1
|
Zhang J, Xie L, Li H, Li S, Gao X, Zhang M. Selenomethionine Promotes Milk Protein and Fat Synthesis and Proliferation of Mammary Epithelial Cells through the GPR37-mTOR-S6K1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19505-19516. [PMID: 39177123 DOI: 10.1021/acs.jafc.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Selenomethionine (SeMet) is an important nutrient, but its role in milk synthesis and the GPCR related to SeMet sensing is still largely unknown. Here, we determined the dose-dependent role of SeMet on milk protein and fat synthesis and proliferation of mammary epithelial cells (MECs), and we also uncovered the GPCR-mediating SeMet function. At 24 h postdelivery, lactating mother mice were fed a maintenance diet supplemented with 0, 5, 10, 20, 40, and 80 mg/kg SeMet, and the feeding process lasted for 18 days. The 10 mg/kg group had the best increase in milk production, weight gain of offspring mice, and mammary gland weight and acinar size, whereas a higher concentration of SeMet gradually decreased the weight gain of the offspring mice and showed toxic effects. Transcriptome sequencing was performed to find the differentially expressed genes (DEGs) between the mammary gland tissues of mother mice in the 10 mg/kg SeMet treatment group and the control group. A total of 258 DEGs were screened out, including 82 highly expressed genes including GPR37 and 176 lowly expressed genes. SeMet increased milk protein and fat synthesis in HC11 cells and cell proliferation, mTOR and S6K1 phosphorylation, and expression of GPR37 in a dose-dependent manner. GPR37 knockdown decreased milk protein and fat synthesis in HC11 cells and cell proliferation and blocked SeMet stimulation on mTOR and S6K1 phosphorylation. Taken together, our data demonstrate that SeMet can promote milk protein and fat synthesis and proliferation of MECs and functions through the GPR37-mTOR-S6K1 signaling pathway.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Liping Xie
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Heqian Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Siqi Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|
2
|
Dost C, Michling F, Kaimenyi D, Rij M, Wendland J. Isolation of Saccharomycopsis species from plant material. Microbiol Res 2024; 283:127691. [PMID: 38492364 DOI: 10.1016/j.micres.2024.127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.
Collapse
Affiliation(s)
- Carmen Dost
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Florian Michling
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Davies Kaimenyi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany.
| |
Collapse
|
3
|
Dauplais M, Romero S, Lazard M. Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04244-y. [PMID: 38777874 DOI: 10.1007/s12011-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Stephane Romero
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France.
| |
Collapse
|
4
|
Green D, Bluhm K, Brinkmann M, Raes K, Lane T, Liber K, Janz DM, Hecker M. Cross-species apical microinjected selenomethionine toxicity in embryo-larval fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169338. [PMID: 38104801 DOI: 10.1016/j.scitotenv.2023.169338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Selenium (Se) is an essential micronutrient that becomes toxic when exposures minimally exceed those that are physiologically required. Studies on Se contaminated aquatic environments have identified that embryo-larval fishes are at particular risk of Se toxicity, primarily due to maternal Se transfer to developing eggs during oogenesis. This study emulated these exposures in embryo-larval fathead minnow (FHM), rainbow trout (RBT), white sucker (WSu), and white sturgeon (WSt) using embryonic selenomethionine (SeMet) microinjections. Adverse Se-outcomes observed across these species included spinal and edematous deformities, total individuals deformed, and reduced survival. Spinal deformity was the most sensitive sublethal endpoint and developed at the lowest concentrations in WSt (10 % effects concentration (EC10) = 12.42 μg (total) Se/g dry weight (d.w.)) followed by WSu (EC10 = 14.49 μg Se/g d.w.) and FHM (EC10 = 18.10 μg Se/g d.w.). High mortality was observed in RBT, but SeMet influences were confounded by the species' innate sensitivity to the microinjections themselves. 5 % hazardous concentrations derived across exposure type data subsets were ∼49 % higher when derived from within-species maternal transfer exclusive data as opposed to all, or within-species microinjection exclusive, data. These results support the current exclusion of SeMet microinjections during regulatory guideline derivation and their inclusion when studying mechanistic Se toxicity across phylogenetically distant fishes.
