1
|
Hu J, Wang Z, Jiang D, Gao M, Dong L, Liu M, Song Z. pH-induced changes in IgE molecules measured by atomic force microscopy. Microsc Res Tech 2024; 87:2875-2883. [PMID: 39044615 DOI: 10.1002/jemt.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The environment surrounding proteins is tightly linked to its dynamics, which can significantly influence the conformation of proteins. This study focused on the effect of pH conditions on the ultrastructure of Immunoglobulin E (IgE) molecules. Herein, the morphology, height, and area of IgE molecules incubated at different pH were imaged by atomic force microscopy (AFM), and the law of IgE changes induced by pH value was explored. The experiment results indicated that the morphology, height and area of IgE molecules are pH dependent and highly sensitive. In particular, IgE molecules were more likely to present small-sized ellipsoids under acidic conditions, while IgE molecules tend to aggregate into large-sized flower-like structures under alkaline conditions. In addition, it was found that the height of IgE first decreased and then increased with the increase of pH, while the area of IgE increased with the increase of pH. This work provides valuable information for further study of IgE, and the methodological approach used in this study is expected to developed into AFM to investigate the changes of IgE molecules mediated by other physical and chemical factors. RESEARCH HIGHLIGHTS: The ultrastructure of IgE molecules is pH dependent and highly sensitive. IgE molecules were tend to present small-sized ellipsoids under acidic pH. Alkaline pH drives IgE self-assembly into flower-like aggregates.
Collapse
Affiliation(s)
- Jing Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| | - Mingyan Gao
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Litong Dong
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Mengnan Liu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Tapia-Rojo R, Mora M, Garcia-Manyes S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat Protoc 2024; 19:1779-1806. [PMID: 38467905 PMCID: PMC7616092 DOI: 10.1038/s41596-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 03/13/2024]
Abstract
The reversible unfolding and refolding of proteins is a regulatory mechanism of tissue elasticity and signalling used by cells to sense and adapt to extracellular and intracellular mechanical forces. However, most of these proteins exhibit low mechanical stability, posing technical challenges to the characterization of their conformational dynamics under force. Here, we detail step-by-step instructions for conducting single-protein nanomechanical experiments using ultra-stable magnetic tweezers, which enable the measurement of the equilibrium conformational dynamics of single proteins under physiologically relevant low forces applied over biologically relevant timescales. We report the basic principles determining the functioning of the magnetic tweezer instrument, review the protein design strategy and the fluid chamber preparation and detail the procedure to acquire and analyze the unfolding and refolding trajectories of individual proteins under force. This technique adds to the toolbox of single-molecule nanomechanical techniques and will be of particular interest to those interested in proteins involved in mechanosensing and mechanotransduction. The procedure takes 4 d to complete, plus an additional 6 d for protein cloning and production, requiring basic expertise in molecular biology, surface chemistry and data analysis.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
3
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
4
|
Kacirani A, Uralcan B, Domingues TS, Haji-Akbari A. Effect of Pressure on the Conformational Landscape of Human γD-Crystallin from Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4931-4942. [PMID: 38685567 DOI: 10.1021/acs.jpcb.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human γD-crystallin belongs to a crucial family of proteins known as crystallins located in the fiber cells of the human lens. Since crystallins do not undergo any turnover after birth, they need to possess remarkable thermodynamic stability. However, their sporadic misfolding and aggregation, triggered by environmental perturbations or genetic mutations, constitute the molecular basis of cataracts, which is the primary cause of blindness in the globe according to the World Health Organization. Here, we investigate the impact of high pressure on the conformational landscape of wild-type HγD-crystallin using replica exchange molecular dynamics simulations augmented with principal component analysis. We find pressure to have a modest impact on global measures of protein stability, such as root-mean-square displacement and radius of gyration. Upon projecting our trajectories along the first two principal components from principal component analysis, however, we observe the emergence of distinct free energy basins at high pressures. By screening local order parameters previously shown or hypothesized as markers of HγD-crystallin stability, we establish correlations between a tyrosine-tyrosine aromatic contact within the N-terminal domain and the protein's end-to-end distance with projections along the first and second principal components, respectively. Furthermore, we observe the simultaneous contraction of the hydrophobic core and its intrusion by water molecules. This exploration sheds light on the intricate responses of HγD-crystallin to elevated pressures, offering insights into potential mechanisms underlying its stability and susceptibility to environmental perturbations, crucial for understanding cataract formation.
