: 29377100 DOI: 10.1002/1873-3468.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is a prerequisite for survival of the pathogen Mycobacterium tuberculosis (Mtb) which employs the low molecular weight thiol mycothiol (MSH). The Mycobacterial NADPH-dependent mycothione reductase (MtMtr), composed of an NADPH-, FAD-, and a dimerization-domain connected by linkers, regulates the balance of oxidized-reduced MSH. Here, we demonstrate by small-angle X-ray scattering, that NADPH-binding alters the oligomeric state equilibrium of the protein with no significant overall structural change after MSH-binding. Mutation of critical residues in the linker regions of MtMtr eliminate partially or totally the NADPH-induced oligomerization effect with simultaneous effect on enzyme activity. The data provide insight into the MtMtr linker regions involved in the novel oligomerization equilibrium of the Mycobacterial enzyme.
Collapse
Affiliation(s)
- Arvind Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Beldar S, Manimekalai MSS, Cho NJ, Baek K, Grüber G, Yoon HS. Self-association and conformational variation of NS5A domain 1 of hepatitis C virus. J Gen Virol 2018; 99:194-208. [PMID: 29300159 DOI: 10.1099/jgv.0.001000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Direct-acting antivirals (DAAs) targeting the non-structural 5A (NS5A) protein of the hepatitis C virus (HCV) are crucial drugs that have shown exceptional clinical success in patients. However, their mode of action (MoA) remains unclear, and drug-resistant HCV strains are rapidly emerging. It is critical to characterize the behaviour of the NS5A protein in solution, which can facilitate the development of new classes of inhibitors or improve the efficacy of the currently available DAAs. Using biophysical methods, including dynamic light scattering, size exclusion chromatography and chemical cross-linking experiments, we showed that the NS5A domain 1 from genotypes 1b and 1a of the HCV intrinsically self-associated and existed as a heterogeneous mixture in solution. Interestingly, the NS5A domain 1 from genotypes 1b and 1a exhibited different dynamic equilibria of monomers to higher-order structures. Using small-angle X-ray scattering, we studied the structural dynamics of the various states of the NS5A domain 1 in solution. We also tested the effect of daclatasvir (DCV), the most prominent DAA, on self-association of the wild and DCV-resistant mutant (Y93H) NS5A domain 1 proteins, and demonstrated that DCV induced the formation of large and irreversible protein aggregates that eventually precipitated out. This study highlights the conformational variability of the NS5A domain 1 of HCV, which may be an intrinsic structural behaviour of the HCV NS5A domain 1 in solution.
Collapse
Affiliation(s)
- Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ho Sup Yoon
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
14
|
Toh YK, Balakrishna AM, Manimekalai MSS, Chionh BB, Seetharaman RRC, Eisenhaber F, Eisenhaber B, Grüber G. Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F. Biochim Biophys Acta Gen Subj 2017; 1861:3201-3214. [DOI: 10.1016/j.bbagen.2017.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
15
|
Gopal P, Nartey W, Ragunathan P, Sarathy J, Kaya F, Yee M, Setzer C, Manimekalai MSS, Dartois V, Grüber G, Dick T. Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infect Dis 2017; 3:807-819. [PMID: 28991455 DOI: 10.1021/acsinfecdis.7b00079] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, we showed that a major in vitro and in vivo mechanism of resistance to pyrazinoic acid (POA), the bioactive component of the critical tuberculosis (TB) prodrug pyrazinamide (PZA), involves missense mutations in the aspartate decarboxylase PanD, an enzyme required for coenzyme A biosynthesis. What is the mechanism of action of POA? Upon demonstrating that treatment of M. bovis BCG with POA resulted in a depletion of intracellular coenzyme A and confirming that this POA-mediated depletion is prevented by either missense mutations in PanD or exogenous supplementation of pantothenate, we hypothesized that POA binds to PanD and that this binding blocks the biosynthetic pathway. Here, we confirm both hypotheses. First, metabolomic analyses showed that POA treatment resulted in a reduction of the concentrations of all coenzyme A precursors downstream of the PanD-mediated catalytic step. Second, using isothermal titration calorimetry, we established that POA, but not its prodrug PZA, binds to PanD. Binding was abolished for mutant PanD proteins. Taken together, these findings support a mechanism of action of POA in which the bioactive component of PZA inhibits coenzyme A biosynthesis via binding to aspartate decarboxylase PanD. Together with previous works, these results establish PanD as a genetically, metabolically, and biophysically validated target of PZA.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Wilson Nartey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Jansy Sarathy
