1
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Ao Y, Grover JR, Han Y, Zhong G, Qin W, Ghimire D, Haque A, Bhattacharjee R, Zhang B, Arthos J, Lemke EA, Kwong PD, Lu M. An intact amber-free HIV-1 system for in-virus protein bioorthogonal click labeling that delineates envelope conformational dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530526. [PMID: 36909529 PMCID: PMC10002649 DOI: 10.1101/2023.02.28.530526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The HIV-1 envelope (Env) glycoprotein is conformationally dynamic and mediates membrane fusion required for cell entry. Single-molecule fluorescence resonance energy transfer (smFRET) of Env using peptide tags has provided mechanistic insights into the dynamics of Env conformations. Nevertheless, using peptide tags risks potential effects on structural integrity. Here, we aim to establish minimally invasive smFRET systems of Env on the virus by combining genetic code expansion and bioorthogonal click chemistry. Amber stop-codon suppression allows site-specifically incorporating noncanonical/unnatural amino acids (ncAAs) at introduced amber sites into proteins. However, ncAA incorporation into Env (or other HIV-1 proteins) in the virus context has been challenging due to low copies of Env on virions and incomplete amber suppression in mammalian cells. Here, we developed an intact amber-free virus system that overcomes impediments from preexisting ambers in HIV-1. Using this system, we successfully incorporated dual ncAAs at amber-introduced sites into Env on intact virions. Dual-ncAA incorporated Env retained similar neutralization sensitivities to neutralizing antibodies as wildtype. smFRET of click-labeled Env on intact amber-free virions recapitulated conformational profiles of Env. The amber-free HIV-1 infectious system also permits in-virus protein bioorthogonal labeling, compatible with various advanced microscopic studies of virus entry, trafficking, and egress in living cells. Amber-free HIV-1 infectious systems actualized minimal invasive Env tagging for smFRET, versatile for in-virus bioorthogonal click labeling in advanced microscopic studies of virus-host interactions.
Collapse
|
3
|
Sandmeyer A, Wang L, Hübner W, Müller M, Chen BK, Huser T. Cost-effective high-speed, three-dimensional live-cell imaging of HIV-1 transfer at the T cell virological synapse. iScience 2022; 25:105468. [PMID: 36388970 PMCID: PMC9663902 DOI: 10.1016/j.isci.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/16/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
The availability of cost-effective, highly portable, and easy to use high-resolution live-cell imaging systems could present a significant technological break-through in challenging environments, such as high-level biosafety laboratories or sites where new viral outbreaks are suspected. We describe and demonstrate a cost-effective high-speed fluorescence microscope enabling the live tracking of virus particles across virological synapses that form between infected and uninfected T cells. The dynamics of HIV-1 proteins studied at the cellular level and the formation of virological synapses in living T cells reveals mechanisms by which cell-cell interactions facilitate infection between immune cells. Dual-color 3D fluorescence deconvolution microscopy of HIV-1 particles at frames rates of 100 frames per second allows us to follow the transfer of HIV-1 particles across the T cell virological synapse between living T cells. We also confirm the successful transfer of virus by imaging T cell samples fixed at specific time points during cell-cell virus transfer by super-resolution structured illumination microscopy.
Collapse
Affiliation(s)
- Alice Sandmeyer
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Lili Wang
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Marcel Müller
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Thomas Huser
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biol 2022; 20:e3001569. [PMID: 35180219 PMCID: PMC8906867 DOI: 10.1371/journal.pbio.3001569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/09/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation. The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.
