1
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
2
|
Rujas E, Apellániz B, Torralba J, Andreu D, Caaveiro JMM, Wang S, Lu S, Nieva JL. Liposome-based peptide vaccines to elicit immune responses against the membrane active domains of the HIV-1 Env glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184235. [PMID: 37793559 DOI: 10.1016/j.bbamem.2023.184235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
The fusion peptide (FP) and the Trp-rich membrane proximal external region (MPER) display membrane activity during HIV-1 fusion. These domains are highly conserved in the envelope glycoprotein (Env) and, consequently, antibodies targeting these regions block entry of divergent HIV strains and isolates into target cells. With the aim of recovering concurrent responses against the membrane-active Env domains, we have produced hybrid peptides that connect FP and MPER sequences via flexible aminohexanoic acid tethers, and tested their potential as immunogens. We demonstrate that liposome-based formulations containing FP-MPER hybrid peptides could elicit in rabbits, antibodies with the binding sequence specificity of neutralizing antibodies that engage with the N-terminal MPER sub-region. Determination of the thermodynamic parameters of binding using the Fab 2F5 as an N-terminal MPER antibody model, revealed that the hydrophobic interaction surface for epitope engagement appears to be optimal in the FP-MPER hybrid. In general, our data support: i) the use of liposomes as carriers for membrane active peptides; ii) the capacity of these liposome-based vaccines to focus humoral responses to N-terminal MPER epitopes; and iii) the need to include lipid membranes in immunogens to elicit such specific responses.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Jose L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
3
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Torralba J, de la Arada I, Partida-Hanon A, Rujas E, Arribas M, Insausti S, Valotteau C, Valle J, Andreu D, Caaveiro JMM, Jiménez MA, Apellániz B, Redondo-Morata L, Nieva JL. Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope. Commun Biol 2022; 5:1265. [DOI: 10.1038/s42003-022-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractAntibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.
Collapse
|
5
|
Rujas E, Leaman DP, Insausti S, Carravilla P, García-Porras M, Largo E, Morillo I, Sánchez-Eugenia R, Zhang L, Cui H, Iloro I, Elortza F, Julien JP, Eggeling C, Zwick MB, Caaveiro JM, Nieva JL. Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. iScience 2021; 24:102987. [PMID: 34505005 PMCID: PMC8413895 DOI: 10.1016/j.isci.2021.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 are frequently associated with the presence of autoreactivity/polyreactivity, a property that can limit their use as therapeutic agents. The bnAb 4E10, targeting the conserved Membrane proximal external region (MPER) of HIV-1, displays almost pan-neutralizing activity across globally circulating HIV-1 strains but exhibits nonspecific off-target interactions with lipid membranes. The hydrophobic apex of the third complementarity-determining region of the heavy chain (CDRH3) loop, which is essential for viral neutralization, critically contributes to this detrimental effect. Here, we have replaced the aromatic/hydrophobic residues from the apex of the CDRH3 of 4E10 with a single aromatic molecule through chemical modification to generate a variant that preserves the neutralization potency and breadth of 4E10 but with reduced autoreactivity. Collectively, our study suggests that the localized accumulation of aromaticity by chemical modification provides a pathway to ameliorate the adverse effects triggered by the CDRH3 of anti-HIV-1 MPER bnAbs.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Daniel P. Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Miguel García-Porras
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Izaskun Morillo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Michael B. Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose M.M. Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - José L. Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
6
|
Integrated in Silico and Experimental Approach towards the Design of a Novel Recombinant Protein Containing an Anti-HER2 scFv. Int J Mol Sci 2021; 22:ijms22073547. [PMID: 33805556 PMCID: PMC8037128 DOI: 10.3390/ijms22073547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Biological therapies, such as recombinant proteins, are nowadays amongst the most promising approaches towards precision medicine. One of the most innovative methodologies currently available aimed at improving the production yield of recombinant proteins with minimization of costs relies on the combination of in silico studies to predict and deepen the understanding of the modified proteins with an experimental approach. The work described herein aims at the design and production of a biomimetic vector containing the single-chain variable domain fragment (scFv) of an anti-HER2 antibody fragment as a targeting motif fused with HIV gp41. Molecular modeling and docking studies were performed to develop the recombinant protein sequence. Subsequently, the DNA plasmid was produced and HEK-293T cells were transfected to evaluate the designed vector. The obtained results demonstrated that the plasmid construction is robust and can be expressed in the selected cell line. The multidisciplinary integrated in silico and experimental strategy adopted for the construction of a recombinant protein which can be used in HER2+-targeted therapy paves the way towards the production of other therapeutic proteins in a more cost-effective way.