Collapse
Affiliation(s)
- Arlind Kacirani
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Betül Uralcan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical Engineering, Boğaziçi University, Istanbul 34342, Turkey
| | - Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Graduate Program in Applied Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Ghosh D, Agarwal M, Radhakrishna M. Molecular Insights into the Inhibitory Role of α-Crystallin against γD-Crystallin Aggregation. J Chem Theory Comput 2024; 20:1740-1752. [PMID: 38078935 DOI: 10.1021/acs.jctc.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cataracts, a major cause of global blindness, contribute significantly to the overall prevalence of blindness. The opacification of the lens, resulting in cataract formation, primarily occurs due to the aggregation of crystallin proteins within the eye lens. Despite the high concentration of these crystallins, they remarkably maintain the lens transparency and refractive index. α-Crystallins (α-crys), acting as chaperones, play a crucial role in preventing crystallin aggregation, although the exact molecular mechanism remains uncertain. In this study, we employed a combination of molecular docking, all-atom molecular dynamics simulations, and advanced free energy calculations to investigate the interaction between γD-crystallin (γD-crys), a major structural protein of the eye lens, and α-crystallin proteins. Our findings demonstrate that α-crys exhibits an enhanced affinity for the NTD2 and CTD4 regions of γD-crys. The NTD2 and CTD4 regions form the interface between the N-terminal domain (NTD) and the C-terminal domain (CTD) of the γD-crys protein. By binding to the interface region between the NTD and CTD of the protein, α-crys effectively inhibits the formation of domain-swapped aggregates and mitigates protein aggregation. Analysis of the Markov state models using molecular dynamics trajectories confirms that minimum free energy conformations correspond to the binding of the α-crystallin domain (ACD) of α-crys to NTD2 and CTD4 that form the interdomain interface.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Mithun Radhakrishna
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
6
|
Mora M, Board S, Languin-Cattoën O, Masino L, Stirnemann G, Garcia-Manyes S. A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges. NANO LETTERS 2022; 22:3922-3930. [PMID: 35549281 PMCID: PMC9136921 DOI: 10.1021/acs.nanolett.2c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Non-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity. Here, we use single-molecule spectroscopy AFM and molecular dynamics simulations to capture both intra- and intermolecular disulfide bonds in γD-crystallin, a cysteine-rich, structural human lens protein involved in age-related eye cataracts. Our approach showcases the power of mechanical force as a conformational probe in dynamically evolving proteins and presents a platform to detect non-native disulfide bridges with single-molecule resolution.
Collapse
Affiliation(s)
- Marc Mora
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Stephanie Board
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Olivier Languin-Cattoën
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura Masino
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, 1 Midland Road London, NW1 1AT, United Kingdom
| | - Guillaume Stirnemann
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| |
Collapse
|
7
|
Hsueh SS, Wang SS(S, Chen SH, Wang CL, Wu W(J, Lin TH. Insights to Human γD-Crystallin Unfolding by NMR Spectroscopy and Molecular Dynamics Simulations. Int J Mol Sci 2022; 23:ijms23031591. [PMID: 35163513 PMCID: PMC8836049 DOI: 10.3390/ijms23031591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Human γD-crystallin (HGDC) is an abundant lens protein residing in the nucleus of the human lens. Aggregation of this and other structural proteins within the lens leads to the development of cataract. Much has been explored on the stability and aggregation of HGDC and where detailed investigation at the atomic resolution was needed, the X-ray structure was used as an initial starting conformer for molecular modeling. In this study, we implemented NMR-solution HGDC structures as starting conformers for molecular dynamics simulations to provide the missing pieces of the puzzle on the very early stages of HGDC unfolding leading up to the domain swap theories proposed by past studies. The high-resolution details of the conformational dynamics also revealed additional insights to possible early intervention for cataractogenesis.
Collapse
Affiliation(s)
- Shu-Shun Hsueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - S.-S. (Steven) Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - Shu-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - Chia-Lin Wang
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - W. (Josephine) Wu
- Department of Optometry, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
- Correspondence: (J.W.W.); (T.-H.L.); Tel.: +886-3-538-1183 (ext. 8608) (W.W.); +886-2-28712121 (ext. 2703) (T.-H.L.)
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (J.W.W.); (T.-H.L.); Tel.: +886-3-538-1183 (ext. 8608) (W.W.); +886-2-28712121 (ext. 2703) (T.-H.L.)