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Michelle Yee
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Claudia Setzer
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | | | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Thomas Dick
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| |
Collapse
|
16
|
Structural and mechanistic insights into Mycothiol Disulphide Reductase and the Mycoredoxin-1-alkylhydroperoxide reductase E assembly of Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2017; 1861:2354-2366. [DOI: 10.1016/j.bbagen.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022]
|
17
|
Singal B, Balakrishna AM, Nartey W, Manimekalai MSS, Jeyakanthan J, Grüber G. Crystallographic and solution structure of the N-terminal domain of the Rel protein fromMycobacterium tuberculosis. FEBS Lett 2017; 591:2323-2337. [DOI: 10.1002/1873-3468.12739] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Bharti Singal
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | | | - Wilson Nartey
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | | | | | - Gerhard Grüber
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
18
|
Ragunathan P, Sielaff H, Sundararaman L, Biuković G, Subramanian Manimekalai MS, Singh D, Kundu S, Wohland T, Frasch W, Dick T, Grüber G. The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. J Biol Chem 2017; 292:11262-11279. [PMID: 28495884 PMCID: PMC5500794 DOI: 10.1074/jbc.m117.784959] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Indexed: 01/30/2023] Open
Abstract
The F1F0 -ATP (F-ATP) synthase is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). In addition to their synthase function most F-ATP synthases possess an ATP-hydrolase activity, which is coupled to proton-pumping activity. However, the mycobacterial enzyme lacks this reverse activity, but the reason for this deficiency is unclear. Here, we report that a Mycobacterium-specific, 36-amino acid long C-terminal domain in the nucleotide-binding subunit α (Mtα) of F-ATP synthase suppresses its ATPase activity and determined the mechanism of suppression. First, we employed vesicles to show that in intact membrane-embedded mycobacterial F-ATP synthases deletion of the C-terminal domain enabled ATPase and proton-pumping activity. We then generated a heterologous F-ATP synthase model system, which demonstrated that transfer of the mycobacterial C-terminal domain to a standard F-ATP synthase α subunit suppresses ATPase activity. Single-molecule rotation assays indicated that the introduction of this Mycobacterium-specific domain decreased the angular velocity of the power-stroke after ATP binding. Solution X-ray scattering data and NMR results revealed the solution shape of Mtα and the 3D structure of the subunit α C-terminal peptide 521PDEHVEALDEDKLAKEAVKV540 of M. tubercolosis (Mtα(521-540)), respectively. Together with cross-linking studies, the solution structural data lead to a model, in which Mtα(521-540) comes in close proximity with subunit γ residues 104-109, whose interaction may influence the rotation of the camshaft-like subunit γ. Finally, we propose that the unique segment Mtα(514-549), which is accessible at the C terminus of mycobacterial subunit α, is a promising drug epitope.
Collapse
Affiliation(s)
- Priya Ragunathan
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hendrik Sielaff
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | | | - Dhirendra Singh
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Subhashri Kundu
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - Thorsten Wohland
- the Departments of Biological Sciences and Chemistry and NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore, 14 Science Drive 4, Singapore 117557, Republic of Singapore, and
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas Dick
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - Gerhard Grüber
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore,
| |
Collapse
|
19
|
Pan A, Saw WG, Subramanian Manimekalai MS, Grüber A, Joon S, Matsui T, Weiss TM, Grüber G. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr D Struct Biol 2017; 73:402-419. [PMID: 28471365 PMCID: PMC5417341 DOI: 10.1107/s2059798317003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/09/2017] [Indexed: 11/10/2022] Open
Abstract
Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174PPAVP179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.
