1
|
Trummer M, Galardon E, Mayer B, Steiner G, Stamm T, Kloesch B. Polysulfides derived from the hydrogen sulfide and persulfide donor P* inhibit IL-1β-mediated inducible nitric oxide synthase signaling in ATDC5 cells: are CCAAT/enhancer-binding proteins β and δ involved in the anti-inflammatory effects of hydrogen sulfide and polysulfides? Nitric Oxide 2022; 129:41-52. [DOI: 10.1016/j.niox.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
2
|
Fujimoto S, Satoh A, Suzuki T, Miyazaki Y, Tanaka K, Usami M, Takizawa T. Hydrogen sulfide potently promotes neuronal differentiation of adipose tissue-derived stem cells involving nitric oxide-mediated signaling cascade with the aid of cAMP-elevating agents. Nitric Oxide 2022; 127:10-17. [PMID: 35835264 DOI: 10.1016/j.niox.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is potently promoted by valproic acid (VPA) through a gaseous signaling molecule, nitric oxide (NO). Here, we investigated the involvement of hydrogen sulfide (H2S), another gaseous signaling molecule, in neuronal differentiation of ASCs. VPA-promoted neuronal differentiation of ASCs was accompanied by increased intracellular H2S and sulfane sulfur with increased mRNA expression of enzymes synthesizing sulfane sulfur including cystathionine β-synthase (CBS), of which inhibition reduced the differentiation efficiency. H2S donors, GYY4137 (GYY) or NaHS, potently promoted neuronal differentiation of ASCs when cAMP-elevating agents, dibutyryl cyclic adenosine monophosphate and isobutyl methyl-xanthine, were added as neuronal induction medium (NIM). Neuronal differentiation of ASCs promoted by NaHS or GYY was accompanied by Ca2+ entry and increased mRNA expression of voltage-gated Ca2+ channels. NaHS or GYY also increased mRNA expression of enzymes of the NO-citrulline cycle including inducible NO synthase (iNOS). It was concluded from these results that H2S potently promoted differentiation of ASCs into neuronal cells expressing functional voltage-gated Ca2+ channels with the aid of cAMP-elevating agents, involving NO-mediated signaling cascade. These effects of H2S were also considered as a partial mechanism for the VPA-promoted neuronal differentiation of ASCs.
Collapse
Affiliation(s)
- Shinri Fujimoto
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Azusa Satoh
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Takehito Suzuki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Yoko Miyazaki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Kazuaki Tanaka
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Makoto Usami
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Tatsuya Takizawa
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan.
| |
Collapse
|
3
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
4
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
5
|
Gebhart V, Reiß K, Kollau A, Mayer B, Gorren ACF. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide 2019; 89:14-21. [PMID: 31022534 DOI: 10.1016/j.niox.2019.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 01/20/2023]
Abstract
Nitric oxide synthase (NOS) catalyzes the transformation of l-arginine, molecular oxygen (O2), and NADPH-derived electrons to nitric oxide (NO) and l-citrulline. Under some conditions, however, NOS catalyzes the reduction of O2 to superoxide (O2-) instead, a phenomenon that is generally referred to as uncoupling. In principle, both the heme in the oxygenase domain and the flavins in the reductase domain could catalyze O2- formation. In the former case the oxyferrous (Fe(II)O2) complex that is formed as an intermediate during catalysis would dissociate to heme and O2-; in the latter case the reduced flavins would reduce O2 to O2-. The NOS cofactor tetrahydrobiopterin (BH4) is indispensable for coupled catalysis. In the case of uncoupling at the heme this is explained by the essential role of BH4 as an electron donor to the oxyferrous complex; in the case of uncoupling at the flavins it is assumed that the absence of BH4 results in NOS monomerization, with the monomers incapable to sustain NO synthesis but still able to support uncoupled catalysis. In spite of little supporting evidence, uncoupling at the reductase after NOS monomerization appears to be the predominant hypothesis at present. To set the record straight we extended prior studies by determining under which conditions uncoupling of the neuronal and endothelial isoforms (nNOS and eNOS) occurred and if a correlation exists between uncoupling and the monomer/dimer equilibrium. We determined the rates of coupled/uncoupled catalysis by measuring NADPH oxidation spectrophotometrically at 340 nm and citrulline synthesis as the formation of [3H]-citrulline from [3H]-Arg. The monomer/dimer equilibrium was determined by FPLC and, for comparison, by low-temperature polyacrylamide gel electrophoresis. Uncoupling occurred in the absence of Arg and/or BH4, but not in the absence of Ca2+ or calmodulin (CaM). Since omission of Ca2+/CaM will completely block heme reduction while still allowing substantial FMN reduction, this argues against uncoupling by the reductase domain. In the presence of heme-directed NOS inhibitors uncoupling occurred to the extent that these compound allowed heme reduction, again arguing in favor of uncoupling at the heme. The monomer/dimer equilibrium showed no correlation with uncoupling. We conclude that uncoupling by BH4 deficiency takes place exclusively at the heme, with virtually no contribution from the flavins and no role for NOS monomerization.