Collapse
|
7
|
de la Arada I, Torralba J, Tascón I, Colom A, Ubarretxena-Belandia I, Arrondo JLR, Apellániz B, Nieva JL. Conformational plasticity underlies membrane fusion induced by an HIV sequence juxtaposed to the lipid envelope. Sci Rep 2021; 11:1278. [PMID: 33446748 PMCID: PMC7809034 DOI: 10.1038/s41598-020-80156-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/13/2020] [Indexed: 01/05/2023] Open
Abstract
Envelope glycoproteins from genetically-divergent virus families comprise fusion peptides (FPs) that have been posited to insert and perturb the membranes of target cells upon activation of the virus-cell fusion reaction. Conserved sequences rich in aromatic residues juxtaposed to the external leaflet of the virion-wrapping membranes are also frequently found in viral fusion glycoproteins. These membrane-proximal external regions (MPERs) have been implicated in the promotion of the viral membrane restructuring event required for fusion to proceed, hence, proposed to comprise supplementary FPs. However, it remains unknown whether the structure–function relationships governing canonical FPs also operate in the mirroring MPER sequences. Here, we combine infrared spectroscopy-based approaches with cryo-electron microscopy to analyze the alternating conformations adopted, and perturbations generated in membranes by CpreTM, a peptide derived from the MPER of the HIV-1 Env glycoprotein. Altogether, our structural and morphological data support a cholesterol-dependent conformational plasticity for this HIV-1 sequence, which could assist cell-virus fusion by destabilizing the viral membrane at the initial stages of the process.
Collapse
Affiliation(s)
- Igor de la Arada
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Adai Colom
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L R Arrondo
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006, Vitoria-Gasteiz, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain. .,Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
| |
Collapse
|
8
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
9
|
Selection and immune recognition of HIV-1 MPER mimotopes. Virology 2020; 550:99-108. [PMID: 32980676 DOI: 10.1016/j.virol.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by several neutralizing antibodies (NAbs) and is of interest for vaccine design. In this study, we identified novel MPER peptide mimotopes and evaluated their reactivity with HIV + plasma antibodies to characterize the diversity of the immune responses to MPER during natural infection. We utilized phage display technology to generate novel mimotopes that fit antigen-binding sites of MPER NAbs 4E10, 2F5 and Z13. Plasma antibodies from 10 HIV + patients were mapped by phage immunoprecipitation, to identify unique patient MPER binding profiles that were distinct from, and overlapping with, those of MPER NAbs. 4E10 mimotope binding profiles correlated with plasma neutralization of HIV-2/HIV-1 MPER chimeric virus, and with overall plasma neutralization breadth and potency. When administered as vaccines, 4E10 mimotopes elicited low titer NAb responses in mice. HIV mimotopes may be useful for detailed analysis of plasma antibody specificity.
Collapse
|
10
|
Torralba J, de la Arada I, Carravilla P, Insausti S, Rujas E, Largo E, Eggeling C, Arrondo JLR, Apellániz B, Nieva JL. Cholesterol Constrains the Antigenic Configuration of the Membrane-Proximal Neutralizing HIV-1 Epitope. ACS Infect Dis 2020; 6:2155-2168. [PMID: 32584020 DOI: 10.1021/acsinfecdis.0c00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The envelope glycoprotein (Env) enables HIV-1 cell entry through fusion of host-cell and viral membranes induced by the transmembrane subunit gp41. Antibodies targeting the C-terminal sequence of the membrane-proximal external region (C-MPER) block the fusogenic activity of gp41 and achieve neutralization of divergent HIV-1 strains and isolates. Thus, recreating the structure that generates broadly neutralizing C-MPER antibodies during infection is a major goal in HIV vaccine development. Here, we have reconstituted a peptide termed CpreTM-TMD in a membrane environment. This peptide contains the C-MPER epitope and the minimum TMD residues required for the anchorage of the Env glycoprotein to the viral membrane. In addition, we have used antibody 10E8 variants to gauge the antigenic configuration attained by CpreTM-TMD as a function of the membrane cholesterol content, a functional determinant of the HIV envelope and liposome-based vaccines. Differential binding of the 10E8 variants and the trend of the IgG responses recovered from rabbits immunized with liposome-peptide formulations, suggested that cholesterol may restrict 10E8 accessibility to the C-MPER epitope. Our data ruled out the destabilization of the lipid bilayer architecture in CpreTM-TMD-containing membranes, and pointed to the perturbation of the helical conformation by lipid packing as the cause of the antigenic configuration loss induced by cholesterol. Overall, our results provide additional insights into the structural basis of the Env complex anchoring to membranes, and suggest new approaches to the design of effective immunogens directed against the near pan-neutralizing HIV-1 epitope C-MPER.