Collapse
Affiliation(s)
- Ankita Pan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shin Joon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
20
|
Oot RA, Couoh-Cardel S, Sharma S, Stam NJ, Wilkens S. Breaking up and making up: The secret life of the vacuolar H + -ATPase. Protein Sci 2017; 26:896-909. [PMID: 28247968 DOI: 10.1002/pro.3147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
The vacuolar ATPase (V-ATPase; V1 Vo -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Sergio Couoh-Cardel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stuti Sharma
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Nicholas J Stam
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
21
|
Kamariah N, Eisenhaber B, Eisenhaber F, Grüber G. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. J Biol Chem 2017; 292:6667-6679. [PMID: 28270505 DOI: 10.1074/jbc.m117.775858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can damage DNA, proteins, and lipids, so cells have antioxidant systems that regulate ROS. In many bacteria, a dedicated peroxiredoxin reductase, alkyl hydroperoxide reductase subunit F (AhpF), catalyzes the rapid reduction of the redox-active disulfide center of the antioxidant protein peroxiredoxin (AhpC) to detoxify ROS such as hydrogen peroxide, organic hydroperoxide, and peroxynitrite. AhpF is a flexible multidomain protein that enables a series of electron transfers among the redox centers by accepting reducing equivalents from NADH. A flexible linker connecting the N-terminal domain (NTD) and C-terminal domain (CTD) of AhpF suggests that the enzyme adopts a large-scale domain motion that alternates between the closed and open states to shuttle electrons from the CTD via the NTD to AhpC. Here, we conducted comprehensive mutational, biochemical, and biophysical analyses to gain insights into the role of the flexible linker and the residues critical for the domain motions of Escherichia coli AhpF (EcAhpF) during electron transfer. Small-angle X-ray scattering studies of linker mutants revealed that a group of charged residues, 200EKR202, is crucial for the swiveling motion of the NTD. Moreover, NADH binding significantly affected EcAhpF flexibility and the movement of the NTD relative to the CTD. The mutants also exhibited a decrease in H2O2 reduction by the AhpF-AhpC ensemble. We propose that a concerted movement involving the NTD, C-terminal NADH, and FAD domains, and the flexible linker between them is essential for optimal intra-domain cross-talk and for efficient electron transfer to the redox partner AhpC required for peroxidation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Birgit Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Frank Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671.,the School of Computer Engineering, Nanyang Technological University, Singapore 637553, Republic of Singapore
| | - Gerhard Grüber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, .,the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| |
Collapse
|
22
|
Structural features of Zika virus non-structural proteins 3 and -5 and its individual domains in solution as well as insights into NS3 inhibition. Antiviral Res 2017; 141:73-90. [PMID: 28202376 DOI: 10.1016/j.antiviral.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/20/2022]
Abstract
Zika virus (ZIKV) has emerged as a pathogen of major health concern. The virus relies on its non-structural protein 5 (NS5) including a methyl-transferase (MTase) and a RNA-dependent RNA polymerase (RdRp) for capping and synthesis of the viral RNA and the nonstructural protein 3 (NS3) with its protease and helicase domain for polyprotein possessing, unwinding dsRNA proceeding replication, and NTPase/RTPase activities. In this study we present for the first time insights into the overall structure of the entire French Polynesia ZIKV NS3 in solution. The protein is elongated and flexible in solution. Solution studies of the individual protease- and helicase domains show the compactness of the two monomeric enzymes as well as the contribution of the 10-residues linker region to the flexibility of the entire NS3. We show also the solution X-ray scattering data of the French Polynesia ZIKV NS5, which is dimeric in solution and switches to oligomers in a concentration-dependent manner. The solution shapes of the MTase and RdRp domains are described. The dimer arrangement of ZIKV NS5 is discussed in terms of its importance for MTase-RdRp communication and concerted interaction with its flexible and monomeric counterpart NS3 during viral replication and capping. The comparison of ZIKV NS3 and -NS5 solution data with the related DENV nonstructural proteins shed light into the similarities and diversities of these classes of enzymes. Finally, the effect of ATPase inhibitors to the enzymatic active ZIKV NS3 and the individual helicase are provided.