Collapse
Affiliation(s)
- Verena Gebhart
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Katja Reiß
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria.
| |
Collapse
|
6
|
Abstract
Interactions between small inorganic molecules are fundamental to the understanding of basic reaction mechanisms and some of the initial processes of chemical evolution that preceded organic molecules and led to the origin of life. The kinetics of these processes are suitable for the fast generation of a variety of new chemical entities and the propagation of a cascade of chemical reactions, a property that is ideal for signaling purposes even in biological systems. NO and H2S are such molecules that are nowadays recognized as biological gasotransmitters involved in the regulation of physiological functions through protein modifications such as S-nitrosothiol, disulfide, and persulfide formations. In this Viewpoint, we review the current understanding of interactions of NO (and organic and metal nitrosyl species) with H2S, in both chemical and biochemical contexts. Through the formation of HNO, (H)SNO (and its isomers), (H)SSNO, and polysulfides, these two gasotransmitters initiate reaction networks with significant roles in cell signaling. The chemical reactivities and biological effects of these nitrogen and sulfur species are still unresolved, and, thus, a cross-talk between all of them represents a challenging interdisciplinary field that awaits exciting new findings. We tackle some of the intriguing and open questions and provide perspectives for future research directions.
Collapse
Affiliation(s)
- Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy , Friedrich-Alexander University (FAU) Erlangen-Nuremberg , 91054 Erlangen , Germany
| | - Milos R Filipovic
- Université de Bordeaux, IBGC, UMR 5095 , F-33077 Bordeaux , France.,CNRS, IBGC, UMR 5095 , F-33077 Bordeaux , France
| |
Collapse
|
7
|
Coletti R, de Lima JBM, Vechiato FMV, de Oliveira FL, Debarba LK, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. J Neuroendocrinol 2019; 31:e12686. [PMID: 30633838 DOI: 10.1111/jne.12686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) negatively modulates the secretion of vasopressin (AVP), oxytocin (OT) and atrial natriuretic peptide (ANP) induced by the increase in extracellular osmolality, whereas carbon monoxide (CO) and hydrogen sulphide (H2 S) act to potentiate it; however, little information is available for the osmotic challenge model about whether and how such gaseous systems modulate each other. Therefore, using an acute ex vivo model of hypothalamic and neurohypophyseal explants (obtained from male 6/7-week-old Wistar rats) under conditions of extracellular iso- and hypertonicity, we determined the effects of NO (600 μmol L-1 sodium nitroprusside), CO (100 μmol L-1 tricarbonylchloro[glycinato]ruthenium [II]) and H2 S (10 mmol L-1 sodium sulphide) donors and nitric oxide synthase (NOS) (300 μmol L-1 Nω -methyl-l-arginine [LNMMA]), haeme oxygenase (HO) (200 μmol L-1 Zn(II) deuteroporphyrin IX 2,4-bis-ethylene glycol [ZnDPBG]) and cystathionine β-synthase (CBS) (100 μmol L-1 aminooxyacetate [AOA]) inhibitors on the release of hypothalamic ANP and hypothalamic and neurohypophyseal AVP and OT, as well as on the activities of NOS, HO and CBS. LNMMA reversed hyperosmolality-induced NOS activity, and enhanced hormonal release by the hypothalamus and neurohypophysis, in addition to increasing CBS and hypothalamic HO activity. AOA decreased hypothalamic and neurohypophyseal CBS activity and hormonal release, whereas ZnDPBG inhibited HO activity and hypothalamic hormone release; however, in both cases, AOA did not modulate NOS and HO activity and ZnDPBG did not affect NOS and CBS activity. Thus, our data indicate that, although endogenous CO and H2 S positively modulate AVP, OT and ANP release, only NO plays a concomitant role of modulator of hormonal release and CBS activity in the hypothalamus and neurohypophysis and that of HO activity in the hypothalamus during an acute osmotic stimulus, which suggests that NO is a key gaseous controller of the neuroendocrine system.