Collapse
Affiliation(s)
- Johana Torralba
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Sara Insausti
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Medicine and Odontology Faculty, University of Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, U.K
| | - José L R Arrondo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
11
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
12
|
Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W. Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe 2019; 26:623-637.e8. [PMID: 31653484 PMCID: PMC6854463 DOI: 10.1016/j.chom.2019.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022]
Abstract
Potent and broadly neutralizing antibodies (bnAbs) are the hallmark of HIV-1 protection by vaccination. The membrane-proximal external region (MPER) of the HIV-1 gp41 fusion protein is targeted by the most broadly reactive HIV-1 neutralizing antibodies. Here, we examine the structural and molecular mechansims of neutralization by anti-MPER bnAb, LN01, which was isolated from lymph-node-derived germinal center B cells of an elite controller and exhibits broad neutralization breadth. LN01 engages both MPER and the transmembrane (TM) region, which together form a continuous helix in complex with LN01. The tilted TM orientation allows LN01 to interact simultaneously with the peptidic component of the MPER epitope and membrane via two specific lipid binding sites of the antibody paratope. Although LN01 carries a high load of somatic mutations, most key residues interacting with the MPER epitope and lipids are germline encoded, lending support for the LN01 epitope as a candidate for lineage-based vaccine development. bNAb LN01 neutralizes 92% of a 118-strain virus panel LN01 targets the HIV-1 gp41 MPER, the TM region, and lipids LN01-complexed MPER forms a continuous helix with TM Most LN01 paratope residues interacting with MPER-TM and lipids are germline encoded
Collapse
Affiliation(s)
- Dora Pinto
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Craig Fenwick
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Serafima Guseva
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - François Dehez
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sonia Barbieri
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Andrea Minola
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | | | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Maciej Tarkowski
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy
| | - Olivier Schwartz
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Timothée Bruel
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Jérémy Dufloo
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland.
| | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France.
| |
Collapse
|
13
|
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Proc Natl Acad Sci U S A 2019; 116:22556-22566. [PMID: 31624123 DOI: 10.1073/pnas.1912427116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.
Collapse
|
14
|
Lee M, Morgan CA, Hong M. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. J Biol Chem 2019; 294:14732-14744. [PMID: 31409642 DOI: 10.1074/jbc.ra119.009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
The HIV envelope glycoprotein mediates virus entry into target cells by fusing the virus lipid envelope with the cell membrane. This process requires large-scale conformational changes of the fusion protein gp41. Current understanding of the mechanisms with which gp41 induces membrane merger is limited by the fact that the hydrophobic N-terminal fusion peptide (FP) and C-terminal transmembrane domain (TMD) of the protein are challenging to characterize structurally in the lipid bilayer. Here we have expressed a gp41 construct that contains both termini, including the FP, the fusion peptide-proximal region (FPPR), the membrane-proximal external region (MPER), and the TMD. These hydrophobic domains are linked together by a shortened water-soluble ectodomain. We reconstituted this "short NC" gp41 into a virus-mimetic lipid membrane and conducted solid-state NMR experiments to probe the membrane-bound conformation and topology of the protein. 13C chemical shifts indicate that the C-terminal MPER-TMD is predominantly α-helical, whereas the N-terminal FP-FPPR exhibits β-sheet character. Water and lipid 1H polarization transfer to the protein revealed that the TMD is well-inserted into the lipid bilayer, whereas the FPPR and MPER are exposed to the membrane surface. Importantly, correlation signals between the FP-FPPR and the MPER are observed, providing evidence that the ectodomain is sufficiently collapsed to bring the N- and C-terminal hydrophobic domains into close proximity. These results support a hemifusion-like model of the short NC gp41 in which the ectodomain forms a partially folded hairpin that places the FPPR and MPER on the opposing surfaces of two lipid membranes.
Collapse
Affiliation(s)
- Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Chloe A Morgan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
15
|
Gorai B, Das S, Maiti PK. Prediction and validation of HIV-1 gp41 ecto-transmembrane domain post-fusion trimeric structure using molecular modeling. J Biomol Struct Dyn 2019; 38:2592-2603. [DOI: 10.1080/07391102.2019.1635916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biswajit Gorai
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Satyabrata Das
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabal K. Maiti
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Nandy A, Dey S, Roy P, Basak SC. Epidemics and Peptide Vaccine Response: A Brief Review. Curr Top Med Chem 2019; 18:2202-2208. [PMID: 30417788 DOI: 10.2174/1568026618666181112144745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 02/01/2023]
Abstract
We briefly review the situations arising out of epidemics that erupt rather suddenly, threatening life and livelihoods of humans. Ebola, Zika and the Nipah virus outbreaks are recent examples where the viral epidemics have led to considerably high degree of fatalities or debilitating consequences. The problems are accentuated by a lack of drugs or vaccines effective against the new and emergent viruses, and the inordinate amount of temporal and financial resources that are required to combat the novel pathogens. Progress in computational, biological and informational sciences have made it possible to consider design of synthetic vaccines that can be rapidly developed and deployed to help stem the damages. In this review, we consider the pros and cons of this new paradigm and suggest a new system where the manufacturing process can be decentralized to provide more targeted vaccines to meet the urgent needs of protection in case of a rampaging epidemic.
