1
|
Davis J, Cornwell JD, Campagna N, Guo J, Li W, Yang T, Wang T, Zhang S. Rescue of expression and function of long QT syndrome-causing mutant hERG channels by enhancing channel stability in the plasma membrane. J Biol Chem 2024; 300:107526. [PMID: 38960041 PMCID: PMC11325228 DOI: 10.1016/j.jbc.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.
Collapse
Affiliation(s)
- Jordan Davis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Noah Campagna
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Zhang H, Fu T, Sun J, Zou S, Qiu S, Zhang J, Su S, Shi C, Li DP, Xu Y. Pharmacological suppression of Nedd4-2 rescues the reduction of Kv11.1 channels in pathological cardiac hypertrophy. Front Pharmacol 2022; 13:942769. [PMID: 36059970 PMCID: PMC9428276 DOI: 10.3389/fphar.2022.942769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (IKr). Reduction of IKr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent IKr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in IKr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant IKr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed IKr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced IKr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in IKr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tian Fu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jinglei Sun
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sihao Zou
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Suhua Qiu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jiali Zhang
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shi Su
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chenxia Shi
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia, MO, United States
- *Correspondence: Yanfang Xu, ; De-Pei Li,
| | - Yanfang Xu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
- *Correspondence: Yanfang Xu, ; De-Pei Li,
| |
Collapse
|
3
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
4
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
5
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
6
|
Thioridazine Induces Cardiotoxicity via Reactive Oxygen Species-Mediated hERG Channel Deficiency and L-Type Calcium Channel Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3690123. [PMID: 32064022 PMCID: PMC6998749 DOI: 10.1155/2020/3690123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.
Collapse
|
7
|
Feng PF, Zhang B, Zhao L, Fang Q, Liu Y, Wang JN, Xu XQ, Xue H, Li Y, Yan CC, Zhao X, Li BX. Intracellular Mechanism of Rosuvastatin-Induced Decrease in Mature hERG Protein Expression on Membrane. Mol Pharm 2019; 16:1477-1488. [PMID: 30807184 DOI: 10.1021/acs.molpharmaceut.8b01102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pan-Feng Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Bo Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Lei Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Qing Fang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yan Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jun-Nan Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xue-Qi Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Hui Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Cai-Chuan Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Bao-Xin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
8
|
Kanner SA, Jain A, Colecraft HM. Development of a High-Throughput Flow Cytometry Assay to Monitor Defective Trafficking and Rescue of Long QT2 Mutant hERG Channels. Front Physiol 2018; 9:397. [PMID: 29725305 PMCID: PMC5917007 DOI: 10.3389/fphys.2018.00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022] Open
Abstract
Long QT Syndrome (LQTS) is an acquired or inherited disorder characterized by prolonged QT interval, exertion-triggered arrhythmias, and sudden cardiac death. One of the most prevalent hereditary LQTS subtypes, LQT2, results from loss-of-function mutations in the hERG channel, which conducts IKr, the rapid component of the delayed rectifier K+ current, critical for cardiac repolarization. The majority of LQT2 mutations result in Class 2 deficits characterized by impaired maturation and trafficking of hERG channels. Here, we have developed a high-throughput flow cytometric assay to analyze the surface and total expression of wild-type (WT) and mutant hERG channels with single-cell resolution. To test our method, we focused on 16 LQT2 mutations in the hERG Per-Arnt-Sim (PAS) domain that were previously studied via a widely used biochemical approach that compares levels of 135-kDa immature and 155-kDa fully glycosylated hERG protein to infer surface expression. We confirmed that LQT2 mutants expressed in HEK293 cells displayed a decreased surface density compared to WT hERG, and were differentially rescued by low temperature. However, we also uncovered some notable differences from the findings obtained via the biochemical approach. In particular, three mutations (N33T, R56Q, and A57P) with apparent WT-like hERG glycosylation patterns displayed up to 50% decreased surface expression. Furthermore, despite WT-like levels of complex glycosylation, these mutants have impaired forward trafficking, and exhibit varying half-lives at the cell surface. The results highlight utility of the surface labeling/flow cytometry approach to quantitatively assess trafficking deficiencies associated with LQT2 mutations, to discern underlying mechanisms, and to report on interventions that rescue deficits in hERG surface expression.