Collapse
Affiliation(s)
- Ricardo Coletti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Mol Neurobiol 2018; 56:1749-1769. [PMID: 29926377 DOI: 10.1007/s12035-018-1141-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are the key gasotransmitters with an imperious role in the maintenance of cerebrovascular homeostasis. A decline in their levels contributes to endothelial dysfunction that portends ischemic stroke (IS) or cerebral ischemia/reperfusion (CI/R). Nevertheless, their exorbitant production during CI/R is associated with exacerbation of cerebrovascular injury in the post-stroke epoch. NO-producing nitric oxide synthases are implicated in IS pathology and their activity is regulated, inter alia, by various post-translational modifications and chromatin-based mechanisms. These account for heterogeneous alterations in NO production in a disease setting like IS. Interestingly, NO per se has been posited as an endogenous epigenetic modulator. Further, there is compelling evidence for an ingenious crosstalk between NO and H2S in effecting the canonical (direct) and non-canonical (off-target collateral) functions. In this regard, NO-mediated S-nitrosylation and H2S-mediated S-sulfhydration of specific reactive thiols in an expanding array of target proteins are the principal modalities mediating the all-pervasive influence of NO and H2S on cell fate in an ischemic brain. An integrated stress response subsuming unfolded protein response and autophagy to cellular stressors like endoplasmic reticulum stress, in part, is entrenched in such signaling modalities that substantiate the role of NO and H2S in priming the cells for stress response. The precis presented here provides a comprehension on the multifarious actions of NO and H2S and their epigenetic underpinnings, their crosstalk in maintenance of cerebrovascular homeostasis, and their "Janus bifrons" effect in IS milieu together with plausible therapeutic implications.
Collapse
|
9
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 651] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
10
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
11
|
Teicher C, De Col R, Messlinger K. Hydrogen Sulfide Mediating both Excitatory and Inhibitory Effects in a Rat Model of Meningeal Nociception and Headache Generation. Front Neurol 2017; 8:336. [PMID: 28769868 PMCID: PMC5509793 DOI: 10.3389/fneur.2017.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Hydrogen sulfide (H2S) is a neuromodulator acting through nitroxyl (HNO) when it reacts with nitric oxide (NO). HNO activates transient receptor potential channels of the ankyrin type 1 (TRPA1) causing release of calcitonin gene-related peptide from primary afferents. Activation of meningeal nociceptors projecting to the human spinal trigeminal nucleus (STN) may lead to headaches. In a rat model of meningeal nociception, the activity of spinal trigeminal neurons was used as read-out for the interaction between H2S and NO. Methods In anesthetized rats extracellular recordings from single neurons in the STN were made. Sodium sulfide (Na2S) producing H2S in the tissue and the NO donor diethylamine-NONOate (DEA-NONOate) were infused intravenously. H2S was also locally applied onto the exposed cranial dura mater or the medulla. Endogenous production of H2S was inhibited by oxamic acid, and NO production was inhibited by nitro-l-arginine methyl ester hydrochloride (l-NAME) to manipulate endogenous HNO formation. Key results Systemic administration of Na2S was followed either by increased ongoing activity (in 73%) or decreased activity (in 27% of units). Topical application of Na2S onto the cranial dura mater caused a short-lasting activation followed by a long-lasting decrease in activity in the majority of units (70%). Systemic administration of DEA-NONOate increased neuronal activity, subsequent infusion of Na2S added to this effect, whereas DEA-NONOate did not augment the activity after Na2S. The stimulating effect of DEA-NONOate was inhibited by oxamic acid in 75% of units, and l-NAME following Na2S administration returned