Collapse
Affiliation(s)
- Ashesh Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Sumanta Dey
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Proyasha Roy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Subhash C Basak
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1802 Stanford Avenue, Duluth, MN 5581, United States
| |
Collapse
|
17
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
18
|
Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions. J Virol 2018; 92:JVI.02249-17. [PMID: 29386285 DOI: 10.1128/jvi.02249-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 11/20/2022] Open
Abstract
The 10E8 antibody targets a helical epitope in the membrane-proximal external region (MPER) and transmembrane domain (TMD) of the envelope glycoprotein (Env) subunit gp41 and is among the broadest known neutralizing antibodies against HIV-1. Accordingly, this antibody and its mechanism of action valuably inform the design of effective vaccines and immunotherapies. 10E8 exhibits unusual adaptations to attain specific, high-affinity binding to the MPER at the viral membrane interface. Reversing the charge of the basic paratope surface (from net positive to net negative) reportedly lowered its neutralization potency. Here, we hypothesized that by increasing the net positive charge in similar polar surface patches, the neutralization potency of the antibody may be enhanced. We found that an increased positive charge at this paratope surface strengthened an electrostatic interaction between the antibody and lipid bilayers, enabling 10E8 to interact spontaneously with membranes. Notably, the modified 10E8 antibody did not gain any apparent polyreactivity and neutralized virus with a significantly greater potency. Binding analyses indicated that the optimized 10E8 antibody bound with a higher affinity to the epitope peptide anchored in lipid bilayers and to Env spikes on virions. Overall, our data provide a proof of principle for the rational optimization of 10E8 via manipulation of its interaction with the membrane element of its epitope. However, the observation that a similar mutation strategy did not affect the potency of the first-generation anti-MPER antibody 4E10 shows possible limitations of this principle. Altogether, our results emphasize the crucial role played by the viral membrane in the antigenicity of the MPER-TMD of HIV-1.IMPORTANCE The broadly neutralizing antibody 10E8 blocks infection by nearly all HIV-1 isolates, a capacity which vaccine design seeks to reproduce. Engineered versions of this antibody also represent a promising treatment for HIV infection by passive immunization. Understanding its mechanism of action is therefore important to help in developing effective vaccines and biologics to combat HIV/AIDS. 10E8 engages its helical MPER epitope where the base of the envelope spike submerges into the viral membrane. To enable this interaction, this antibody evolved an unusual property: the ability to interact with the membrane surface. Here, we provide evidence that 10E8 can be made more effective by enhancing its interactions with membranes. Our findings strengthen the idea that to elicit antibodies similar to 10E8, vaccines must reproduce the membrane environment where these antibodies perform their function.
Collapse
|
19
|
Perrin J, Bary A, Vernay A, Cosson P. Role of the HIV-1 envelope transmembrane domain in intracellular sorting. BMC Cell Biol 2018; 19:3. [PMID: 29544440 PMCID: PMC5856207 DOI: 10.1186/s12860-018-0153-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Background The envelope protein of lentiviruses are type I transmembrane proteins, and their transmembrane domain contains conserved potentially charged residues. This highly unusual feature would be expected to cause endoplasmic reticulum (ER) localization. The aim of this study was to determine by which means the HIV-1 Env protein is transported to the cell surface although its transmembrane domain contains a conserved arginine residue. Results We expressed various chimeric proteins and analyzed the influence of their transmembrane domain on their intracellular localization. The transmembrane domain of the HIV-1 Env protein does not cause ER retention. This is not due to the presence of conserved glycine residues, or to the position of the arginine residue, but to the length of the transmembrane domain. A shortened version of the Env transmembrane domain causes arginine-dependent ER targeting. Remarkably, the transmembrane domain of the HIV-1 Env protein, although it does not confer ER retention, interacts efficiently with negatively charged residues in the membrane. Conclusion These results suggest that the intrinsic properties of the HIV-1 Env transmembrane domain allow the protein to escape ER-retention mechanisms, while maintaining its ability to interact with cellular proteins and to influence cellular physiology.
Collapse
Affiliation(s)
- Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| | - Aurélie Bary
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| |
Collapse
|
20
|
Oakes V, Torralba J, Rujas E, Nieva JL, Domene C, Apellaniz B. Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1259-1271. [PMID: 29477358 DOI: 10.1016/j.bbamem.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
The 10E8 antibody achieves near-pan neutralization of HIV-1 by targeting the remarkably conserved gp41 membrane-proximal external region (MPER) and the connected transmembrane domain (TMD) of the HIV-1 envelope glycoprotein (Env). Thus, recreating the structure that generates 10E8-like antibodies is a major goal of the rational design of anti-HIV vaccines. Unfortunately, high-resolution information of this segment in the native Env is lacking, limiting our understanding of the behavior of the crucial 10E8 epitope residues. In this report, two sequences, namely, MPER-TMD1 (gp41 residues 671-700) and MPER-TMD2 (gp41 residues 671-709) were compared both experimentally and computationally, to assess the TMD as a potential membrane integral scaffold for the 10E8 epitope. These sequences were selected to represent a minimal (MPER-TMD1) or full-length (MPER-TMD2) TMD membrane anchor according to mutagenesis results reported by Yue et al. (2009) J. Virol. 83, 11,588. Immunochemical assays revealed that MPER-TMD1, but not MPER-TMD2, effectively exposed the MPER C-terminal stretch, harboring the 10E8 epitope on the surface of phospholipid bilayers containing a cholesterol concentration equivalent to that of the viral envelope. Molecular dynamics simulations, using the recently resolved TMD trimer structure combined with the MPER in a cholesterol-enriched model membrane confirmed these results and provided an atomistic mechanism of epitope exposure which revealed that TMD truncation at position A700 combined with N-terminal addition of lysine residues positively impacts epitope exposure. Overall, these results provide crucial insights into the design of effective MPER-TMD derived immunogens.