Collapse
Affiliation(s)
- Derek Green
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - Katherine Raes
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Taylor Lane
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
5
|
Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol 2024; 34:150-160. [PMID: 37419738 DOI: 10.1016/j.tcb.2023.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Ferroptosis is a form of necrotic cell death characterized by iron-dependent lipid peroxidation culminating in membrane rupture. Accumulating evidence links ferroptosis to multiple cardiac diseases and identifies mitochondria as important regulators of ferroptosis. Mitochondria are not only a major source of reactive oxygen species (ROS) but also counteract ferroptosis by preserving cellular redox balance and oxidative defense. Recent evidence has revealed that the mitochondrial integrated stress response limits oxidative stress and ferroptosis in oxidative phosphorylation (OXPHOS)-deficient cardiomyocytes and protects against mitochondrial cardiomyopathy. We summarize the multiple ways in which mitochondria modulate the susceptibility of cells to ferroptosis, and discuss the implications of ferroptosis for cardiomyopathies in mitochondrial disease.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Hoffman KS, Chung CZ, Mukai T, Krahn N, Jiang HK, Balasuriya N, O'Donoghue P, Söll D. Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1400-1410. [PMID: 37279998 PMCID: PMC10573291 DOI: 10.1261/rna.079658.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Han-Kai Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
8
|
Santelli CM, Sabuda MC, Rosenfeld CE. Time-Resolved Examination of Fungal Selenium Redox Transformations. ACS EARTH & SPACE CHEMISTRY 2023; 7:960-971. [PMID: 37228623 PMCID: PMC10204728 DOI: 10.1021/acsearthspacechem.2c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Selenium (Se) is both a micronutrient required for most life and an element of environmental concern due to its toxicity at high concentrations, and both bioavailability and toxicity are largely influenced by the Se oxidation state. Environmentally relevant fungi have been shown to aerobically reduce Se(IV) and Se(VI), the generally more toxic and bioavailable Se forms. The goal of this study was to shed light on fungal Se(IV) reduction pathways and biotransformation products over time and fungal growth stages. Two Ascomycete fungi were grown with moderate (0.1 mM) and high (0.5 mM) Se(IV) concentrations in batch culture over 1 month. Fungal growth was measured throughout the experiments, and aqueous and biomass-associated Se was quantified and speciated using analytical geochemistry, transmission electron microscopy (TEM), and synchrotron-based X-ray absorption spectroscopy (XAS) approaches. The results show that Se transformation products were largely Se(0) nanoparticles, with a smaller proportion of volatile, methylated Se compounds and Se-containing amino acids. Interestingly, the relative proportions of these products were consistent throughout all fungal growth stages, and the products appeared stable over time even as growth and Se(IV) concentration declined. This time-series experiment showing different biotransformation products throughout the different growth phases suggests that multiple mechanisms are responsible for Se detoxification, but some of these mechanisms might be independent of Se presence and serve other cellular functions. Knowing and predicting fungal Se transformation products has important implications for environmental and biological health as well as for biotechnology applications such as bioremediation, nanobiosensors, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Cara M Santelli
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Yin X, Zhou Y, Yang H, Liao Y, Ma T, Wang F. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis. Appl Microbiol Biotechnol 2023; 107:2843-2854. [PMID: 36941436 DOI: 10.1007/s00253-023-12482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 μg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.
Collapse
Affiliation(s)
- Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yu Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Hulin Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Tengbo Ma
- Biological Defense Department, Institute of Chemical Defence, Zhongxin RD 1, Beijing, 102205, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
| |
Collapse
|
10
|
Kelishadi MR, Ashtary-Larky D, Davoodi SH, Clark CCT, Asbaghi O. The effects of selenium supplementation on blood lipids and blood pressure in adults: A systematic review and dose-response meta-analysis of randomized control trials. J Trace Elem Med Biol 2022; 74:127046. [PMID: 35963054 DOI: 10.1016/j.jtemb.2022.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Previous studies evaluating the effects of selenium supplementation on lipid profile and blood pressure (BP) offer contradictory findings. This systematic review and meta-analysis assessed the effects of selenium supplementation on these lipid profile and BP. METHODS In order to identify interrelated clinical trials, we performed a comprehensive literature search in the online databases, including PubMed, Scopus, Embase, and ISI web of science, up to December 2021. RESULTS The analysis of the data established that selenium supplementation did not significantly affect TG level (WMD: -0.84 mg/dL; 95 % CI: -4.74, 3.05, p = 0.671), LDL-C (WMD: 0.86 mg/dL; 95 % CI: -1.21, 2.95, p = 0.416), and HDL-C (WMD: 0.3 mg/dL; 95 % CI: -0.66, 1.27, p = 0.535). however, there was a significant reduction in TC levels following selenium supplementation (WMD: -2.11 mg/dL; 95 % CI: -4.09, -0.13, p = 0.037). After subgroup analysis, when the baseline levels of LDL-C were < 130 mg/dL, selenium supplementation elicited a significant increase in LDL-C levels (WMD: 2.89 mg/dL; 95 % CI: 0.26, 5.51, p = 0.031). For BP, selenium supplementation significantly increased SBP (WMD: 2.02 mmHg; 95 % CI: 0.50, 3.55, p = 0.009), while it had no significant effect on DBP (WMD: 0.39 mmHg; 95 % CI: (-0.89, 1.68, p = 0.551)). CONCLUSION Although our findings suggest selenium may have possible therapeutic effects in improving TC and VLDL, because of its negative effects on LDL and BP, selenium supplementation for cardiovascular protection should be recommended with caution.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sayed Hosein Davoodi
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| |
Collapse
|
11
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Hussein RA, Ahmed M, Kuldyushev N, Schönherr R, Heinemann SH. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor. Free Radic Biol Med 2022; 192:191-199. [PMID: 36152916 DOI: 10.1016/j.freeradbiomed.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab 2022; 34:1875-1891.e7. [PMID: 36113464 DOI: 10.1016/j.cmet.2022.08.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Cardiomyopathy and heart failure are common manifestations in mitochondrial disease caused by deficiencies in the oxidative phosphorylation (OXPHOS) system of mitochondria. Here, we demonstrate that the cardiac-specific loss of the assembly factor Cox10 of the cytochrome c oxidase causes mitochondrial cardiomyopathy in mice, which is associated with OXPHOS deficiency, lysosomal defects, and an aberrant mitochondrial morphology. Activation of the mitochondrial peptidase Oma1 in Cox10-/- mice results in mitochondrial fragmentation and induction of the integrated stress response (ISR) along the Oma1-Dele1-Atf4 signaling axis. Ablation of Oma1 or Dele1 in Cox10-/- mice aggravates cardiomyopathy. ISR inhibition impairs the cardiac glutathione metabolism, limits the selenium-dependent accumulation of the glutathione peroxidase Gpx4, and increases lipid peroxidation in the heart, ultimately culminating in ferroptosis. Our results demonstrate a protective role of the Oma1-Dele1-mediated ISR in mitochondrial cardiomyopathy and link ferroptosis to OXPHOS deficiency and mitochondrial disease.