the activity to baseline. Conclusion Individual spinal trigeminal neurons may be activated or (less frequently) inhibited by the TRPA1 agonist HNO, presumably formed by H2S and NO in the STN, whereby endogenous H2S production seems to be rate-limiting. Activation of meningeal afferents by HNO may induce decreased spinal trigeminal activity, consistent with the elevation of the electrical threshold caused by TRPA1 activation in afferent fibers. Thus, the effects of H2S–NO–TRPA1 signaling depend on the site of action and the type of central neurons. The role of H2S–NO–TRPA1 in headache generation seems to be ambiguous.
Collapse
Affiliation(s)
- Christiane Teicher
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roberto De Col
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Serafim RAM, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12:941-953. [PMID: 28664751 DOI: 10.1080/17460441.2017.1344400] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There is a great interest in Nitric oxide (NO) within medicinal chemistry since it's involved in human signaling pathways. Prodrugs or hybrid compounds containing NO-donor scaffolds linked to an active compound are valuable, due to their potential for modulating many pathological conditions due to NO's biological properties when released in addition to the native drug. Compounds that selectively inhibit nitric oxide synthase isoforms (NOS) can also increase therapeutic capacity, particularly in the treatment of chronic diseases. However, search for bioactive compounds to efficiently and selectively modulate NO is still a challenge in drug discovery. Areas covered: In this review, the authors highlight the recent advances in the strategies used to discover NO-hybrid derivatives, especially those related to anti-inflammatory, cardiovascular, anticancer and anti-microorganism activities. They also focus on: nitric oxide synthase inhibitors, NO delivery materials and other related activities. Expert opinion: The process of molecular hybridization can be used to obtain NO-releasing compounds that also interact with different targets. The main problem with this approach is to control NO multiple actions in the right biological system. However, the use of NO-releasing groups with many different scaffolds leads to new molecular structures for bioactive compounds, suggesting synergies.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Filipe G Pernichelle
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Elizabeth I Ferreira
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| |
Collapse
|
13
|
Salmina AB, Komleva YK, Szijártó IA, Gorina YV, Lopatina OL, Gertsog GE, Filipovic MR, Gollasch M. H2S- and NO-Signaling Pathways in Alzheimer's Amyloid Vasculopathy: Synergism or Antagonism? Front Physiol 2015; 6:361. [PMID: 26696896 PMCID: PMC4675996 DOI: 10.3389/fphys.2015.00361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's type of neurodegeneration dramatically affects H2S and NO synthesis and interactions in the brain, which results in dysregulated vasomotor function, brain tissue hypoperfusion and hypoxia, development of perivascular inflammation, promotion of Aβ deposition, and impairment of neurogenesis/angiogenesis. H2S- and NO-signaling pathways have been described to offer protection against Alzheimer's amyloid vasculopathy and neurodegeneration. This review describes recent developments of the increasing relevance of H2S and NO in Alzheimer's disease (AD). More studies are however needed to fully determine their potential use as therapeutic targets in Alzheimer's and other forms of vascular dementia.
Collapse
Affiliation(s)
- Alla B. Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - István A. Szijártó
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E. Gertsog
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Milos R. Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
14
|
Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide 2015; 51:24-35. [PMID: 26456342 DOI: 10.1016/j.niox.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion.
Collapse
|