Collapse
|
5
|
Wang L, Sandmeyer A, Hübner W, Li H, Huser T, Chen BK. A Replication-Competent HIV Clone Carrying GFP-Env Reveals Rapid Env Recycling at the HIV-1 T Cell Virological Synapse. Viruses 2021; 14:v14010038. [PMID: 35062242 PMCID: PMC8781834 DOI: 10.3390/v14010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 infection is enhanced by cell-cell adhesions between infected and uninfected T cells called virological synapses (VS). VS are initiated by the interactions of cell-surface HIV-1 envelope glycoprotein (Env) and CD4 on target cells and act as sites of viral assembly and viral transfer between cells. To study the process that recruits and retains HIV-1 Env at the VS, a replication-competent HIV-1 clone carrying an Env-sfGFP fusion protein was designed to enable live tracking of Env within infected cells. Combined use of surface pulse-labeling of Env and fluorescence recovery after photobleaching (FRAP) studies, enabled the visualization of the targeted accumulation and sustained recycling of Env between endocytic compartments (EC) and the VS. We observed dynamic exchange of Env at the VS, while the viral structural protein, Gag, was largely immobile at the VS. The disparate exchange rates of Gag and Env at the synapse support that the trafficking and/or retention of a majority of Env towards the VS is not maintained by entrapment by a Gag lattice or immobilization by binding to CD4 on the target cell. A FRAP study of an Env endocytosis mutant showed that recycling is not required for accumulation at the VS, but is required for the rapid exchange of Env at the VS. We conclude that the mechanism of Env accumulation at the VS and incorporation into nascent particles involves continuous internalization and targeted secretion rather than irreversible interactions with the budding virus, but that this recycling is largely dispensable for VS formation and viral transfer across the VS.
Collapse
Affiliation(s)
- Lili Wang
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
| | - Alice Sandmeyer
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Wolfgang Hübner
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Hongru Li
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Benjamin K. Chen
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
- Correspondence:
| |
Collapse
|
6
|
Carlon-Andres I, Malinauskas T, Padilla-Parra S. Structure dynamics of HIV-1 Env trimers on native virions engaged with living T cells. Commun Biol 2021; 4:1228. [PMID: 34707229 PMCID: PMC8551276 DOI: 10.1038/s42003-021-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env-T cell interactions in real time and therefore might control immune evasion.
Collapse
Affiliation(s)
- Irene Carlon-Andres
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergi Padilla-Parra
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
8
|
Chen C, Hu X, Wang C, Lan W, Wu X, Cao C. Structure- and Mechanism-Based Research Progress of Anti-acquired Immune Deficiency Syndrome Drugs. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kufel WD. Antibody-based strategies in HIV therapy. Int J Antimicrob Agents 2020; 56:106186. [PMID: 33045349 PMCID: PMC7546180 DOI: 10.1016/j.ijantimicag.2020.106186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Antibody therapies offer a unique mechanism of action, decreased resistance and improved safety. Ibalizumab is a CD4 post-attachment inhibitor and leronlimab is a CCR5 inhibitor. Ibalizumab is approved for multi-drug-resistant human immunodeficiency virus (MDR HIV) treatment in combination with antiretroviral therapy. Leronlimab is being studied for treatment of MDR HIV and as maintenance monotherapy.
Antibody-based strategies have been introduced for a number of disease states, but represent a novel approach in the management of human immunodeficiency virus (HIV). Ibalizumab and leronlimab are monoclonal antibodies with unique mechanisms as a CD4-directed post-attachment inhibitor and a C-C chemokine receptor type 5-directed inhibitor, respectively. These antibody-based strategies are generally well tolerated, have a favourable pharmacokinetic profile allowing for less-frequent dosing, and have a high barrier to resistance. Ibalizumab is currently approved by the US Food and Drug Administration (US FDA) for management of multi-drug-resistant (MDR) HIV infection in patients who are failing their current regimens. Clinical data demonstrated impressive antiretroviral activity with ibalizumab among a complex HIV population in combination with an optimized background regimen, where limited therapeutic options exist. To date, leronlimab has not been granted approval by the US FDA, but has been designated fast-track status. Leronlimab is being studied as a maintenance monotherapy agent in virologically suppressed patients, as well as for treatment of MDR HIV infection in patients who are failing their current regimens. Currently available data in both of these potential areas appear promising for leronlimab. The mechanism of action, pharmacokinetic profile, efficacy and safety of these novel antibody-based strategies represent an advance in the management of HIV. Future studies and post-marketing experience will further determine longer-term clinical efficacy, safety and resistance data for ibalizumab and leronlimab.
Collapse
Affiliation(s)
- Wesley D Kufel
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA; State University of New York Upstate Medical University, Syracuse, NY, USA; State University of New York Upstate University Hospital, Syracuse, NY, USA.
| |
Collapse
|
10
|
Sengupta P, Lippincott-Schwartz J. Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses 2020; 12:v12070745. [PMID: 32664429 PMCID: PMC7412473 DOI: 10.3390/v12070745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.