Collapse
|
14
|
Gilbert AK, Newton TD, Hettiaratchi MH, Pluth MD. Reactive sulfur and selenium species in the regulation of bone homeostasis. Free Radic Biol Med 2022; 190:148-157. [PMID: 35940516 PMCID: PMC9893879 DOI: 10.1016/j.freeradbiomed.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) are important modulators of physiological signaling and play important roles in bone tissue regulation. Both reactive sulfur species (RSS) and reactive selenium species (RSeS) are involved in ROS signaling, and recent work suggests RSS and RSeS involvement in the regulation of bone homeostasis. For example, RSS can promote osteogenic differentiation and decrease osteoclast activity and differentiation, and the antioxidant activity of RSeS play crucial roles in balancing bone remodeling. Here, we outline current research progress on the application of RSS and RSeS in bone disease and regeneration. Focusing on these investigations, we highlight different methods, tools, and sources of RSS and RSeS, and we also highlight future opportunities for delivery of RSS and RSeS in biological environments relating to bone.
Collapse
Affiliation(s)
- Annie K Gilbert
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Turner D Newton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Marian H Hettiaratchi
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
15
|
Vinceti M, Filippini T, Jablonska E, Saito Y, Wise LA. Safety of selenium exposure and limitations of selenoprotein maximization: Molecular and epidemiologic perspectives. ENVIRONMENTAL RESEARCH 2022; 211:113092. [PMID: 35259406 DOI: 10.1016/j.envres.2022.113092] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 μg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
16
|
He R, Ding C, Luo Y, Guo G, Tang J, Shen H, Wang Q, Zhang X. Congener-Induced Sulfur-Related Metabolism Interference Therapy Promoted by Photothermal Sensitization for Combating Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104410. [PMID: 34486185 DOI: 10.1002/adma.202104410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolic homeostasis is vital for individual cells to keep alive. Stronger metabolic homeostasis allows bacteria to survive in vivo and do persistent harm to hosts, which is especially typical in implant-associated infection (IAI) with biofilm intervention. Herein, based on the competitive role of selenium (Se) and sulfur (S) in bacteria metabolism as congeners, a congener-induced sulfur-related metabolism interference therapy (SMIT) eradicating IAI is proposed by specific destruction of bacteria metabolic homeostasis. The original nanodrug manganese diselenide (MnSe2 ) is devised to generate permeable H2 Se in bacteria, triggered by the acidic microenvironment. H2 Se, the congener substitution of H2 S, as a bacteria-specific intermediate metabolite, can embed itself into the H2 S-utilization pathway and further alternatively disrupt the downstream sulfur-related metabolism state inside bacteria. A proteomic study indicates ribosome-related proteins are heavily downregulated and the basic metabolic pathways are mainly disordered after SMIT, revealing the destruction of bacteria metabolic homeostasis. The efficiency of SMIT is significantly promoted with the mild temperature sensitization provided by the photothermal treatment (PTT) of MnSe2 nanoparticles, verified by the proteomic study and the anti-IAI effect in vitro and in vivo. With the intelligent nanodrug, a PTT-promoted SMIT strategy against IAI is provided and a new insight into the interference design toward metabolic homeostasis with biochemical similarity is demonstrated.
Collapse
Affiliation(s)
- Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Cheng Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| |
Collapse
|
17
|
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol 2021; 105:2991-3007. [PMID: 33830300 DOI: 10.1007/s00253-021-11256-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Common toxic compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) are formed from dehydration of pentose and hexose, respectively, during decomposition of lignocellulosic biomass polymers. Furfural and HMF represent a major class of aldehyde toxic chemicals that inhibit microbial growth and interfere with subsequent fermentation for production of renewable fuels and chemicals. Understanding mechanisms of yeast tolerance aids development of tolerant strains as the most economic means to overcome the toxicity. This review updates current knowledge on yeast resistance to these toxic chemicals obtained from rapid advances in the past few years. Findings are largely exemplified by an adapted strain NRRL Y-50049 compared with its progenitor, the industrial yeast Saccharomyces cerevisiae type strain NRRL Y-12632. Newly characterized molecular phenotypes distinguished acquired resistant components of Y-50049 from innate stress response of its progenitor Y-12632. These findings also raised important questions on how to address more deeply ingrained changes in addition to local renovations for yeast adaptation. An early review on understandings of yeast tolerance to these inhibitory compounds is available and its contents omitted here to avoid redundancy. Controversial and confusing issues on identification of yeast resistance to furfural and HMF are further clarified aiming improved future research. Propositions and perspectives on research understanding molecular mechanisms of yeast resistance and future improvements are also presented. KEY POINTS: • Distinguished adapted resistance from innate stress response in yeast. • Defined pathway-based molecular phenotypes of yeast resistance. • Proposed genomic insight and perspectives on yeast resistance and adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, Bioenergy Research Unit, USDA Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
18
|
Dereven'kov IA, Makarov SV, Brânzanic AM, Silaghi-Dumitrescu R, Molodtsov PA, Pokrovskaya EA. Formation of hydroxyl radical in aqueous solutions containing selenite and glutathione. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Dauplais M, Bierla K, Maizeray C, Lestini R, Lobinski R, Plateau P, Szpunar J, Lazard M. Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22052241. [PMID: 33668124 PMCID: PMC7956261 DOI: 10.3390/ijms22052241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in Saccharomyces cerevisiae to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the reactions between glutathione (GSH) and these MeSeH precursors indicates that in the conditions that prevail in vivo, GSH can reduce the major part of MSeA or dimethyldiselenide into MeSeH. MeSeH can also be enzymatically produced by glutathione reductase or thioredoxin/thioredoxin reductase. Studies on the toxicity of MeSeH precursors (MSeA, dimethyldiselenide or a mixture of MSeA and GSH) in S.cerevisiae revealed that cytotoxicity and selenomethionine content were severely reduced in a met17 mutant devoid of O-acetylhomoserine sulfhydrylase. This suggests conversion of MeSeH into selenomethionine by this enzyme. Protein aggregation was observed in wild-type but not in met17 cells. Altogether, our findings support the view that MeSeH is toxic in S. cerevisiae because it is metabolized into selenomethionine which, in turn, induces toxic protein aggregation.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France; (M.D.); (C.M.); (P.P.)