| |
Collapse
|
8
|
Bustamante A, Rivera R, Floor M, Babul J, Baez M. Single-molecule optical tweezers reveals folding steps of the domain swapping mechanism of a protein. Biophys J 2021; 120:4809-4818. [PMID: 34555362 PMCID: PMC8595740 DOI: 10.1016/j.bpj.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Domain swapping is a mechanism of protein oligomerization by which two or more subunits exchange structural elements to generate an intertwined complex. Numerous studies support a diversity of swapping mechanisms in which structural elements can be exchanged at different stages of the folding pathway of a subunit. Here, we used single-molecule optical tweezers technique to analyze the swapping mechanism of the forkhead DNA-binding domain of human transcription factor FoxP1. FoxP1 populates folded monomers in equilibrium with a swapped dimer. We generated a fusion protein linking two FoxP1 domains in tandem to obtain repetitive mechanical folding and unfolding trajectories. Thus, by stretching the same molecule several times, we detected either the independent folding of each domain or the elusive swapping step between domains. We found that a swapped dimer can be formed directly from fully or mostly folded monomer. In this situation, the interaction between the monomers in route to the domain-swapped dimer is the rate-limiting step. This approach is a useful strategy to test the different proposed domain swapping mechanisms for proteins with relevant physiological functions.
Collapse
Affiliation(s)
- Andres Bustamante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Martin Floor
- Bioinformatics and Medical Statistics Group, Faculty of Science and Technology, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain; Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021; 211:108707. [PMID: 34332989 PMCID: PMC8511183 DOI: 10.1016/j.exer.2021.108707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the β- and α-crystallins where pertinent.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| |
Collapse
|
10
|
Petrosyan R, Narayan A, Woodside MT. Single-Molecule Force Spectroscopy of Protein Folding. J Mol Biol 2021; 433:167207. [PMID: 34418422 DOI: 10.1016/j.jmb.2021.167207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
12
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
13
|
Mondal B, Nagesh J, Reddy G. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. J Phys Chem B 2021; 125:1705-1715. [PMID: 33566611 DOI: 10.1021/acs.jpcb.0c07833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human γD (HγD) and γC (HγC) are two-domain crystallin (Crys) proteins expressed in the nucleus of the eye lens. Structural perturbations in the protein often trigger aggregation, which eventually leads to cataract. To decipher the underlying molecular mechanism, it is important to characterize the partially unfolded conformations, which are aggregation-prone. Using a coarse grained protein model and molecular dynamics simulations, we studied the role of on-pathway folding intermediates in the early stages of aggregation. The multidimensional free energy surface revealed at least three different folding pathways with the population of partially structured intermediates. The two dominant pathways confirm sequential folding of the N-terminal [Ntd] and the C-terminal domains [Ctd], while the third, least favored, pathway involves intermediates where both the domains are partially folded. A native-like intermediate (I*), featuring the folded domains and disrupted interdomain contacts, gets populated in all three pathways. I* forms domain swapped dimers by swapping the entire Ntds and Ctds with other monomers. Population of such oligomers can explain the increased resistance to unfolding resulting in hysteresis observed in the folding experiments of HγD Crys. An ensemble of double domain swapped dimers are also formed during refolding, where intermediates consisting of partially folded Ntds and Ctds swap secondary structures with other monomers. The double domain swapping model presented in our study provides structural insights into the early events of aggregation in Crys proteins and identifies the key secondary structural swapping elements, where introducing mutations will aid in regulating the overall aggregation propensity.
Collapse
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
14
|
Visconti L, Malagrinò F, Troilo F, Pagano L, Toto A, Gianni S. Folding and Misfolding of a PDZ Tandem Repeat. J Mol Biol 2021; 433:166862. [PMID: 33539879 DOI: 10.1016/j.jmb.2021.166862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/29/2023]
Abstract
Although the vast majority of the human proteome is represented by multi-domain proteins, the study of multi-domain folding and misfolding is a relatively poorly explored field. The protein Whirlin is a multi-domain scaffolding protein expressed in the inner ear. It is characterized by the presence of tandem repeats of PDZ domains. The first two PDZ domains of Whirlin (PDZ1 and PDZ2 - namely P1P2) are structurally close and separated by a disordered short linker. We recently described the folding mechanism of the P1P2 tandem. The difference in thermodynamic stability of the two domains allowed us to selectively unfold one or both PDZ domains and to pinpoint the accumulation of a misfolded intermediate, which we demonstrated to retain physiological binding activity. In this work, we provide an extensive characterization of the folding and unfolding of P1P2. Based on the observed data, we describe an integrated kinetic analysis that satisfactorily fits the experiments and provides a valuable model to interpret multi-domain folding. The experimental and analytical approaches described in this study may be of general interest for the interpretation of complex multi-domain protein folding kinetics.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
15
|
Li S, Wang X, Li Z, Huang Z, Lin S, Hu J, Tu Y. Research progress of single molecule force spectroscopy technology based on atomic force microscopy in polymer materials: Structure, design strategy and probe modification. NANO SELECT 2021. [DOI: 10.1002/nano.202000235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiao Wang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhihua Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
