1
|
LeMaster DM, Bashir Q, Hernández G. Propagation of conformational instability in FK506-binding protein FKBP12. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140990. [PMID: 38142946 PMCID: PMC10939819 DOI: 10.1016/j.bbapap.2023.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
FKBP12 is the archetype of the FK506 binding domains that define the family of FKBP proteins which participate in the regulation of various distinct physiological signaling processes. As the drugs FK506 and rapamycin inhibit many of these FKBP proteins, there is need to develop therapeutics which exhibit selectivity within this family. The long β4-β5 loop of the FKBP domain is known to regulate transcriptional activity for the steroid hormone receptors and appears to participate in regulating calcium channel activity for the cardiac and skeletal muscle ryanodine receptors. The β4-β5 loop of FKBP12 has been shown to undergo extensive conformational dynamics, and here we report hydrogen exchange measurements for a series of mutational variants in that loop which indicate deviations from a two-state kinetics for those dynamics. In addition to a previously characterized local transition near the tip of this loop, evidence is presented for a second site of conformational dynamics in the stem of this loop. These mutation-dependent hydrogen exchange effects extend beyond the β4-β5 loop, primarily by disrupting the hydrogen bond between the Gly 58 amide and the Tyr 80 carbonyl oxygen which links the two halves of the structural rim that surrounds the active site cleft. Mutationally-induced opening of the cleft between Gly 58 and Tyr 80 not only modulates the global stability of the protein, it promotes a conformational transition in the distant β2-β3a hairpin that modulates the binding affinity for a FKBP51-selective inhibitor previously designed to exploit a localized conformational transition at the homologous site.
Collapse
Affiliation(s)
- David M LeMaster
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Qamar Bashir
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Griselda Hernández
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America.
| |
Collapse
|
2
|
Baischew A, Engel S, Taubert MC, Geiger TM, Hausch F. Large-scale, in-cell photocrosslinking at single-residue resolution reveals the molecular basis for glucocorticoid receptor regulation by immunophilins. Nat Struct Mol Biol 2023; 30:1857-1866. [PMID: 37945739 DOI: 10.1038/s41594-023-01098-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 11/12/2023]
Abstract
The Hsp90 co-chaperones FKBP51 and FKBP52 play key roles in steroid-hormone-receptor regulation, stress-related disorders, and sexual embryonic development. As a prominent target, glucocorticoid receptor (GR) signaling is repressed by FKBP51 and potentiated by FKBP52, but the underlying molecular mechanisms remain poorly understood. Here we present the architecture and functional annotation of FKBP51-, FKBP52-, and p23-containing Hsp90-apo-GR pre-activation complexes, trapped by systematic incorporation of photoreactive amino acids inside human cells. The identified crosslinking sites clustered in characteristic patterns, depended on Hsp90, and were disrupted by GR activation. GR binding to the FKBPFK1, but not the FKBPFK2, domain was modulated by FKBP ligands, explaining the lack of GR derepression by certain classes of FKBP ligands. Our findings show how FKBPs differentially interact with apo-GR, help to explain the differentiated pharmacology of FKBP51 ligands, and provide a structural basis for the development of improved FKBP ligands.
Collapse
Affiliation(s)
- Asat Baischew
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Sarah Engel
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Martha C Taubert
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas M Geiger
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
3
|
Anderson JS, LeMaster DM, Hernández G. Transient conformations in the unliganded FK506 binding domain of FKBP51 correspond to two distinct inhibitor-bound states. J Biol Chem 2023; 299:105159. [PMID: 37579948 PMCID: PMC10514456 DOI: 10.1016/j.jbc.2023.105159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, New York, USA
| | - David M LeMaster
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Griselda Hernández
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.