| | - Katarzyna Bierla
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (K.B.); (R.L.); (J.S.)
| | - Coralie Maizeray
- Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France; (M.D.); (C.M.); (P.P.)
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, École Polytechnique, CNRS UMR7645—INSERM U1182, IP Paris, 91128 Palaiseau CEDEX, France;
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (K.B.); (R.L.); (J.S.)
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 19048 Moscow, Russia
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Pierre Plateau
- Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France; (M.D.); (C.M.); (P.P.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (K.B.); (R.L.); (J.S.)
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France; (M.D.); (C.M.); (P.P.)
- Correspondence:
| |
Collapse
|
20
|
Abstract
Selenium (Se), an essential trace element, is inserted as selenocysteine into an array of functional proteins and forms the core of various enzymes that play a cardinal role in antioxidant defense mechanisms, in redox regulation, and in thyroid hormone metabolism. Variations in plasma Se are due to nutritional habits, geographic and ethnic differences, and probably to genetic polymorphisms, the latter still to be conclusively established. Se concentrations were reported to be low in women of reproductive age in the UK, decreasing further during pregnancy, this resulting in low plasma and placental antioxidant enzyme activities. Since low serum Se levels have been found in women with preeclampsia, it has been hypothesized that low maternal Se status during early gestation may be an indicator of preterm birth. Moreover, it is documented that Se administration during pregnancy tendentially reduced the markers of thyroid autoimmunity and the incidence of maternal hypothyroidism in the postpartum period. Importantly, low Se levels in pregnant women affect fetal growth and augment the risk of delivering a small-for-gestational age infant by reducing placental antioxidant defense, while low Se in the third trimester is thought to indicate increased demands by the placenta, an issue which requires further confirmation. There is evidently a need for double-blind, placebo-controlled studies to better determine the efficacy and safety of Se supplementation in pregnancy at high risk for complications, and for measurement of Se levels or of selenoprotein P, the most reliable parameter of Se status, particularly in selenopenic regions.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Evgenideion Hospital, Unit of Endocrinology, Metabolism and Diabetes, Thyroid Section, University of Athens, 20 Papadiamantopoulou Str, 11528 Athens, Greece
| |
Collapse
|
21
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
22
|
Hoffman KS, Vargas-Rodriguez O, Bak DW, Mukai T, Woodward LK, Weerapana E, Söll D, Reynolds NM. A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation. J Biol Chem 2019; 294:12855-12865. [PMID: 31296657 DOI: 10.1074/jbc.ra119.008219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) is the 21st genetically encoded amino acid in organisms across all domains of life. Although structurally similar to cysteine (Cys), the Sec selenol group has unique properties that are attractive for protein engineering and biotechnology applications. Production of designer proteins with Sec (selenoproteins) at desired positions is now possible with engineered translation systems in Escherichia coli However, obtaining pure selenoproteins at high yields is limited by the accumulation of free Sec in cells, causing undesired incorporation of Sec at Cys codons due to the inability of cysteinyl-tRNA synthetase (CysRS) to discriminate against Sec. Sec misincorporation is toxic to cells and causes protein aggregation in yeast. To overcome this limitation, here we investigated a CysRS from the selenium accumulator plant Astragalus bisulcatus that is reported to reject Sec in vitro Sequence analysis revealed a rare His → Asn variation adjacent to the CysRS catalytic pocket. Introducing this variation into E. coli and Saccharomyces cerevisiae CysRS increased resistance to the toxic effects of selenite and selenomethionine (SeMet), respectively. Although the CysRS variant could still use Sec as a substrate in vitro, we observed a reduction in the frequency of Sec misincorporation at Cys codons in vivo We surmise that the His → Asn variation can be introduced into any CysRS to provide a fitness advantage for strains burdened by Sec misincorporation and selenium toxicity. Our results also support the notion that the CysRS variant provides higher specificity for Cys as a mechanism for plants to grow in selenium-rich soils.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Laura K Woodward
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
23
|
Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Bargellini A, Orsini N, Dhillon KS, Whelton P. Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 2019; 29:398-408. [PMID: 30782506 DOI: 10.1016/j.numecd.2019.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Recent human and laboratory studies have suggested the possibility that selenium overexposure may increase blood pressure. We sought to ascertain whether adults living in a seleniferous area exhibit an association between selenium exposure and both blood pressure levels as well as prevalence of hypertension. METHODS AND RESULTS We measured selenium levels in blood (serum), hair and nail samples obtained from 680 adult volunteers (267 men and 413 women), living in seven Punjabi villages in a seleniferous area and related them to health outcomes, including systolic and diastolic blood pressure and presence of hypertension. In a multivariable restricted cubic spline regression model, adjusted for age, sex and history of hypertension, we found a positive association between systolic blood pressure and both serum (P = 0.004) and hair (P = 0.058) selenium levels, but not with nail selenium content. Little association emerged between the three selenium biomarkers and diastolic blood pressure. Hypertension prevalence was positively associated with the three exposure indicators (P < 0.001). The associations we found were generally stronger in women than in men. CONCLUSIONS Overall, these findings suggest that chronic overexposure to environmental selenium may increase blood pressure, though there were inconsistencies for this association according to the choice of exposure indicator, the study endpoint and the sex.