Collapse
|
11
|
Carravilla P, Nieva JL, Eggeling C. Fluorescence Microscopy of the HIV-1 Envelope. Viruses 2020; 12:E348. [PMID: 32245254 PMCID: PMC7150788 DOI: 10.3390/v12030348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.
Collapse
Affiliation(s)
- Pablo Carravilla
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - José L. Nieva
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
12
|
Abstract
Viruses are widely used as vectors for heterologous gene expression in cultured cells or natural hosts, and therefore a large number of viruses with exogenous sequences inserted into their genomes have been engineered. Many of these engineered viruses are viable and express heterologous proteins at high levels, but the inserted sequences often prove to be unstable over time and are rapidly lost, limiting heterologous protein expression. Although virologists are aware that inserted sequences can be unstable, processes leading to insert instability are rarely considered from an evolutionary perspective. Here, we review experimental work on the stability of inserted sequences over a broad range of viruses, and we present some theoretical considerations concerning insert stability. Different virus genome organizations strongly impact insert stability, and factors such as the position of insertion can have a strong effect. In addition, we argue that insert stability not only depends on the characteristics of a particular genome, but that it will also depend on the host environment and the demography of a virus population. The interplay between all factors affecting stability is complex, which makes it challenging to develop a general model to predict the stability of genomic insertions. We highlight key questions and future directions, finding that insert stability is a surprisingly complex problem and that there is need for mechanism-based, predictive models. Combining theoretical models with experimental tests for stability under varying conditions can lead to improved engineering of viral modified genomes, which is a valuable tool for understanding genome evolution as well as for biotechnological applications, such as gene therapy.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD University of Montpellier), Centre National de la Recherche Scientifique (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
13
|
Ibalizumab, a Novel Monoclonal Antibody for the Management of Multidrug-Resistant HIV-1 Infection. Antimicrob Agents Chemother 2019; 63:AAC.00110-19. [PMID: 30885900 DOI: 10.1128/aac.00110-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Limited antiretrovirals are currently available for the management of multidrug-resistant (MDR) HIV-1 infection. Ibalizumab, a recombinant humanized monoclonal antibody, represents the first novel agent for HIV-1 management in over a decade and is the first monoclonal antibody for the treatment of MDR HIV-1 infection in combination with other forms of antiretroviral therapy in heavily treatment-experienced adults who are failing their current antiretroviral regimen. Ibalizumab demonstrates a novel mechanism of action as a CD4-directed postattachment inhibitor and has a favorable pharmacokinetic profile that allows for a dosing interval of every 14 days after an initial loading dose. Clinical studies have demonstrated reasonably substantial antiretroviral activity with ibalizumab among a complex patient population with advanced HIV-1 infection who are receiving an optimized background regimen, where limited therapeutic options exist. Ibalizumab was well tolerated in clinical trials, and the most common adverse effects included diarrhea, nausea, dizziness, fatigue, pyrexia, and rash. Resistance to ibalizumab has also been observed via reduced expression or loss of the potential N-linked glycosylation sites in the V5 loop of the envelope glycoprotein 120. The mechanism of action, pharmacokinetic parameters, efficacy, and safety of ibalizumab present an advance in the management of MDR HIV-1 infection. Future studies and postmarketing experience will further determine longer-term clinical efficacy, safety, and resistance data for ibalizumab.
