1
|
Yang W, Wang S, Huo X, Yang K, Guo Z, Li Y, Ji X, Hao B, Liao S. Novel autosomal recessive SINO syndrome-associated KIDINS220 variants provide insight into the genotype-phenotype correlation. Heliyon 2024; 10:e37355. [PMID: 39296002 PMCID: PMC11408833 DOI: 10.1016/j.heliyon.2024.e37355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background KIDINS220 encodes a transmembrane scaffold protein, kinase D-interacting substrate of 220 kDa, that regulates neurotrophin signaling. Variants in KIDINS220 have been linked to spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO) syndrome or prenatal fatal cerebral ventriculomegaly and arthrogryposis (VENARG). This study aimed to investigate the genotype-phenotype correlation of pathogenic KIDINS220 variants. Methods We performed whole-exome sequencing on a patient with SINO syndrome and epilepsy. Identified pathogenic variants were confirmed using Sanger sequencing and evaluated with in silico tools. A comprehensive literature review was conducted to analyze the genetic and phenotypic data of both the newly diagnosed patient and previously reported cases with KIDINS220 variants. Results We identified novel compound heterozygous variants in KIDINS220, c.1556C > T (p.Thr519Met) and c.2374C > T (p.Arg792*), in the patient. Our analysis revealed that biallelic loss-of-function variants in KIDINS220 are associated with VENARG or autosomal recessive SINO (AR-SINO), whereas carboxy-terminal truncated variants that escape nonsense-mediated mRNA decay and lack amino acid residues 1507-1529 are linked to autosomal dominant SINO (AD-SINO). Patients with AR-SINO exhibit more severe clinical features compared to those with AD-SINO. Conclusions Our study expands the spectrum of KIDINS220 variants associated with AR-SINO and provides a valuable genotype-phenotype correlation for pathogenic KIDINS220 variants.
Collapse
Affiliation(s)
- Wenke Yang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuyue Wang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- Central Hospital of Wuhan, Wuhan, China
| | - Xiaodong Huo
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Yang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenglong Guo
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| | - Yanjun Li
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Bingtao Hao
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| |
Collapse
|
2
|
Pellegrino A, Mükusch S, Seitz V, Stein C, Herberg FW, Seitz H. Transient Receptor Potential Vanilloid 1 Signaling Is Independent on Protein Kinase A Phosphorylation of Ankyrin-Rich Membrane Spanning Protein. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040063. [PMID: 36412904 PMCID: PMC9680306 DOI: 10.3390/medsci10040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The sensory ion channel transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in small to medium sized dorsal root ganglion neurons, which are involved in the transfer of acute noxious thermal and chemical stimuli. The Ankyrin-rich membrane spanning protein (ARMS) interaction with TRPV1 is modulated by protein kinase A (PKA) mediating sensitization. Here, we hypothesize that PKA phosphorylation sites of ARMS are crucial for the modulation of TRPV1 function, and that the phosphorylation of ARMS is facilitated by the A-kinase anchoring protein 79 (AKAP79). We used transfected HEK293 cells, immunoprecipitation, calcium flux, and patch clamp experiments to investigate potential PKA phosphorylation sites in ARMS and in ARMS-related peptides. Additionally, experiments were done to discriminate between PKA and protein kinase D (PKD) phosphorylation. We found different interaction ratios for TRPV1 and ARMS mutants lacking PKA phosphorylation sites. The degree of TRPV1 sensitization by ARMS mutants is independent on PKA phosphorylation. AKAP79 was also involved in the TRPV1/ARMS/PKA signaling complex. These data show that ARMS is a PKA substrate via AKAP79 in the TRPV1 signaling complex and that all four proteins interact physically, regulating TRPV1 sensitization in transfected HEK293 cells. To assess the physiological and/or therapeutic significance of these findings, similar investigations need to be performed in native neurons and/or in vivo.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
| | - Sandra Mükusch
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
| | - Viola Seitz
- Institute of Experimental Anaesthesiology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
- Brandenburg Medical School Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany
| | - Christoph Stein
- Institute of Experimental Anaesthesiology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | | | - Harald Seitz
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
- Correspondence: ; +49-331-58187-208
| |
Collapse
|
3
|