Collapse
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London SE1 1DB, UK; Department of Chemistry, 1 South Building, Claverton Down Road, University of Bath, Bath BA2 7AY, UK
| | - Johana Torralba
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Carmen Domene
- Department of Chemistry, 1 South Building, Claverton Down Road, University of Bath, Bath BA2 7AY, UK; Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, UK.
| | - Beatriz Apellaniz
- Biofisika Institute (CSIC, UPV/EHU), Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
21
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Carravilla P, Nieva JL. HIV antivirals: targeting the functional organization of the lipid envelope. Future Virol 2018. [DOI: 10.2217/fvl-2017-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Most of the surface of the lipid bilayer covering the human immunodeficiency virus type 1 (HIV-1) particle is directly accessible from the aqueous medium. Its peculiar chemical composition and physical properties appear to be critical for infection and, therefore, may comprise a target for selective antiviral activity. The HIV-1 membrane is enriched in raft-type lipids and also displays aminophospholipids on its external leaflet. We contend here that a great deal of membrane-active compounds described to block HIV-1 infection can do so by following a common mechanism of action: alteration of the lateral heterogeneity that supports the functional organization of the lipid envelope. The confirmation of this hypothesis could lay new foundations for the rational development of compounds with anti-HIV activity.
Collapse
Affiliation(s)
- Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU) & Department of Biochemistry & Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU) & Department of Biochemistry & Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
23
|
Serrano S, Huarte N, Rujas E, Andreu D, Nieva JL, Jiménez MA. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry 2017; 56:5503-5511. [PMID: 28930470 DOI: 10.1021/acs.biochem.7b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University , Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José L Nieva
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
24
|
Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc Natl Acad Sci U S A 2017; 114:E7987-E7996. [PMID: 28874543 DOI: 10.1073/pnas.1708052114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM-FL interaction in EBOV entry and fusion.
Collapse
|
25
|
Carravilla P, Cruz A, Martin-Ugarte I, Oar-Arteta IR, Torralba J, Apellaniz B, Pérez-Gil J, Requejo-Isidro J, Huarte N, Nieva JL. Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes. Biophys J 2017; 113:1301-1310. [PMID: 28797705 DOI: 10.1016/j.bpj.2017.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Membrane fusion induced by the envelope glycoprotein enables the intracellular replication of HIV-1; hence, this process constitutes a major target for antiretroviral compounds. It has been proposed that peptides having propensity to interact with membrane interfaces might exert broad antiviral activity against enveloped viruses. To test this hypothesis, in this contribution we have analyzed the antiviral effects of peptides derived from the membrane-proximal external region and the transmembrane domain of the envelope glycoprotein subunit gp41, which display different degrees of interfacial hydrophobicity. Our data support the virucidal activity of a region that combines hydrophobic-at-interface membrane-proximal external region aromatics with hydrophobic residues of the transmembrane domain, and contains the absolutely conserved 679LWYIK/R683 sequence, proposed to embody a "cholesterol recognition/interaction amino acid consensus" motif. We further sought to correlate the antiviral activity of these peptides and their effects on membranes that mimic lipid composition and biophysical properties of the viral envelope. The data revealed that peptides endowed with virucidal activity were membrane active and induced permeabilization and fusion of virus-like lipid vesicles. In addition, they modulated lipid packing and miscibility of laterally segregated liquid domains, two properties that depend on the high cholesterol content of the viral membrane. Thus, the overall experimental evidence is consistent with a pattern of HIV inhibition that involves direct alteration of the physical chemistry of the virus membrane. Furthermore, the sequence-dependent effects observed might guide the development of new virucidal peptides.