Collapse
|
23
|
Sielaff H, Martin J, Singh D, Biuković G, Grüber G, Frasch WD. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. J Biol Chem 2016; 291:25351-25363. [PMID: 27729450 PMCID: PMC5207238 DOI: 10.1074/jbc.m116.745240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.
Collapse
Affiliation(s)
- Hendrik Sielaff
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - James Martin
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Dhirendra Singh
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Wayne D Frasch
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
24
|
Kumar A, Balakrishna AM, Nartey W, Manimekalai MSS, Grüber G. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol. Free Radic Biol Med 2016; 97:588-601. [PMID: 27417938 DOI: 10.1016/j.freeradbiomed.2016.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has the ability to persist within the human host for a long time in a dormant stage and re-merges when the immune system is compromised. The pathogenic bacterium employs an elaborate antioxidant defence machinery composed of the mycothiol- and thioredoxin system in addition to a superoxide dismutase, a catalase, and peroxiredoxins (Prxs). Among the family of Peroxiredoxins, Mtb expresses a 1-cysteine peroxiredoxin, known as alkylhydroperoxide reductase E (MtAhpE), and defined as a potential tuberculosis drug target. The reduced MtAhpE (MtAhpE-SH) scavenges peroxides to become converted to MtAhpE-SOH. To provide continuous availability of MtAhpE-SH, MtAhpE-SOH has to become reduced. Here, we used NMR spectroscopy to delineate the reduced (MtAhpE-SH), sulphenic (MtAhpE-SOH) and sulphinic (MtAhpE-SO2H) states of MtAhpE through cysteinyl-labelling, and provide for the first time evidence of a mycothiol-dependent mechanism of MtAhpE reduction. This is confirmed by crystallographic studies, wherein MtAhpE was crystallized in the presence of mycothiol and the structure was solved at 2.43Å resolution. Combined with NMR-studies, the crystallographic structures reveal conformational changes of important residues during the catalytic cycle of MtAhpE. In addition, alterations of the overall protein in solution due to redox modulation are observed by small angle X-ray scattering (SAXS) studies. Finally, by employing SAXS and dynamic light scattering, insight is provided into the most probable physiological oligomeric state of MtAhpE necessary for activity, being also discussed in the context of concerted substrate binding inside the dimeric MtAhpE.
Collapse
Affiliation(s)
- Arvind Kumar
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Asha Manikkoth Balakrishna
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
25
|
Oot RA, Kane PM, Berry EA, Wilkens S. Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 2016; 35:1694-706. [PMID: 27295975 DOI: 10.15252/embj.201593447] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/12/2016] [Indexed: 01/23/2023] Open
Abstract
Vacuolar ATPases (V-ATPases) are essential proton pumps that acidify the lumen of subcellular organelles in all eukaryotic cells and the extracellular space in some tissues. V-ATPase activity is regulated by a unique mechanism referred to as reversible disassembly, wherein the soluble catalytic sector, V1, is released from the membrane and its MgATPase activity silenced. The crystal structure of yeast V1 presented here shows that activity silencing involves a large conformational change of subunit H, with its C-terminal domain rotating ~150° from a position near the membrane in holo V-ATPase to a position at the bottom of V1 near an open catalytic site. Together with biochemical data, the structure supports a mechanistic model wherein subunit H inhibits ATPase activity by stabilizing an open catalytic site that results in tight binding of inhibitory ADP at another site.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
26
|
Subramanian Manimekalai MS, Saw WG, Pan A, Grüber A, Grüber G. Identification of the critical linker residues conferring differences in the compactness of NS5 from Dengue virus serotype 4 and NS5 from Dengue virus serotypes 1-3. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:795-807. [PMID: 27303800 DOI: 10.1107/s2059798316006665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 11/10/2022]
Abstract