Almacellas-Barbanoj A, Albini M, Satapathy A, Jaudon F, Michetti C, Krawczun-Rygmaczewska A, Huang H, Manago F, Papaleo F, Benfenati F, Cesca F. Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Dis 2022; 8:58. [PMID: 35140204 PMCID: PMC8828717 DOI: 10.1038/s41420-022-00854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a transmembrane scaffold protein that participates in fundamental aspects of neuronal physiology including cell survival, differentiation, and synaptic plasticity. The Kidins220 constitutive knockout line displays developmental defects in the nervous and cardiovascular systems that lead to embryonic lethality, which has so far precluded the study of this protein in the adult. Moreover, Kidins220 mRNA is tightly regulated by alternative splicing, whose impact on nervous system physiology has not yet been addressed in vivo. Here, we have asked to what extent the absence of Kidins220 splicing and the selective knockout of Kidins220 impact on adult brain homeostasis. To answer this question, we used a floxed line that expresses only the full-length, non-spliced Kidins220 mRNA, and a forebrain-specific, CaMKII-Cre driven Kidins220 conditional knockout (cKO) line. Kidins220 cKO brains are characterized by enlarged ventricles in the absence of cell death, and by deficient dendritic arborization in several cortical regions. The deletion of Kidins220 leads to behavioral changes, such as reduced anxiety-like traits linked to alterations in TrkB-BDNF signaling and sex-dependent alterations of hippocampal-dependent spatial memory. Kidins220 floxed mice present similarly enlarged brain ventricles and increased associative memory. Thus, both the absolute levels of Kidins220 expression and its splicing pattern are required for the correct brain development and related expression of behavioral phenotypes. These findings are relevant in light of the increasing evidence linking mutations in the human KIDINS220 gene to the onset of severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- Amanda Almacellas-Barbanoj
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Albini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Annyesha Satapathy
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Huiping Huang
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Francesca Manago
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
4
|
Jaudon F, Albini M, Ferroni S, Benfenati F, Cesca F. A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. J Cell Sci 2021; 134:jcs258419. [PMID: 34279618 DOI: 10.1242/jcs.258419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Astroglial cells are key to maintain nervous system homeostasis. Neurotrophins are known for their pleiotropic effects on neuronal physiology but also exert complex functions to glial cells. Here, we investigated (i) the signaling competence of mouse embryonic and postnatal primary cortical astrocytes exposed to brain-derived neurotrophic factor (BDNF) and, (ii) the role of kinase D-interacting substrate of 220 kDa (Kidins220), a transmembrane scaffold protein that mediates neurotrophin signaling in neurons. We found a shift from a kinase-based response in embryonic cells to a response predominantly relying on intracellular Ca2+ transients [Ca2+]i within postnatal cultures, associated with a decrease in the synthesis of full-length BDNF receptor TrkB, with Kidins220 contributing to the BDNF-activated kinase and [Ca2+]i pathways. Finally, Kidins220 participates in the homeostatic function of astrocytes by controlling the expression of the ATP-sensitive inward rectifier potassium channel 10 (Kir4.1) and the metabolic balance of embryonic astrocytes. Overall, our data contribute to the understanding of the complex role played by astrocytes within the central nervous system, and identify Kidins220 as a novel actor in the increasing number of pathologies characterized by astrocytic dysfunctions. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Martina Albini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Zhang Y, Zhong Z, Ye J, Wang C. Crystal structure of the PDZ4 domain of MAGI2 in complex with PBM of ARMS reveals a canonical PDZ recognition mode. Neurochem Int 2021; 149:105152. [PMID: 34371146 DOI: 10.1016/j.neuint.2021.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (MAGI2) is a neuronal scaffold protein that plays critical roles at synaptic junctions by assembling neurotransmitter receptors and cell adhesion proteins through its multiple protein-protein interaction domains, including six PDZ domains, two phosphoserine-phosphothreonine binding WW domains, and a guanylate kinase GK domain. Previous studies showed that MAGI2 participates in formation of tetrameric complexes with PDZ-GEF1, TrkA receptor, and ankyrin repeat-rich membrane spanning (ARMS) protein at late endosomes and is crucial for neurite outgrowth. However, the molecular mechanism governing the assembly of these complexes remains unknown. Here, we characterize the direct interaction between MAGI2 and ARMS through multiple biochemical assays. Moreover, our solved crystal structure of the truncated PDZ4/PBM (PDZ binding motifs) complex of MAGI2 and ARMS proteins (MAGI2-PDZ4/ARMS-PBM) reveals that the binding interface lies between the αB/βB groove from the PDZ4 of MAGI2 and the C-terminal PBM from ARMS. The structure reveals high similarity to others in this protein family where canonical PDZ/PBM interactions are observed. However, the conserved "GLGF" motif in the PSD-95-PDZ3 changes to "GFGF" in the MAGI2-PDZ4/ARMS-PBM complex. We further validated our crystal structure through serial mutagenesis assays. Taken together, our study provides the biochemical details and binding mechanisms that underpin the stabilization of the MAGI2-PDZ4/ARMS-PBM complex, thereby offering a biochemical and structural basis for further understanding of the functional roles of MAGI2, ARMS, PDZ-GEF1, and TrkA in forming the tetrameric receptor complex in neuronal signaling.