Collapse
Affiliation(s)
- M Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.
| | - R Chawla
- Christian Medical College & Hospital, Ludhiana, India; Accuscript Consultancy, Ludhiana, India
| | - T Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Dutt
- National Dairy Research Institute, Karnal, India
| | - S Cilloni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R Loomba
- Christian Medical College & Hospital, Ludhiana, India
| | - A Bargellini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Orsini
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - K S Dhillon
- Punjab Agricultural University, Ludhiana, India
| | - P Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
| |
Collapse
|
24
|
Wenzel S, Imasaki T, Takagi Y. A practical method for efficient and optimal production of Seleno-methionine-labeled recombinant protein complexes in the insect cells. Protein Sci 2019; 28:808-822. [PMID: 30663186 DOI: 10.1002/pro.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/07/2022]
Abstract
The use of Seleno-methionine (SeMet) incorporated protein crystals for single or multi-wavelength anomalous diffraction (SAD or MAD) to facilitate phasing has become almost synonymous with modern X-ray crystallography. The anomalous signals from SeMets can be used for phasing as well as sequence markers for subsequent model building. The production of large quantities of SeMet incorporated recombinant proteins is relatively straightforward when expressed in Escherichia coli. In contrast, production of SeMet substituted recombinant proteins expressed in the insect cells is not as robust due to the toxicity of SeMet in eukaryotic systems. Previous protocols for SeMet-incorporation in the insect cells are laborious, and more suited for secreted proteins. In addition, these protocols have generally not addressed the SeMet toxicity issue, and typically result in low recovery of the labeled proteins. Here we report that SeMet toxicity can be circumvented by fully infecting insect cells with baculovirus. Quantitatively controlling infection levels using our Titer Estimation of Quality Control (TEQC) method allow for the incorporation of substantial amounts of SeMet, resulting in an efficient and optimal production of labeled recombinant protein complexes. With the method described here, we were able to consistently reach incorporation levels of about 75% and protein yield of 60-90% compared with native protein expression.
Collapse
Affiliation(s)
- Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| |
Collapse
|
25
|
Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D. Plant selenium toxicity: Proteome in the crosshairs. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:291-300. [PMID: 30544054 DOI: 10.1016/j.jplph.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 05/23/2023]
Abstract
The metalloid element, selenium (Se) is in many ways special and perhaps because of this its research in human and plant systems is of great interest. Despite its non-essentiality, higher plants take it up and metabolize it via sulfur pathways, but higher amounts of Se cause toxic symptoms in plants. However, the molecular mechanisms of selenium phytotoxicity have been only partly revealed; the data obtained so far point out that Se toxicity targets the plant proteome. Besides seleno- and oxyproteins, nitroproteins are also formed due to Se stress. In order to minimize proteomic damages induced by Se, certain plants are able to redirect selenocysteine away from protein synthesis thus preventing Se-protein formation. Additionally, the damaged or malformed selenoproteins, oxyproteins and nitroproteins may be removed by proteasomes. Based on the literature this review sets Se toxicity mechanisms into a new concept and it draws attention to the importance of Se-induced protein-level changes.
Collapse
Affiliation(s)
- Z Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - Á Molnár
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - G Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - D Van Hoewyk
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA.
| |
Collapse
|
26
|
Kohler LN, Foote J, Kelley CP, Florea A, Shelly C, Chow HHS, Hsu P, Batai K, Ellis N, Saboda K, Lance P, Jacobs ET. Selenium and Type 2 Diabetes: Systematic Review. Nutrients 2018; 10:nu10121924. [PMID: 30563119 PMCID: PMC6316380 DOI: 10.3390/nu10121924] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022] Open
Abstract
Several studies have investigated the potential role of selenium (Se) in the development of type 2 diabetes (T2D) with disparate findings. We conducted a systematic review and meta-analysis to synthesize the evidence of any association between Se and T2D. PubMed, Embase, and Scopus were searched following the Preferred Reporting Items for Systematic Reviews and Meta-analysis Approach (PRISMA). Sixteen studies from 15 papers met inclusion criteria defined for this review. Of the 13 observational studies included, 8 demonstrated a statistically significant positive association between concentrations of Se and odds for T2D, with odds ratios (95% confidence intervals) ranging from 1.52 (1.01–2.28) to 7.64 (3.34–17.46), and a summary odds ratio (OR) (95% confidence interval (CI)) of 2.03 (1.51–2.72). In contrast, among randomized clinical trials (RCTs) of Se, a higher risk of T2D was not observed for those who received Se compared to a placebo (OR = 1.18, 95% CI 0.95–1.47). Taken together, the results for the relationship between Se and T2D differ between observational studies and randomized clinical trials (RCTs). It remains unclear whether these differences are the result of uncontrolled confounding in the observational studies, or whether there is a modest effect of Se on the risk for T2D that may vary by duration of exposure. Further investigations on the effects of Se on glucose metabolism are needed.
Collapse
Affiliation(s)
- Lindsay N Kohler
- Department of Health Promotion Sciences, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Janet Foote
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Connor P Kelley
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | - Ana Florea
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | - Colleen Shelly
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - H-H Sherry Chow
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Paul Hsu
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Ken Batai
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA.
| | - Nathan Ellis
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Kathylynn Saboda
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Peter Lance
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA.