Collapse
Affiliation(s)
- Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Itziar Martin-Ugarte
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Itziar R Oar-Arteta
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Johanna Torralba
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Beatriz Apellaniz
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Requejo-Isidro
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
26
|
Cerutti N, Loredo-Varela JL, Caillat C, Weissenhorn W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr Opin HIV AIDS 2017; 12:250-256. [PMID: 28422789 DOI: 10.1097/coh.0000000000000364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW We summarize the latest research on the progress to understand the neutralizing epitopes present within the membrane proximal external region (MPER) of the HIV-1 fusion protein subunit gp41. RECENT FINDINGS The HIV-1 fusion protein subunit gp41 contains a highly conserved sequence that is essential for membrane fusion and targeted by broadly neutralizing antibodies such as 2F5, 4E10, Z13e1, and 10E8. These antibodies recognize a linear gp41 epitope with high affinity, but require additional hydrophobic sequences present in their heavy chain CDR3 for neutralization. Recent structural studies on mAbs 4E10 and 10E8 provide molecular details for specific interactions with lipids and implicate part of the transmembrane region as the relevant 10E8 epitope. Although many different approaches have been applied to engineer gp41 immunogens that can induce broadly neutralizing antibodies directed toward MPER, only modest success has yet been reported. SUMMARY The new structural details on the complex gp41-lipidic epitope will spur new approaches to design gp41-MPER immunogens that might induce broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Nichole Cerutti
- aUniversity Grenoble Alpes bCEA cCNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | |
Collapse
|
27
|
Rujas E, Insausti S, García-Porras M, Sánchez-Eugenia R, Tsumoto K, Nieva JL, Caaveiro JMM. Functional Contacts between MPER and the Anti-HIV-1 Broadly Neutralizing Antibody 4E10 Extend into the Core of the Membrane. J Mol Biol 2017; 429:1213-1226. [PMID: 28300601 DOI: 10.1016/j.jmb.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
The exceptional breadth of broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the transmembrane protein gp41 makes this class of antibodies an ideal model to design HIV vaccines. From a practical point of view, however, the preparation of vaccines eliciting bNAbs is still a major roadblock that limits their clinical application. Fresh mechanistic insights are necessary to develop more effective strategies. In particular, the function of the unusually long complementarity-determining region three of the heavy chain (CDRH3) of 4E10, an anti-MPER bNAb, is an open question that fascinates researchers in the field. Residues comprising the apex region are dispensable for engagement of the epitope in solution; still, their single mutation profoundly impairs the neutralization capabilities of the antibody. Since this region is very hydrophobic, it has been proposed that the apex is essential for anchoring the antibody to the viral membrane where MPER resides. Herein, we have critically examined this idea using structural, biophysical, biochemical, and cell-based approaches. Our results demonstrate that the apex region is not just a "greasy" spot merely increasing the affinity of the antibody for the membrane. We demonstrate the three-dimensional engagement of the apex region of the CDRH3 with the conglomerate of gp41 epitope and membrane lipids as a means of effective binding and neutralization of the virus. This mechanism of recognition suggests a standard route of antibody ontogeny. Therefore, we need to focus our efforts on recreating a more realistic MPER/lipid immunogen in order to generate more effective anti-HIV-1 vaccines.
Collapse
Affiliation(s)
- Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, Bilbao 48080, Spain; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sara Insausti
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, Bilbao 48080, Spain
| | - Miguel García-Porras
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, Bilbao 48080, Spain
| | - Rubén Sánchez-Eugenia
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, Bilbao 48080, Spain
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, Bilbao 48080, Spain.
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan; Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
28
|
Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathog 2017; 13:e1006212. [PMID: 28225819 PMCID: PMC5338832 DOI: 10.1371/journal.ppat.1006212] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/06/2017] [Accepted: 02/02/2017] [Indexed: 01/26/2023] Open
Abstract
Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target. However, the MPER is proximal to the viral membrane and may be laterally inserted into the membrane in the Env prefusion form. Nevertheless, 10E8 has not been reported to have significant lipid-binding reactivity. Here we report x-ray structures of lipid complexes with 10E8 and a scaffolded MPER construct and mutagenesis studies that provide evidence that the 10E8 epitope is composed of both MPER and lipid. 10E8 engages lipids through a specific lipid head group interaction site and a basic and polar surface on the light chain. In the model that we constructed, the MPER would then be essentially perpendicular to the virion membrane during 10E8 neutralization of HIV-1. As the viral membrane likely also plays a role in selecting for the germline antibody as well as size and residue composition of MPER antibody complementarity determining regions, the identification of lipid interaction sites and the MPER orientation with regard to the viral membrane surface during 10E8 engagement can be of great utility for immunogen and therapeutic design. The trimeric Env glycoprotein located on HIV surface is the target of broadly neutralizing antibodies and is the focus of vaccine and therapeutic approaches to prevent HIV infection. Structural studies with HIV Env trimers have shed light on the complete epitopes of several broadly neutralizing antibodies. However, structural determination of the complete epitopes of the highly cross-reactive MPER antibodies has been technically difficult due to the viral membrane component and that these epitopes are probably only exposed transiently after Env engages CD4. In this study, we structurally characterize the interaction of the broadest and most potent MPER-targeting antibody, 10E8, with viral membrane lipids and scaffolded MPER and propose how 10E8 approaches the MPER-viral membrane epitope during neutralization. Our results indicate that 10E8 interacts with the viral membrane via its light chain and engages MPER in an upright orientation with respect to the HIV-1 membrane. These findings are of interest for design of HIV-1 vaccines and therapeutics.