| |
Collapse
|
4
|
Lerma Romero JA, Meyners C, Rupp N, Hausch F, Kolmar H. A protein engineering approach toward understanding FKBP51 conformational dynamics and mechanisms of ligand binding. Protein Eng Des Sel 2023; 36:gzad014. [PMID: 37903068 DOI: 10.1093/protein/gzad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
Most proteins are flexible molecules that coexist in an ensemble of several conformations. Point mutations in the amino acid sequence of a protein can trigger structural changes that drive the protein population to a conformation distinct from the native state. Here, we report a protein engineering approach to better understand protein dynamics and ligand binding of the FK506-binding protein 51 (FKBP51), a prospective target for stress-related diseases, metabolic disorders, some types of cancers and chronic pain. By randomizing selected regions of its ligand-binding domain and sorting yeast display libraries expressing these variants, mutants with high affinity to conformation-specific FKBP51 selective ligands were identified. These improved mutants are valuable tools for the discovery of novel selective ligands that preferentially and specifically bind the FKBP51 active site in its open conformation state. Moreover, they will help us understand the conformational dynamics and ligand binding mechanics of the FKBP51 binding pocket.
Collapse
Affiliation(s)
- Jorge A Lerma Romero
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Nicole Rupp
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
5
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Makrozyklische FKBP51‐Liganden enthüllen einen transienten Bindungsmodus mit erhöhter Selektivität. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Christian Meyners
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Martha C. Taubert
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas Bajaj
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Tim Heymann
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Stephanie Merz
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Anna Charalampidou
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Jürgen Kolos
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Patrick L. Purder
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas M. Geiger
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Pablo Wessig
- Universität Potsdam Institut für Chemie Karl-Liebknecht-Straße 24–25 14476 Potsdam Deutschland
| | - Nils C. Gassen
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Andreas Bracher
- Max-Planck-Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Felix Hausch
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
6
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angew Chem Int Ed Engl 2021; 60:13257-13263. [PMID: 33843131 PMCID: PMC8252719 DOI: 10.1002/anie.202017352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/14/2021] [Indexed: 12/28/2022]
Abstract
Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.
Collapse
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Christian Meyners
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Martha C. Taubert
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas Bajaj
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Tim Heymann
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Stephanie Merz
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Anna Charalampidou
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Jürgen Kolos
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Patrick L. Purder
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas M. Geiger
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Pablo Wessig
- Universität PotsdamInstitut für ChemieKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Nils C. Gassen
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Andreas Bracher
- Max-Planck-Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Felix Hausch
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| |
Collapse
|
7
|
Rein T. Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52. Bioessays 2020; 42:e1900250. [DOI: 10.1002/bies.201900250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Theo Rein
- Department of Translational Science in Psychiatry, MunichMax Planck Institute of Psychiatry Munich 80804 Germany
| |
Collapse
|
8
|
Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019; 9:biom9020052. [PMID: 30717249 PMCID: PMC6406450 DOI: 10.3390/biom9020052] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.
Collapse
Affiliation(s)
- Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | - Cecilia M Lotufo
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
9
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
10
|
Shi D, Bai Q, Zhou S, Liu X, Liu H, Yao X. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity. Proteins 2017; 86:43-56. [PMID: 29023988 DOI: 10.1002/prot.25401] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/13/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
As co-chaperones of the 90-kDa heat shock protein(HSP90), FK506 binding protein 51 (FKBP51) and FK506 binding protein 52 (FKBP52) modulate the maturation of steroid hormone receptor through their specific FK1 domains (FKBP12-like domain 1). The inhibitors targeting FK1 domains are potential therapies for endocrine-related physiological disorders. However, the structural conservation of the FK1 domains between FKBP51 and FKBP52 make it difficult to obtain satisfactory selectivity in FK506-based drug design. Fortunately, a series of iFit ligands synthesized by Hausch et al exhibited excellent selectivity for FKBP51, providing new opportunity for design selective inhibitors. We performed molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis to reveal selective mechanism for the inhibitor iFit4 binding with FKBP51 and FKBP52. The conformational stability evaluation of the "Phe67-in" and "Phe67-out" states implies that FKBP51 and FKBP52 have different preferences for "Phe67-in" and "Phe67-out" states, which we suggest as the determinant factor for the selectivity for FKBP51. The binding free energy calculations demonstrate that nonpolar interaction is favorable for the inhibitors binding, while the polar interaction and entropy contribution are adverse for the inhibitors binding. According to the results from binding free energy decomposition, the electrostatic difference of residue 85 causes the most significant thermodynamics effects on the binding of iFit4 to FKBP51 and FKBP52. Furthermore, the importance of substructure units on iFit4 were further evaluated by unbinding pathway analysis and residue-residue contact analysis between iFit4 and the proteins. The results will provide new clues for the design of selective inhibitors for FKBP51.