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Elizabeth T Jacobs
- Department of Epidemiology, Mel and Enid College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Seale LA, Ogawa-Wong AN, Berry MJ. SEXUAL DIMORPHISM IN SELENIUM METABOLISM AND SELENOPROTEINS. Free Radic Biol Med 2018; 127:198-205. [PMID: 29572096 PMCID: PMC6150850 DOI: 10.1016/j.freeradbiomed.2018.03.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Sexual dimorphism, the condition in which males and females in a species differ beyond the morphology of sex organs, delineates critical aspects of the biology of higher eukaryotes, including selenium metabolism. While sex differences in selenium biology have been described by several laboratories, delineation of the effects of sex in selenium function and regulation of selenoprotein expression is still in its infancy. This review encompasses the available information on sex-dependent parameters of selenium metabolism, as well as the effects of selenium on sex hormones. Gaps in the current knowledge of selenium and sex are identified and discussed.
Collapse
Affiliation(s)
- Lucia A Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA, 96813.
| | - Ashley N Ogawa-Wong
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital - Harvard Medical School, Boston, MA, USA, 02115
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| |
Collapse
|
28
|
Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S. Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 2018; 127:46-54. [PMID: 29454039 DOI: 10.1016/j.freeradbiomed.2018.02.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Selenium, an essential trace element, is incorporated into selenoproteins with a wide range of health effects. Selenoproteins may reach repletion at a plasma selenium concentration of ~ 125 µg/L, at which point the concentration of selenoprotein P reaches a plateau; whether sustained concentrations higher than this are beneficial, or indeed detrimental, is unknown. OBJECTIVE In a population of relatively low selenium status, we aimed to determine the effect on mortality of long-term selenium supplementation at different dose levels. DESIGN The Denmark PRECISE study was a single-centre, randomised, double-blinded, placebo-controlled, multi-arm, parallel clinical trial with four groups. Participants were 491 male and female volunteers aged 60-74 years, recruited at Odense University Hospital, Denmark. The trial was initially designed as a 6-month pilot study, but supplemental funding allowed for extension of the study and mortality assessment. Participants were randomly assigned to treatment with 100, 200, or 300 µg selenium/d as selenium-enriched-yeast or placebo-yeast for 5 years from randomization in 1998-1999 and were followed up for mortality for a further 10 years (through March 31, 2015). RESULTS During 6871 person-years of follow-up, 158 deaths occurred. In an intention-to-treat analysis, the hazard ratio (95% confidence interval) for all-cause mortality comparing 300 µg selenium/d to placebo was 1.62 (0.66, 3.96) after 5 years of treatment and 1.59 (1.02, 2.46) over the entire follow-up period. The 100 and 200 µg/d doses showed non-significant decreases in mortality during the intervention period that disappeared after treatment cessation. Although we lacked power for endpoints other than all-cause mortality, the effects on cancer and cardiovascular mortality appeared similar. CONCLUSIONS A 300 µg/d dose of selenium taken for 5 years in a country with moderately-low selenium status increased all-cause mortality 10 years later. While our study was not initially designed to evaluate mortality and the sample size was limited, our findings indicate that total selenium intake over 300 µg/d and high-dose selenium supplements should be avoided.
Collapse
Affiliation(s)
- Margaret P Rayman
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | | | - Roberto Pastor-Barriuso
- National Center for Epidemiology, Carlos III Institute of Health and Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Frederick Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Marianne Thvilum
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada; Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Søren Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
29
|
Kim JJ, Pham PH, Hamilton ME, Lee LEJ, Bols NC. Effect of selenomethionine on cell viability and heat shock protein 70 levels in rainbow trout intestinal epithelial cells at hypo-, normo-, and hyper-thermic temperatures. J Therm Biol 2018; 76:107-114. [PMID: 30143285 DOI: 10.1016/j.jtherbio.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/07/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
As global warming and environmental pollution modify aquatic environments, the thermal biology of fish could be affected by interactions between temperature and pollutants, such as selenium (Se). Therefore, selenomethionine (SeMet) was studied for effects on cell viability and on heat shock protein 70 (HSP70) levels in the rainbow trout intestinal epithelial cell, RTgutGC, at hypothermic (4 °C), normothermic (14 and 18 °C) and hyperthermic (26 °C) temperatures. RTgutGC cultures remained viable for at least a week at all temperatures, although energy metabolism as measured with Alamar Blue (resazurin) was appreciably diminished at 4 °C. Over a 7-day incubation, HSP 70 levels in cultures remained steady at 4 °C, declined at 18 °C, and increased slightly at 26 °C. When 125 μM SeMet was present, cultures remained viable and HSP70 levels were neither increased nor decreased relative to control cultures, regardless of the temperature. With 500 and 1000 μM SeMet, cell viability was profoundly impaired after 7 days in cultures at 14, 18 and 26 °C but was unchanged at 4 °C. Overall the results suggest that only hypothermia modulated the response of rainbow trout cells to SeMet.