Collapse
|
29
|
Rujas E, Caaveiro JMM, Insausti S, García-Porras M, Tsumoto K, Nieva JL. Peripheral Membrane Interactions Boost the Engagement by an Anti-HIV-1 Broadly Neutralizing Antibody. J Biol Chem 2017; 292:5571-5583. [PMID: 28213514 DOI: 10.1074/jbc.m117.775429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
The 4E10 antibody displays an extreme breadth of HIV-1 neutralization and therefore constitutes a suitable model system for structure-guided vaccine design and immunotherapeutics against AIDS. In this regard, the relevance of autoreactivity with membrane lipids for the biological function of this antibody is still a subject of controversy. To address this dispute, herein we have compared the membrane partitioning ability of the 4E10 antibody and several of its variants, which were mutated at the region of the paratope surface in contact with the membrane interface. We first employed a physical separation approach (vesicle flotation) and subsequently carried out quantitative fluorescence measurements in an intact system (spectroscopic titration), using 4E10 Fab labeled with a polarity-sensitive fluorescent probe. Moreover, recognition of epitope peptide in membrane was demonstrated by photo-cross-linking assays using a Fab that incorporated the genetically encoded unnatural amino acid p-benzoylphenylalanine. The experimental data ruled out that the proposed stereospecific recognition of viral lipids was necessary for the function of the antibody. In contrast, our data suggest that nonspecific electrostatic interactions between basic residues of 4E10 and acidic phospholipids in the membranes contribute to the observed biological function. Moreover, the energetics of membrane partitioning indicated that 4E10 behaves as a peripheral membrane protein, tightening the binding to the ligand epitope inserted in the viral membrane. The implications of these findings for the natural production and biological function of this antibody are discussed.
Collapse
Affiliation(s)
- Edurne Rujas
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and.,the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - José M M Caaveiro
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - Sara Insausti
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| | - Miguel García-Porras
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| | - Kouhei Tsumoto
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - José L Nieva
- From the Biofisika Institute (Consejo Superior de Investigaciones Científicas, UPV/EHU), and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain and
| |
Collapse
|
30
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
31
|
Rujas E, Caaveiro JMM, Partida-Hanon A, Gulzar N, Morante K, Apellániz B, García-Porras M, Bruix M, Tsumoto K, Scott JK, Jiménez MÁ, Nieva JL. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Sci Rep 2016; 6:38177. [PMID: 27905530 PMCID: PMC5131266 DOI: 10.1038/srep38177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671–687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER.
Collapse
Affiliation(s)
- Edurne Rujas
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Angélica Partida-Hanon
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Naveed Gulzar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Koldo Morante
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Beatriz Apellániz
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Marta Bruix
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jamie K Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - M Ángeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
32
|
Basso LGM, Vicente EF, Crusca E, Cilli EM, Costa-Filho AJ. SARS-CoV fusion peptides induce membrane surface ordering and curvature. Sci Rep 2016; 6:37131. [PMID: 27892522 PMCID: PMC5125003 DOI: 10.1038/srep37131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.,Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo F Vicente
- Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil
| | - Edson Crusca
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Sadiq SK. Reaction-diffusion basis of retroviral infectivity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0148. [PMID: 27698042 PMCID: PMC5052732 DOI: 10.1098/rsta.2016.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 05/27/2023]
Abstract
Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3 Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- S Kashif Sadiq
- Infection Biology Unit, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| |
Collapse
|
34
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Reply to "The Broadly Neutralizing, Anti-HIV Antibody 4E10: an Open and Shut Case?". J Virol 2016; 90:3276-7. [PMID: 26921373 DOI: 10.1128/jvi.02970-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Rotem E, Reuven EM, Klug YA, Shai Y. The Transmembrane Domain of HIV-1 gp41 Inhibits T-Cell Activation by Targeting Multiple T-Cell Receptor Complex Components through Its GxxxG Motif. Biochemistry 2016; 55:1049-57. [PMID: 26828096 DOI: 10.1021/acs.biochem.5b01307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To successfully infect and persist within its host, HIV-1 utilizes several immunosuppressive motifs within its gp41 envelope glycoprotein to manipulate and evade the immune system. The transmembrane domain (TMD) of gp41 downregulates T-cell receptor (TCR) signaling through a hitherto unknown mechanism. Interactions between TMDs within the membrane milieu have been shown to be typically mediated by particular amino acids, such as interactions between basic and acidic residues and dimerization motifs as GxxxG. The HIV-1 TMD exhibits both a polar arginine (Arg(696)) residue and a GxxxG motif, making them ideal candidates for mediators of TMD-TCR interaction. Using a primary T-cell activation assay and biochemical and biophysical methods, we demonstrate that the gp41 TMD directly interacts with TMDs of the TCR and the CD3 coreceptors (δ, γ, and ε) within the membrane, presumably leading to impairment of complex assembly. Additionally, we reveal that although Arg(696) does not affect TMD immunosuppression, the GxxxG motif is crucial in mediating gp41's TMD interaction with the CD3 coreceptors of the TCR. These findings suggest that compared with other gp41 immunosuppressive motifs, the gp41 TMD has multiple targets within the TCR complex, suggesting less susceptibility to evolutionary pressure and consequently being advantageous for the virus over the host immune response. Furthermore, as the GxxxG motif mediates interactions of the gp41 TMD with multiple receptors, it emerges as an attractive drug target. This multitarget inhibitory mechanism might be a strategy utilized by HIV to interfere with the function of additional host receptors.