Collapse
|
14
|
Yamamoto M, Du Q, Song J, Wang H, Watanabe A, Tanaka Y, Kawaguchi Y, Inoue JI, Matsuda Z. Cell-cell and virus-cell fusion assay-based analyses of alanine insertion mutants in the distal α9 portion of the JRFL gp41 subunit from HIV-1. J Biol Chem 2019; 294:5677-5687. [PMID: 30737278 DOI: 10.1074/jbc.ra118.004579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is the first essential step in HIV-1 replication. The gp41 subunit of HIV-1 envelope protein (Env), a class I fusion protein, achieves membrane fusion by forming a structure called a six-helix bundle composed of N- and C-terminal heptad repeats. We have recently shown that the distal portion of the α9 helix in the C-terminal heptad repeat of X4-tropic HXB2 Env plays a critical role in the late-stage membrane fusion and viral infection. Here, we used R5-tropic JRFL Env and constructed six alanine insertion mutants, 641+A to 646+A, in the further distal portion of α9 where several glutamine residues are conserved (the number corresponds to the position of the inserted alanine in JRFL Env). 644+A showed the most severe defect in syncytia formation. Decreased fusion pore formation activity, revealed by a dual split protein assay, was observed in all mutants except 641+A. Sequence analysis and substitution of inserted 644A with Gln revealed that the glutamine residue at position 644 that forms complex hydrogen-bond networks with other polar residues on the surface of the six-helix bundle is critical for cell-cell fusion. We also developed a split NanoLuc® (Nluc) reporter-based assay specific to the virus-cell membrane fusion step to analyze several of the mutants. Interestingly syncytia-competent mutants failed to display Nluc activities. In addition to defective fusion activity, a reduction of Env incorporation into virions may further contribute to differences in cell-cell and virus-cell fusions.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Qingling Du
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Jiping Song
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Hongyun Wang
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Aya Watanabe
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Yuetsu Tanaka
- the Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yasushi Kawaguchi
- From the Research Center for Asian Infectious Diseases.,the Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jun-Ichiro Inoue
- From the Research Center for Asian Infectious Diseases, .,the Division of Cellular and Molecular Biology, and
| | - Zene Matsuda
- From the Research Center for Asian Infectious Diseases, .,the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| |
Collapse
|
15
|
Rathore U, Purwar M, Vignesh VS, Das R, Kumar AA, Bhattacharyya S, Arendt H, DeStefano J, Wilson A, Parks C, La Branche CC, Montefiori DC, Varadarajan R. Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. J Biol Chem 2018; 293:15002-15020. [PMID: 30093409 DOI: 10.1074/jbc.ra118.005006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 μm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Mansi Purwar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Sanchari Bhattacharyya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Heather Arendt
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Joanne DeStefano
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Aaron Wilson
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Christopher Parks
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Celia C La Branche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012,
| |
Collapse
|
16
|
Chojnacki J, Eggeling C. Super-resolution fluorescence microscopy studies of human immunodeficiency virus. Retrovirology 2018; 15:41. [PMID: 29884197 PMCID: PMC5994058 DOI: 10.1186/s12977-018-0424-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/28/2018] [Indexed: 11/10/2022] Open
Abstract
Super-resolution fluorescence microscopy combines the ability to observe biological processes beyond the diffraction limit of conventional light microscopy with all advantages of the fluorescence readout such as labelling specificity and non-invasive live-cell imaging. Due to their subdiffraction size (< 200 nm) viruses are ideal candidates for super-resolution microscopy studies, and Human Immunodeficiency Virus type 1 (HIV-1) is to date the most studied virus by this technique. This review outlines principles of different super-resolution techniques as well as their advantages and disadvantages for virological studies, especially in the context of live-cell imaging applications. We highlight the findings of super-resolution based HIV-1 studies performed so far, their contributions to the understanding of HIV-1 replication cycle and how the current advances in super-resolution microscopy may open new avenues for future virology research.