Collapse
Affiliation(s)
- John J Kim
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, Canada BC V2S 7M8
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1.
| |
Collapse
|
30
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
31
|
Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Bloch SR, Kim JJ, Pham PH, Hodson PV, Lee LEJ, Bols NC. Responses of an American eel brain endothelial-like cell line to selenium deprivation and to selenite, selenate, and selenomethionine additions in different exposure media. In Vitro Cell Dev Biol Anim 2017; 53:940-953. [PMID: 28940125 DOI: 10.1007/s11626-017-0196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
The effect of selenium deprivation and addition on the American eel brain endothelial cell line (eelB) was studied in three exposure media: complete growth medium (L15/FBS), serum-free medium (L15), and minimal medium (L15/ex). L15/ex contains only galactose and pyruvate and allowed the deprivation of selenium on cells to be studied. In L15/ex, without any obvious source of selenium, eelB cells survived for at least 7 d, formed capillary-like structures (CLS) on Matrigel, and migrated to heal wounds. Three selenium compounds were added to cultures: selenite, selenate, and selenomethionine (SeMet). Adding selenite or selenate to eelB cell cultures for 24 h caused dose-dependent declines in cell viability, regardless of the exposure media. Although varying with exposure media and viability end point, selenite was approximately 70-fold more cytotoxic than selenate. By contrast, 24 h exposures to either DL- or L-SeMet in the three media caused little or no cytotoxicity. However for 7 d exposures in L15/ex, DL- and L-SeMet were very cytotoxic, even at the lowest tested concentration of 31 μM. By contrast in L15 and L15/FBS, cytotoxicity was only observed with 500 and 1000 μM L-SeMet. In L15/FBS, eelB continued to migrate and form CLS in the presence of SeMet but at 500 μM, cell migration appeared stimulated. As judged from a colony-forming assay over 14 d in L15/FBS, 500 and 1000 μM DL- and L-SeMet inhibited cell proliferation. Overall, the responses of eel cells to selenium depended on the selenium form, concentration, and exposure media, with responses to SeMet being most dependent on exposure media.
Collapse
Affiliation(s)
- Sophia R Bloch
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - John J Kim
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peter V Hodson
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
33
|
Abstract
The relation between selenium and cancer has been one of the most hotly debated topics in human health over the last decades. Early observational studies reported an inverse relation between selenium exposure and cancer risk. Subsequently, randomized controlled trials showed that selenium supplementation does not reduce the risk of cancer and may even increase it for some types, including advanced prostate cancer and skin cancer. An increased risk of diabetes has also been reported. These findings have been consistent in the most methodologically sound trials, suggesting that the early observational studies were misleading. Other studies have investigated selenium compounds as adjuvant therapy for cancer. Though there is currently insufficient evidence regarding the utility and safety of selenium compounds for such treatments, this issue is worthy of further investigation. The study of selenium and cancer is complicated by the existence of a diverse array of organic and inorganic selenium compounds, each with distinct biological properties, and this must be taken into consideration in the interpretation of both observational and experimental human studies.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy; Boston University School of Public Health, Boston, MA, United States.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Cilloni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine M Crespi
- Jonsson Comprehensive Cancer Center, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Superoxide-hydrogen peroxide genetic imbalance modulates differentially the oxidative metabolism on human peripheral blood mononuclear cells exposed to seleno-L-methionine. Chem Biol Interact 2017; 273:18-27. [DOI: 10.1016/j.cbi.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/15/2022]
|
35
|
Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, Conte A, Sansone VA, Sabatelli M, Vinceti M. Elevated Levels of Selenium Species in Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients with Disease-Associated Gene Mutations. NEURODEGENER DIS 2017; 17:171-180. [PMID: 28478440 DOI: 10.1159/000460253] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although an increasing role of genetic susceptibility has been recognized, the role of environmental risk factors in amyotrophic lateral sclerosis (ALS) etiology is largely uncertain; among neurotoxic chemicals, epidemiological and biological plausibility has been provided for pesticides, the heavy metal lead, the metalloid selenium, and other persistent organic pollutants. Selenium involvement in ALS has been suggested on the basis of epidemiological studies, in vitro investigations, and veterinary studies in which selenium induced a selective toxicity against motor neurons. OBJECTIVE Hypothesizing a multistep pathogenic mechanism (genetic susceptibility and environmental exposure), we aimed to study selenium species in ALS patients carrying disease-associated gene mutations as compared to a series of hospital controls. METHODS Using advanced analytical techniques, we determined selenium species in cerebrospinal fluid sampled at diagnosis in 9 ALS patients carrying different gene mutations (C9ORF72, SOD1, FUS, TARDBP, ATXN2, and TUBA4A) compared to 42 controls. RESULTS In a patient with the tubulin-related TUBA4A mutation, we found highly elevated levels (in μg/L) of glutathione-peroxidase-bound selenium (32.8 vs. 1.0) as well as increased levels of selenoprotein-P-bound selenium (2.4 vs. 0.8), selenite (1.8 vs. 0.1), and selenate (0.9 vs. 0.1). In the remaining ALS patients, we detected elevated selenomethionine-bound selenium levels (0.38 vs. 0.06). CONCLUSIONS Selenium compounds can impair tubulin synthesis and the cytoskeleton structure, as do tubulin-related gene mutations. The elevated selenium species levels in the TUBA4A patient may have a genetic etiology and/or represent a pathogenic pathway through which this mutation favors disease onset, though unmeasured confounding cannot be excluded. The elevated selenomethionine levels in the other patients are also of interest due to the toxicity of this nonphysiological selenium species. Our study is the first to assess selenium exposure in genetic ALS, suggesting an interaction between this environmental factor and genetics in triggering disease onset.