Collapse
Affiliation(s)
- Etai Rotem
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Yoel A Klug
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
37
|
Salamango DJ, Johnson MC. Characterizing the Murine Leukemia Virus Envelope Glycoprotein Membrane-Spanning Domain for Its Roles in Interface Alignment and Fusogenicity. J Virol 2015; 89:12492-500. [PMID: 26446598 PMCID: PMC4665228 DOI: 10.1128/jvi.01901-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The membrane-proximal region of murine leukemia virus envelope (Env) is a critical modulator of its functionality. We have previously shown that the insertion of one amino acid (+1 leucine) within the membrane-spanning domain (MSD) abolished protein functionality in infectivity assays. However, functionality could be restored to this +1 leucine mutant by either inserting two additional amino acids (+3 leucine) or by deleting the cytoplasmic tail domain (CTD) in the +1 leucine background. We inferred that the ectodomain and CTD have protein interfaces that have to be in alignment for Env to be functional. Here, we made single residue deletions to the Env mutant with the +1 leucine insertion to restore the interface alignment (gain of functionality) and therefore define the boundaries of the two interfaces. We identified the glycine-proline pairs near the N terminus (positions 147 and 148) and the C terminus (positions 159 and 160) of the MSD as being the boundaries of the two interfaces. Deletions between these pairs restored function, but deletions outside of them did not. In addition, the vast majority of the single residue deletions regained function if the CTD was deleted. The exceptions were four hydroxyl-containing amino acid residues (T139, T140, S143, and T144) that reside in the ectodomain interface and the proline at position 148, which were all indispensable for functionality. We hypothesize that the hydroxyl-containing residues at positions T139 and S143 could be a driving force for stabilizing the ectodomain interface through formation of a hydrogen-bonding network. IMPORTANCE The membrane-proximal external region (MPER) and membrane-spanning domains (MSDs) of viral glycoproteins have been shown to be critical for regulating glycoprotein fusogenicity. However, the roles of these two domains are poorly understood. We report here that point deletions and insertions within the MPER or MSD result in functionally inactive proteins. However, when the C-terminal tail domain (CTD) is deleted, the majority of the proteins remain functional. The only residues that were found to be critical for function regardless of the CTD were four hydroxyl-containing amino acids located at the C terminus of the MPER (T139 and T140) and at the N terminus of the MSD (S143 and T144) and a proline near the beginning of the MSD (P148). We demonstrate that hydrogen-bonding at positions T139 and S143 is critical for protein function. Our findings provide novel insights into the role of the MPER in regulating fusogenic activity of viral glycoproteins.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
38
|
Structural and Thermodynamic Basis of Epitope Binding by Neutralizing and Nonneutralizing Forms of the Anti-HIV-1 Antibody 4E10. J Virol 2015; 89:11975-89. [PMID: 26378169 PMCID: PMC4645341 DOI: 10.1128/jvi.01793-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
The 4E10 antibody recognizes the membrane-proximal external region (MPER) of the HIV-1 Env glycoprotein gp41 transmembrane subunit, exhibiting one of the broadest neutralizing activities known to date. The neutralizing activity of 4E10 requires solvent-exposed hydrophobic residues at the apex of the complementarity-determining region (CDR) H3 loop, but the molecular basis for this requirement has not been clarified. Here, we report the cocrystal structures and the energetic parameters of binding of a peptide bearing the 4E10-epitope sequence (4E10ep) to nonneutralizing versions of the 4E10 Fab. Nonneutralizing Fabs were obtained by shortening and decreasing the hydrophobicity of the CDR-H3 loop (termed ΔLoop) or by substituting the two tryptophan residues of the CDR-H3 apex with Asp residues (termed WDWD), which also decreases hydrophobicity but preserves the length of the loop. The analysis was complemented by the first crystal structure of the 4E10 Fab in its ligand-free state. Collectively, the data ruled out major conformational changes of CDR-H3 at any stage during the binding process (equilibrium or transition state). Although these mutations did not impact the affinity of wild-type Fab for the 4E10ep in solution, the two nonneutralizing versions of 4E10 were deficient in binding to MPER inserted in the plasma membrane (mimicking the environment faced by the antibody in vivo). The conclusions of our structure-function analysis strengthen the idea that to exert effective neutralization, the hydrophobic apex of the solvent-exposed CDR-H3 loop must recognize an antigenic structure more complex than just the linear α-helical epitope and likely constrained by the viral membrane lipids. IMPORTANCE The broadly neutralizing anti-HIV-1 4E10 antibody blocks infection caused by nearly all viral strains and isolates examined thus far. However, 4E10 (or 4E10-like) antibodies are rarely found in HIV-1-infected individuals or elicited through vaccination. Impediments to the design of successful 4E10 immunogens are partly attributed to an incomplete understanding of the structural and binding characteristics of this class of antibodies. Since the broadly neutralizing activity of 4E10 is abrogated by mutations of the tip of the CDR-H3, we investigated their impact on binding of the MPER-epitope at the atomic and energetic levels. We conclude that the difference between neutralizing and nonneutralizing antibodies of 4E10 is neither structural nor energetic but is related to the capacity to recognize the HIV-1 gp41 epitope inserted in biological membranes. Our findings strengthen the idea that to elicit similar neutralizing antibodies, the suitable MPER vaccine must be “delivered” in a membrane environment.
Collapse
|