Collapse
Affiliation(s)
- Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
17
|
Liu D, Wang H, Yamamoto M, Song J, Zhang R, Du Q, Kawaguchi Y, Inoue JI, Matsuda Z. Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology 2018; 15:27. [PMID: 29609648 PMCID: PMC5879932 DOI: 10.1186/s12977-018-0410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 11/16/2022] Open
Abstract
Background The native pre-fusion structure of gp120/gp41 complex of human immunodeficiency virus type 1 was recently revealed. In the model, the helices of gp41 (α6, α7, α8, and α9) form a four-helix collar underneath trimeric gp120. Gp41 is a class I fusion protein and mediates membrane fusion by forming a post-fusion structure called the six-helix bundle (6HB). The comparison of the pre- and post-fusion structures revealed the large conformational changes in gp41 during the antiparallel packing of the N- and C-terminal heptad repeats (NHRs and CHRs) in membrane fusion. Several mutagenesis studies of gp41 performed in the past were interpreted based on 6HB, the only available structure at that time. To obtain an insight about the current pre-fusion structural model and conformational changes during membrane fusion, alanine insertion mutagenesis of the NHR, CHR and connecting loop regions of HXB2 gp41 was performed. The effects of mutations on biosynthesis and membrane fusion were analyzed by immunoblotting and fusion assays, respectively. The extent of membrane fusion was evaluated by split luciferase-based pore formation and syncytia formation assays, respectively. Results Consistent with the current structural model, drastic negative effects of mutations on biosynthesis and membrane fusion were observed for NHR, loop, and proximal regions of CHR (up to amino acid position 643). The insertions in α9 after it leaves the four-helix collar were tolerable for biosynthesis. These CHR mutants showed varying effects on membrane fusion. Insertion at position 644 or 645 resulted in poor pore and syncytia formation. Efficient pore and syncytia formation almost similar to that of the wild type was observed for insertion at position 647, 648 or 649. However, recovery of virus infectivity was only observed for the insertions beyond position 648. Conclusions The mutagenesis data for HXB2 gp41 is in agreement with the recent pre-fusion structure model. The virus infection data suggested that fusion pores sufficiently large enough for the release of the virus genome complex are formed after the completion of 6HB beyond position 648. Electronic supplementary material The online version of this article (10.1186/s12977-018-0410-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehua Liu
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Hongyun Wang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiping Song
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingling Du
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zene Matsuda
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
18
|
Sakin V, Hanne J, Dunder J, Anders-Össwein M, Laketa V, Nikić I, Kräusslich HG, Lemke EA, Müller B. A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility. Cell Chem Biol 2017; 24:635-645.e5. [PMID: 28457706 DOI: 10.1016/j.chembiol.2017.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/12/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022]
Abstract
The envelope glycoproteins (Env) of HIV-1 mediate cell entry through fusion of the viral envelope with a target cell membrane. Intramembrane mobility and clustering of Env trimers at the viral budding site are essential for its function. Previous live-cell and super-resolution microscopy studies were limited by lack of a functional fluorescent Env derivative, requiring antibody labeling for detection. Introduction of a bio-orthogonal amino acid by genetic code expansion, combined with click chemistry, offers novel possibilities for site-specific, minimally invasive labeling. Using this approach, we established efficient incorporation of non-canonical amino acids within HIV-1 Env in mammalian cells. The engineered protein retained plasma membrane localization, glycosylation, virion incorporation, and fusogenic activity, and could be rapidly and specifically labeled with synthetic dyes. This strategy allowed us to revisit Env dynamics and nanoscale distribution at the plasma membrane close to its native state, applying fluorescence recovery after photo bleaching and STED nanoscopy, respectively.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Janina Hanne
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jessica Dunder
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Sakin V, Paci G, Lemke EA, Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 2016; 590:1896-914. [PMID: 26987299 DOI: 10.1002/1873-3468.12131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
20
|
Oum YH, Desai TM, Marin M, Melikyan GB. Click labeling of unnatural sugars metabolically incorporated into viral envelope glycoproteins enables visualization of single particle fusion. J Virol Methods 2016; 233:62-71. [PMID: 27033181 DOI: 10.1016/j.jviromet.2016.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Enveloped viruses infect target cells by fusing their membrane with cellular membrane through a process that is mediated by specialized viral glycoproteins. The inefficient and highly asynchronous nature of viral fusion complicates studies of virus entry on a population level. Single virus imaging in living cells has become an important tool for delineating the entry pathways and for mechanistic studies of viral fusion. We have previously demonstrated that incorporation of fluorescent labels into the viral membrane and trapping fluorescent proteins in the virus interior enables the visualization of single virus fusion in living cells. Here, we implement a new approach to non-invasively label the viral membrane glycoproteins through metabolic incorporation of unnatural sugars followed by click-reaction with organic fluorescent dyes. This approach allows for efficient labeling of diverse viral fusion glycoproteins on the surface of HIV pseudoviruses. Incorporation of a content marker into surface-labeled viral particles enables sensitive detection of single virus fusion with live cells.
Collapse
Affiliation(s)
- Yoon Hyeun Oum
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Tanay M Desai
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
21
|
Sliepen K, van Montfort T, Ozorowski G, Pritchard LK, Crispin M, Ward AB, Sanders RW. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules 2015; 5:2919-34. [PMID: 26512709 PMCID: PMC4693263 DOI: 10.3390/biom5042919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|