Collapse
Affiliation(s)
- Jessica Mandrioli
- Department of Neurosciences, St. Agostino-Estense Hospital and Local Health Unit of Modena, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vinceti M, Filippini T, Cilloni S, Bargellini A, Vergoni AV, Tsatsakis A, Ferrante M. Health risk assessment of environmental selenium: Emerging evidence and challenges (Review). Mol Med Rep 2017; 15:3323-3335. [PMID: 28339083 PMCID: PMC5428396 DOI: 10.3892/mmr.2017.6377] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/22/2022] Open
Abstract
New data have been accumulated in the scientific literature in recent years which allow a more adequate risk assessment of selenium with reference to human health. This new evidence comes from environmental studies, carried out in populations characterized by abnormally high or low selenium intakes, and from high-quality and large randomized controlled trials with selenium recently carried out in the US and in other countries. These trials have consistently shown no beneficial effect on cancer and cardiovascular risk, and have yielded indications of unexpected toxic effects of selenium exposure. Overall, these studies indicate that the minimal amount of environmental selenium which is source of risk to human health is much lower than anticipated on the basis of older studies, since toxic effects were shown at levels of intake as low as around 260 µg/day for organic selenium and around 16 µg/day for inorganic selenium. Conversely, populations with average selenium intake of less than 13–19 µg/day appear to be at risk of a severe cardiomyopathy, Keshan disease. Overall, there is the need to reconsider the selenium standards for dietary intake, drinking water, outdoor and indoor air levels, taking into account the recently discovered adverse health effects of low-dose selenium overexposure, and carefully assessing the significance of selenium-induced proteomic changes.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Cilloni
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Bargellini
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Vergoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, Catania, Italy
| |
Collapse
|
37
|
Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep 2017; 7:44761. [PMID: 28303947 PMCID: PMC5355996 DOI: 10.1038/srep44761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022] Open
Abstract
Selenomethionine, a dietary supplement with beneficial health effects, becomes toxic if taken in excess. To gain insight into the mechanisms of action of selenomethionine, we screened a collection of ≈5900 Saccharomyces cerevisiae mutants for sensitivity or resistance to growth-limiting amounts of the compound. Genes involved in protein degradation and synthesis were enriched in the obtained datasets, suggesting that selenomethionine causes a proteotoxic stress. We demonstrate that selenomethionine induces an accumulation of protein aggregates by a mechanism that requires de novo protein synthesis. Reduction of translation rates was accompanied by a decrease of protein aggregation and of selenomethionine toxicity. Protein aggregation was supressed in a ∆cys3 mutant unable to synthetize selenocysteine, suggesting that aggregation results from the metabolization of selenomethionine to selenocysteine followed by translational incorporation in the place of cysteine. In support of this mechanism, we were able to detect random substitutions of cysteinyl residues by selenocysteine in a reporter protein. Our results reveal a novel mechanism of toxicity that may have implications in higher eukaryotes.
Collapse
|
38
|
Karunasinghe N, Zhu S, Ferguson LR. Benefits of Selenium Supplementation on Leukocyte DNA Integrity Interact with Dietary Micronutrients: A Short Communication. Nutrients 2016; 8:E249. [PMID: 27128937 PMCID: PMC4882662 DOI: 10.3390/nu8050249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023] Open
Abstract
A male cohort from New Zealand has previously shown variability in Selenium (Se) supplementation effects on measured biomarkers. The current analysis is to understand the reasons for variability of the H₂O₂-induced DNA damage recorded after Se supplementation. We have looked at the variation of demographic, lifestyle, medication, genetic and dietary factors and biomarkers measured at baseline and post-supplementation in these two extreme subgroups A and B. Group A showed increased H₂O₂-induced DNA damage and group B showed decreased damage after Se supplementation. We have also considered correlations of biomarkers and dietary factors in the complete dataset. The glutathione peroxidase (GPx) activity and DNA damage were significantly lower at post-supplementation in Group B compared to Group A. Post-supplementation, Group B showed a significant reduction in the GPx activity, while Group A showed a significant increase in DNA damage compared to baseline levels. Dietary methionine intake was significantly higher and folate intake was significantly lower in Group B compared to Group A. Se supplementation significantly increased the caspase-cleaved keratin 18 levels in both groups, indicating increased apoptotic potential of this supplement. Parameter correlation with the complete dataset showed dietary methionine to have a significant negative correlation with H₂O₂-induced DNA damage post-supplementation. The data suggest that Se supplementation is beneficial for the leukocyte DNA integrity only in interaction with the dietary methionine and folate intake.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Shuotun Zhu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
39
|
Lazo-Vélez MA, Guajardo-Flores D, Mata-Ramírez D, Gutiérrez-Uribe JA, Serna-Saldivar SO. Characterization and Quantitation of Triterpenoid Saponins in Raw and SproutedChenopodium berlandierispp. (Huauzontle) Grains Subjected to Germination with or without Selenium Stress Conditions. J Food Sci 2015; 81:C19-26. [DOI: 10.1111/1750-3841.13174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Marco A. Lazo-Vélez
- Centro de Biotecnología-FEMSA, Escuela de Biotecnología y Alimentos; Tecnológico de Monterrey-Campus Monterrey; Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey N.L. México
| | - Daniel Guajardo-Flores
- Centro de Biotecnología-FEMSA, Escuela de Biotecnología y Alimentos; Tecnológico de Monterrey-Campus Monterrey; Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey N.L. México
| | - Daniel Mata-Ramírez
- Centro de Biotecnología-FEMSA, Escuela de Biotecnología y Alimentos; Tecnológico de Monterrey-Campus Monterrey; Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey N.L. México
| | - Janet A. Gutiérrez-Uribe
- Centro de Biotecnología-FEMSA, Escuela de Biotecnología y Alimentos; Tecnológico de Monterrey-Campus Monterrey; Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey N.L. México
| | - Sergio O. Serna-Saldivar
- Centro de Biotecnología-FEMSA, Escuela de Biotecnología y Alimentos; Tecnológico de Monterrey-Campus Monterrey; Av. Eugenio Garza Sada 2501 Sur C.P. 64849 Monterrey N.L. México
| |
Collapse
|