Collapse
Affiliation(s)
- Danfeng Shi
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuangyan Zhou
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xuewei Liu
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
11
|
Hernández G, LeMaster DM. Quantifying protein dynamics in the ps-ns time regime by NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2016; 66:163-174. [PMID: 27734179 PMCID: PMC5446045 DOI: 10.1007/s10858-016-0064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
Both 15N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide 15N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T1 and T1ρ experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz 1H, differential residue-specific 15N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific 15N CSA values. Experimental access to such differential residue-specific 15N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA.
| |
Collapse
|
12
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
13
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
14
|
Wu D, Tao X, Chen ZP, Han JT, Jia WJ, Zhu N, Li X, Wang Z, He YX. The environmental endocrine disruptor p-nitrophenol interacts with FKBP51, a positive regulator of androgen receptor and inhibits androgen receptor signaling in human cells. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:193-201. [PMID: 26780698 DOI: 10.1016/j.jhazmat.2015.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
The compound p-nitrophenol, which shows the anti-androgenic activity, can easily become anthropogenic pollutants and pose a threat to the environment and human health. Previous work indicates that the anti-androgenic mechanism of p-nitrophenol is complex and may involve several components in the AR signaling pathway, but the molecular details of how p-nitrophenol inhibits AR signaling are still not quite clear. Here, we characterized p-nitrophenol binds to the FK1 domain of an AR positive regulator FKBP51 with micromolar affinity and structural analysis of FK1 domain in complex with p-nitrophenol revealed that p-nitrophenol occupies a hydrophobic FK1 pocket that is vital for AR activity enhancement. Molecular dynamics simulation indicated that p-nitrophenol is stably bound to the FK1 pocket and the hotspot residues that involved p-nitrophenol binding are mainly hydrophobic and overlap with the AR interaction site. Furthermore, we showed that p-nitrophenol inhibits the androgen-dependent growth of human prostate cancer cells, possibly through down-regulating the expression levels of AR activated downstream genes. Taken together, our data suggests that p-nitrophenol suppresses the AR signaling pathway at least in part by blocking the interaction between AR and its positive regulator FKBP51. We believe that our findings could provide new guidelines for assessing the potential health effects of p-nitrophenol.
Collapse
Affiliation(s)
- Dan Wu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, Gansu 730000, PR China
| | - Xuanyu Tao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhi-Peng Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Cuiying Honors College, Lanzhou University, Lanzhou 730000, PR China
| | - Jian-Ting Han
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Juan Jia
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ning Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, Gansu 730000, PR China.
| | - Yong-Xing He
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China.
| |
Collapse
|
15
|
Gaali S, Feng X, Hähle A, Sippel C, Bracher A, Hausch F. Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51. J Med Chem 2016; 59:2410-22. [PMID: 26954324 DOI: 10.1021/acs.jmedchem.5b01355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a key regulator of stress hormone receptors and an established risk factor for stress-related disorders. Drug development for FKBP51 has been impaired by the structurally similar but functionally opposing homologue FKBP52. High selectivity between FKBP51 and FKBP52 can be achieved by ligands that stabilize a recently discovered FKBP51-favoring conformation. However, drug-like parameters for these ligands remained unfavorable. In the present study, we replaced the potentially labile pipecolic ester group of previous FKBP51 ligands by various low molecular weight amides. This resulted in the first series of pipecolic acid amides, which had much lower molecular weights without affecting FKBP51 selectivity. We discovered a geminally substituted cyclopentyl amide as a preferred FKBP51-binding motif and elucidated its binding mode to provide a new lead structure for future drug optimization.
Collapse
Affiliation(s)
- Steffen Gaali
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Xixi Feng
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
16
|
Feng X, Sippel C, Bracher A, Hausch F. Structure–Affinity Relationship Analysis of Selective FKBP51 Ligands. J Med Chem 2015; 58:7796-806. [DOI: 10.1021/acs.jmedchem.5b00785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xixi Feng
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|