Collapse
Affiliation(s)
- Yanshen Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230001, Hefei, China
| | - Zhiwen Zhong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230001, Hefei, China
| | - Jin Ye
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230001, Hefei, China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230001, Hefei, China.
| |
Collapse
|
6
|
Johnson KW, Herold KF, Milner TA, Hemmings HC, Platholi J. Sodium channel subtypes are differentially localized to pre- and post-synaptic sites in rat hippocampus. J Comp Neurol 2017; 525:3563-3578. [PMID: 28758202 PMCID: PMC5927368 DOI: 10.1002/cne.24291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na+ channels (Nav ) modulate neuronal excitability, but the roles of the various Nav subtypes in specific neuronal functions such as synaptic transmission are unclear. We investigated expression of the three major brain Nav subtypes (Nav 1.1, Nav 1.2, Nav 1.6) in area CA1 and dentate gyrus of rat hippocampus. Using light and electron microscopy, we found labeling for all three Nav subtypes on dendrites, dendritic spines, and axon terminals, but the proportion of pre- and post-synaptic labeling for each subtype varied within and between subregions of CA1 and dentate gyrus. In the central hilus (CH) of the dentate gyrus, Nav 1.1 immunoreactivity was selectively expressed in presynaptic profiles, while Nav 1.2 and Nav 1.6 were expressed both pre- and post-synaptically. In contrast, in the stratum radiatum (SR) of CA1, Nav 1.1, Nav 1.2, and Nav 1.6 were selectively expressed in postsynaptic profiles. We next compared differences in Nav subtype expression between CH and SR axon terminals and between CH and SR dendrites and spines. Nav 1.1 and Nav 1.2 immunoreactivity was preferentially localized to CH axon terminals compared to SR, and in SR dendrites and spines compared to CH. No differences in Nav 1.6 immunoreactivity were found between axon terminals of CH and SR or between dendrites and spines of CH and SR. All Nav subtypes in both CH and SR were preferentially associated with asymmetric synapses rather than symmetric synapses. These findings indicate selective presynaptic and postsynaptic Nav expression in glutamatergic synapses of CH and SR supporting neurotransmitter release and synaptic plasticity.
Collapse
Affiliation(s)
| | - Karl F. Herold
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY NY
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
7
|
Electron current recordings in living cells. Biophys Chem 2017; 229:57-61. [DOI: 10.1016/j.bpc.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022]
|
8
|
Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli. J Neurosci 2017; 36:7511-22. [PMID: 27413160 DOI: 10.1523/jneurosci.0462-16.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. SIGNIFICANCE STATEMENT Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients.
Collapse
|
9
|
Akin EJ, Solé L, Johnson B, Beheiry ME, Masson JB, Krapf D, Tamkun MM. Single-Molecule Imaging of Nav1.6 on the Surface of Hippocampal Neurons Reveals Somatic Nanoclusters. Biophys J 2017; 111:1235-1247. [PMID: 27653482 DOI: 10.1016/j.bpj.2016.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are responsible for the depolarizing phase of the action potential in most nerve cells, and Nav channel localization to the axon initial segment is vital to action potential initiation. Nav channels in the soma play a role in the transfer of axonal output information to the rest of the neuron and in synaptic plasticity, although little is known about Nav channel localization and dynamics within this neuronal compartment. This study uses single-particle tracking and photoactivation localization microscopy to analyze cell-surface Nav1.6 within the soma of cultured hippocampal neurons. Mean-square displacement analysis of individual trajectories indicated that half of the somatic Nav1.6 channels localized to stable nanoclusters ∼230 nm in diameter. Strikingly, these domains were stabilized at specific sites on the cell membrane for >30 min, notably via an ankyrin-independent mechanism, indicating that the means by which Nav1.6 nanoclusters are maintained in the soma is biologically different from axonal localization. Nonclustered Nav1.6 channels showed anomalous diffusion, as determined by mean-square-displacement analysis. High-density single-particle tracking of Nav channels labeled with photoactivatable fluorophores in combination with Bayesian inference analysis was employed to characterize the surface nanoclusters. A subpopulation of mobile Nav1.6 was observed to be transiently trapped in the nanoclusters. Somatic Nav1.6 nanoclusters represent a new, to our knowledge, type of Nav channel localization, and are hypothesized to be sites of localized channel regulation.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laura Solé
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Ben Johnson
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mohamed El Beheiry
- Physico-Chimie Curie, Institut Curie, Paris Sciences Lettres, CNRS UMR 168, Université Pierre et Marie Curie, Paris, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Decision and Bayesian Computation, Centre National de la Recherche Scientifique (CNRS) UMR 3525, Paris, France; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado.