Dengue virus (DENV) nonstructural protein 5 (NS5) consists of a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. The cross-talk between these domains occurs via a ten-residue linker. Recent solution studies of DENV NS5 from all four serotypes (DENV-1 to DENV-4) showed that NS5 adopts multiple conformations owing to its flexible linker and that DENV-4 NS5 is more compact and less flexible compared with NS5 from DENV-1 to DENV-3 [Saw et al. (2015), Acta Cryst. D71, 2309-2327]. Here, using a variety of single, double, triple and quadruple mutants of DENV-4 NS5 combined with solution X-ray scattering studies, insight into the critical residues responsible for the differential flexibility of DENV-4 NS5 is presented. The DENV-4 NS5 mutants K271T and S266N/T267A as well as the deletion mutant ΔS266T267 showed enlarged dimensions and flexibility similar to those of DENV-3 NS5. The data indicate that the residues Lys271, Ser266 and Thr267 are important for the compactness of DENV-4 NS5 and therefore may be critical for the regulation of virus replication. Furthermore, quantitative characterization of the flexibility of these DENV-4 NS5 linker mutants using the ensemble-optimization method revealed that these mutants possess a similar conformational distribution to DENV-3 NS5, confirming that these residues in the linker region cause the higher compactness of DENV-4 NS5.
Collapse
Affiliation(s)
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ankita Pan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
27
|
Cotter K, Stransky L, McGuire C, Forgac M. Recent Insights into the Structure, Regulation, and Function of the V-ATPases. Trends Biochem Sci 2016; 40:611-622. [PMID: 26410601 DOI: 10.1016/j.tibs.2015.08.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps that acidify intracellular compartments and are also present at the plasma membrane. They function in such processes as membrane traffic, protein degradation, virus and toxin entry, bone resorption, pH homeostasis, and tumor cell invasion. V-ATPases are large multisubunit complexes, composed of an ATP-hydrolytic domain (V1) and a proton translocation domain (V0), and operate by a rotary mechanism. This review focuses on recent insights into their structure and mechanism, the mechanisms that regulate V-ATPase activity (particularly regulated assembly and trafficking), and the role of V-ATPases in processes such as cell signaling and cancer. These developments have highlighted the potential of V-ATPases as a therapeutic target in a variety of human diseases.
Collapse
Affiliation(s)
- Kristina Cotter
- Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Laura Stransky
- Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Christina McGuire
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Michael Forgac
- Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
28
|
Abstract
Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.
Collapse
|
29
|
Singh D, Sielaff H, Sundararaman L, Bhushan S, Grüber G. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:177-187. [PMID: 26682760 DOI: 10.1016/j.bbabio.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.
Collapse
Affiliation(s)
- Dhirendra Singh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
30
|
Kamariah N, Nartey W, Eisenhaber B, Eisenhaber F, Grüber G. Low resolution solution structure of an enzymatic active AhpC10:AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. J Struct Biol 2015; 193:13-22. [PMID: 26584540 DOI: 10.1016/j.jsb.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/15/2022]
Abstract
The ability of bacteria to combat oxidative stress is imperative for their survival. The Alkyl hydroperoxide Reductase (AhpR) system, composed of the AhpC and AhpF proteins, is one of the dominant antioxidant defense systems required for scavenging hydrogen peroxide and organic peroxide. Therefore, it is necessary to understand the mechanism of the AhpR ensemble formation. In previous studies, we were able to elucidate conformational flexibility of Escherichia coli AhpF during the catalytic cycle and its binding site, the N-terminal domain (NTD), to AhpC. We proposed the novel binding and release mechanism of EcAhpC-AhpF, which is mediated by the well defined redox-state linked conformational changes associated with the C-terminal tail and active site regions of EcAhpC. Here, we have proceeded further to elucidate the solution structure of E. coli AhpC and the stable ensemble formation with EcAhpF using size-exclusion chromatography (SEC), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. The EcAhpC-AhpF complex structure with a stoichiometry of AhpC10:AhpF2 reveals that dimeric EcAhpF in its extended conformation enables the NTD disulphide centers to come in close proximity to the redox-active disulphide centers of EcAhpC, and provides an efficient electron transfer. Furthermore, the significance of the C-terminal tail of EcAhpC in ensemble formation is elucidated. SAXS data-based modeling revealed the flexible C-terminal tail of EcAhpC in solution, and its exposed nature, making it possible to contact the NTD of EcAhpF for stable complex formation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
31
|
Saw WG, Tria G, Grüber A, Subramanian Manimekalai MS, Zhao Y, Chandramohan A, Srinivasan Anand G, Matsui T, Weiss TM, Vasudevan SG, Grüber G. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2309-27. [PMID: 26527147 PMCID: PMC4631481 DOI: 10.1107/s1399004715017721] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 01/22/2023]
Abstract
Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase-RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.