Collapse
Affiliation(s)
- Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Ananya Jain
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Henry M Colecraft
- Doctoral Program in Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
9
|
Sangoi MG, Lamothe SM, Guo J, Yang T, Li W, Avery EG, Fisher JT, Zhang S. β-Arrestin-Mediated Regulation of the Human Ether-a-go-go-Related Gene Potassium Channel. Mol Pharmacol 2017; 92:162-174. [DOI: 10.1124/mol.116.108035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
|
10
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
11
|
Lamothe SM, Guo J, Li W, Yang T, Zhang S. The Human Ether-a-go-go-related Gene (hERG) Potassium Channel Represents an Unusual Target for Protease-mediated Damage. J Biol Chem 2016; 291:20387-401. [PMID: 27502273 DOI: 10.1074/jbc.m116.743138] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/22/2022] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr), which is important for cardiac repolarization. Dysfunction of hERG causes long QT syndrome and sudden death, which occur in patients with cardiac ischemia. Cardiac ischemia is also associated with activation, up-regulation, and secretion of various proteolytic enzymes. Here, using whole-cell patch clamp and Western blotting analysis, we demonstrate that the hERG/IKr channel was selectively cleaved by the serine protease, proteinase K (PK). Using molecular biology techniques including making a chimeric channel between protease-sensitive hERG and insensitive human ether-a-go-go (hEAG), as well as application of the scorpion toxin BeKm-1, we identified that the S5-pore linker of hERG is the target domain for proteinase K cleavage. To investigate the physiological relevance of the unique susceptibility of hERG to proteases, we show that cardiac ischemia in a rabbit model was associated with a reduction in mature ERG expression and an increase in the expression of several proteases, including calpain. Using cell biology approaches, we found that calpain-1 was actively released into the extracellular milieu and cleaved hERG at the S5-pore linker. Using protease cleavage-predicting software and site-directed mutagenesis, we identified that calpain-1 cleaves hERG at position Gly-603 in the S5-pore linker of hERG. Clarification of protease-mediated damage of hERG extends our understanding of hERG regulation. Damage of hERG mediated by proteases such as calpain may contribute to ischemia-associated QT prolongation and sudden cardiac death.
Collapse
Affiliation(s)
- Shawn M Lamothe
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jun Guo
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wentao Li
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tonghua Yang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shetuan Zhang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
12
|
Christensen AH, Chatelain FC, Huttner IG, Olesen MS, Soka M, Feliciangeli S, Horvat C, Santiago CF, Vandenberg JI, Schmitt N, Olesen SP, Lesage F, Fatkin D. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. J Mol Cell Cardiol 2016; 97:24-35. [PMID: 27103460 DOI: 10.1016/j.yjmcc.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/24/2022]
Abstract
The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate the cardiac effects of TWIK-1 deficiency, we studied zebrafish embryos after knockdown of the two KCNK1 orthologues, kcnk1a and kcnk1b. Knockdown of kcnk1a or kcnk1b individually caused bradycardia and atrial dilation (p<0.001 vs. controls), while ventricular stroke volume was preserved. Combined knockdown of both kcnk1a and kcnk1b resulted in a more severe phenotype, which was partially reversed by co-injection of wild-type human KCNK1 mRNA, but not by a dominant negative variant of human KCNK1 mRNA. To determine whether genetic variants in KCNK1 might cause atrial fibrillation (AF), we sequenced protein-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were no effects of the three KCNK1 variants on cellular localization, current amplitude or reversal potential at pH7.4 or pH6. Our data indicate that TWIK-1 has a highly conserved role in cardiac function and is required for normal heart rate and atrial morphology. Despite the functional importance of TWIK-1 in the atrium, genetic variation in KCNK1 is not a common primary cause of human AF.
Collapse
Affiliation(s)
- Alex Hørby Christensen
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Franck C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Morten Salling Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Soka
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Claire Horvat
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jamie I Vandenberg
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
13
|
Foo B, Williamson B, Young JC, Lukacs G, Shrier A. hERG quality control and the long QT syndrome. J Physiol 2016; 594:2469-81. [PMID: 26718903 DOI: 10.1113/jp270531] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Long-QT syndrome type-2 (LQT2) is characterized by reduced functional expression of the human ether-à-go-go related (hERG) gene product, resulting in impaired cardiac repolarization and predisposition to fatal arrhythmia. Previous studies have implicated abnormal trafficking of misfolded hERG as the primary mechanism of LQT2, with misfolding being caused by mutations in the hERG gene (inherited) or drug treatment (acquired). More generally, environmental and metabolic stresses present a constant challenge to the folding of proteins, including hERG, and must be countered by robust protein quality control (QC) systems. Disposal of partially unfolded yet functional plasma membrane (PM) proteins by protein QC contributes to the loss-of-function phenotype in various conformational diseases including cystic fibrosis (CF) and long-QT syndrome type-2 (LQT2). The prevalent view has been that the loss of PM expression of hERG is attributed to biosynthetic block by endoplasmic reticulum (ER) QC pathways. However, there is a growing appreciation for protein QC pathways acting at post-ER cellular compartments, which may contribute to conformational disease pathogenesis. This article will provide a background on the structure and cellular trafficking of hERG as well as inherited and acquired LQT2. We will review previous work on hERG ER QC and introduce the more novel view that there is a significant peripheral QC at the PM and peripheral cellular compartments. Particular attention is drawn to the unique role of the peripheral QC system in acquired LQT2. Understanding the QC process and players may provide targets for therapeutic intervention in dealing with LQT2.
Collapse
Affiliation(s)
- Brian Foo
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Brittany Williamson
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Jason C Young
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Gergely Lukacs
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Alvin Shrier
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| |
Collapse
|
14
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|