| | - Michael M Tamkun
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
10
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
11
|
Peter J, Kasper C, Kaufholz M, Buschow R, Isensee J, Hucho T, Herberg FW, Schwede F, Stein C, Jordt SE, Brackmann M, Spahn V. Ankyrin-rich membrane spanning protein as a novel modulator of transient receptor potential vanilloid 1-function in nociceptive neurons. Eur J Pain 2017; 21:1072-1086. [PMID: 28182310 DOI: 10.1002/ejp.1008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The ion channel TRPV1 is mainly expressed in small diameter dorsal root ganglion (DRG) neurons, which are involved in the sensation of acute noxious thermal and chemical stimuli. Direct modifications of the channel by diverse signalling events have been intensively investigated, but little is known about the composition of modulating macromolecular TRPV1 signalling complexes. Here, we hypothesize that the novel adaptor protein ankyrin-rich membrane spanning protein/kinase D interacting substrate (ARMS) interacts with TRPV1 and modulates its function in rodent DRG neurons. METHODS We used immunohistochemistry, electrophysiology, microfluorimetry and immunoprecipitation experiments to investigate TRPV1 and ARMS interactions in DRG neurons and transfected cells. RESULTS We found that TRPV1 and ARMS are co-expressed in a subpopulation of DRG neurons. ARMS sensitizes TRPV1 towards capsaicin in transfected HEK 293 cells and in mouse DRG neurons in a PKA-dependent manner. Using a combination of functional imaging and immunocytochemistry, we show that the magnitude of the capsaicin response in DRG neurons depends not only on TRPV1 expression, but on the co-expression of ARMS alongside TRPV1. CONCLUSION These data indicate that ARMS is an important component of the signalling complex regulating the sensitivity of TRPV1. SIGNIFICANCE The study identifies ARMS as an important component of the signalling complex regulating the sensitivity of excitatory ion channels (TRPV1) in peripheral sensory neurons (DRG neurons) and transfected cells.
Collapse
Affiliation(s)
- J Peter
- Department of Anesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - C Kasper
- Department of Anesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - M Kaufholz
- Department of Biochemistry, University of Kassel, Germany
| | - R Buschow
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - J Isensee
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Germany
| | - T Hucho
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Germany
| | - F W Herberg
- Department of Biochemistry, University of Kassel, Germany
| | - F Schwede
- Biolog Life Science Institute, Bremen, Germany
| | - C Stein
- Department of Anesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - S-E Jordt
- Department of Pharmacology, Yale Medical School, New Haven, CT, USA
- Department of Anesthesiology, Clinical Science Department, Duke University, Durham, NC, USA
| | - M Brackmann
- Department of Anesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - V Spahn
- Department of Anesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
12
|
Scholz-Starke J, Cesca F. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. Front Cell Neurosci 2016; 10:68. [PMID: 27013979 PMCID: PMC4789535 DOI: 10.3389/fncel.2016.00068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies.
Collapse
Affiliation(s)
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
13
|
López-Benito S, Lillo C, Hernández-Hernández Á, Chao MV, Arévalo JC. ARMS/Kidins220 and synembryn-B levels regulate NGF-mediated secretion. J Cell Sci 2016; 129:1866-77. [PMID: 26966186 DOI: 10.1242/jcs.184168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/05/2016] [Indexed: 01/22/2023] Open
Abstract
Proper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. Nerve growth factor (NGF) acting through the TrkA neurotrophin receptor (also known as NTRK1) regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood. Here, we describe a new signaling pathway involving TrkA, ARMS (also known as Kidins220), synembryn-B and Rac1 in NGF-mediated secretion in PC12 cells. Whereas overexpression of ARMS blocked NGF-mediated secretion, without affecting basal secretion, a decrease in ARMS resulted in potentiation. Similar effects were observed with synembryn-B, a protein that interacts directly with ARMS. Downstream of ARMS and synembryn-B are Gαq and Trio proteins, which modulate the activity of Rac1 in response to NGF. Expression of dominant-negative Rac1 rescued the secretion defects of cells overexpressing ARMS or synembryn-B. Thus, this neurotrophin pathway represents a new mechanism responsible for NGF-regulated secretion.
Collapse
Affiliation(s)
- Saray López-Benito
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Concepción Lillo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Ángel Hernández-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain
| | - Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology and Neuroscience, Psychiatry, and Neural Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Juan C Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|