Collapse
Affiliation(s)
- Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Giancarlo Tria
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Yongqian Zhao
- Program in Emerging Infectious Diseases, Duke–NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Ganesh Srinivasan Anand
- Department of Biological Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laborator, Menlo Park, California, USA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laborator, Menlo Park, California, USA
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke–NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
32
|
Nartey W, Basak S, Kamariah N, Manimekalai MSS, Robson S, Wagner G, Eisenhaber B, Eisenhaber F, Grüber G. NMR studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2-Cys peroxiredoxin machinery. FEBS J 2015; 282:4620-38. [DOI: 10.1111/febs.13522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Wilson Nartey
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Sandip Basak
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Neelagandan Kamariah
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | | | - Scott Robson
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | - Frank Eisenhaber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- School of Computer Engineering; Nanyang Technological University (NTU); Singapore City Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Gerhard Grüber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| |
Collapse
|
33
|
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 2015; 521:241-5. [PMID: 25971514 DOI: 10.1038/nature14365] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/05/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.
Collapse
|
34
|
Kamariah N, Manimekalai MSS, Nartey W, Eisenhaber F, Eisenhaber B, Grüber G. Crystallographic and solution studies of NAD(+)- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1139-52. [PMID: 26092085 DOI: 10.1016/j.bbabio.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Redox homeostasis is significant for the survival of pro- and eukaryotic cells and is crucial for defense against reactive oxygen species like superoxide and hydrogen peroxide. In Escherichia coli, the reduction of peroxides occurs via the redox active disulfide center of the alkyl hydroperoxide reductase C subunit (AhpC), whose reduced state becomes restored by AhpF. The 57kDa EcAhpF contains an N-terminal domain (NTD), which catalyzes the electron transfer from NADH via an FAD of the C-terminal domain into EcAhpC. The NTD is connected to the C-terminal domain via a linker. Here, the first crystal structure of E. coli AhpF bound with NADH and NAD(+) has been determined at 2.5Å and 2.4Å resolution, respectively. The NADH-bound form of EcAhpF reveals that the NADH-binding domain is required to alter its conformation to bring a bound NADH to the re-face of the isoalloxazine ring of the flavin, and thereby render the NADH-domain dithiol center accessible to the NTD disulfide center for electron transfer. The NAD(+)-bound form of EcAhpF shows conformational differences for the nicotinamide end moieties and its interacting residue M467, which is proposed to represent an intermediate product-release conformation. In addition, the structural alterations in EcAhpF due to NADH- and NAD(+)-binding in solution are shown by small angle X-ray scattering studies. The EcAhpF is revealed to adopt many intermediate conformations in solution to facilitate the electron transfer from the substrate NADH to the C-terminal domain, and subsequently to the NTD of EcAhpF for the final step of AhpC reduction.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | | | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
35
|
Balakrishna AM, Manimekalai MSS, Grüber G. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:84-93. [PMID: 26033199 DOI: 10.1016/j.pbiomolbio.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022]
Abstract
The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function.
Collapse
Affiliation(s)
- Asha Manikkoth Balakrishna
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malathy Sony Subramanian Manimekalai
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|