16
|
Medina E, Villalobos P, Hamilton GL, Komives EA, Sanabria H, Ramírez-Sarmiento CA, Babul J. Intrinsically Disordered Regions of the DNA-Binding Domain of Human FoxP1 Facilitate Domain Swapping. J Mol Biol 2020; 432:5411-5429. [PMID: 32735805 PMCID: PMC7663421 DOI: 10.1016/j.jmb.2020.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
Forkhead box P (FoxP) proteins are unique transcription factors that spatiotemporally regulate gene expression by tethering two chromosome loci together via functional domain-swapped dimers formed through their DNA-binding domains. Further, the differential kinetics on this dimerization mechanism underlie an intricate gene regulation network at physiological conditions. Nonetheless, poor understanding of the structural dynamics and steps of the association process impedes to link the functional domain swapping to human-associated diseases. Here, we have characterized the DNA-binding domain of human FoxP1 by integrating single-molecule Förster resonance energy transfer and hydrogen-deuterium exchange mass spectrometry data with molecular dynamics simulations. Our results confirm the formation of a previously postulated domain-swapped (DS) FoxP1 dimer in solution and reveal the presence of highly populated, heterogeneous, and locally disordered dimeric intermediates along the dimer dissociation pathway. The unique features of FoxP1 provide a glimpse of how intrinsically disordered regions can facilitate domain swapping oligomerization and other tightly regulated association mechanisms relevant in biological processes.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - George L Hamilton
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth A Komives
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
17
|
Chen T, Tong T, Yang L, Liao F, Yang X. [Resonance light scattering spectroscopy can directly characterize protein solubility]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:843-849. [PMID: 32895202 DOI: 10.12122/j.issn.1673-4254.2020.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To develop a fast, sensitive and cost-effective method based on resonance light scattering (RLS) for characterization of protein solubility to facilitate detection of changes in solubility of mutant proteins. METHODS We examined the response curve of RLS intensities to the protein concentrations in synchronous scanning mode. The curve intersection points were searched to predict the maximal concentrations of the protein in dispersion state, which defined the solubility of the protein in this given state. Bovine serum albumin (BSA, 0-50 g/L) was used as the model to investigate the influences of pH values (6.5, 7.0, and 7.4) and salt concentrations (0.05, 0.10, 0.15, and 0.20 mol/L) on the determined solubility. The solubility of glutathione S-transferase isoenzymes alpha (GSTA, 0-27.0 g/L) and Mμ (GSTM, 0-20.0 g/L) were estimated for comparison. The RLS-based method was used to determine the solubility of uricase (MGU, 0-0.4 g/L) to provide assistance in improving the solubility of its mutants. RESULTS We identified two intersection points in the RLS response curves of the tested proteins, among which the lower one represented an approximation of the maximal concentration (or the solubility of the protein) in single molecular dispersion, and the higher one the saturated concentration of the protein in multiple molecular aggregation. In HEPES buffer, the two intersection points of BSA (isoelectric point 4.6) both increased with the increase of pH (6.5-7.4), and their values were ~1.2 g/L and ~33 g/L at pH 7.4, respectively; the latter concentration approached the solubility of commercial BSA in the same buffer at the same pH. The addition of NaCl reduced the values of the two intersection points, and increasing salt ion concentration decreased the values of the lower intersection points. Further characterizations of GSTA and GSTM showed that the low concentration intersection points of the two proteins were ~0.7 g/L and ~0.8 g/L, and their high concentration intersection points were ~10 g/L and ~11 g/L, respectively, both lower than those of BSA, indicating the feasibility of the direct characterization of protein solubility by RLS. The two concentration intersection points of MGU were 0.24 g/L and 0.30 g/L, respectively, and the low concentration intersection point of its selected mutant was increased by 2 times. CONCLUSIONS RLS allows direct characterization of the solubility of macromolecular proteins. This method, which is simple and sensitive and needs only a small amount of proteins, has a unique advantage for rapid comparison of solubility of low-abundance protein mutants.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Medical Laboratory Diagnostics of the Ministry of Education of China, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tingting Tong
- Key Laboratory of Medical Laboratory Diagnostics of the Ministry of Education of China, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linyu Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Ministry of Education of China, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fei Liao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 401135, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Ministry of Education of China, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
19
|
Two Pathogenic Gene Mutations Identified Associating with Congenital Cataract and Iris Coloboma Respectively in a Chinese Family. J Ophthalmol 2020; 2020:7054315. [PMID: 32148946 PMCID: PMC7049832 DOI: 10.1155/2020/7054315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To screen out pathogenic genes in a Chinese family with congenital cataract and iris coloboma. Material and Methods. A three-generation family with congenital cataract and iris coloboma from a Han ethnicity was recruited. DNA was extracted from peripheral blood samples collected from all individuals in the family. Whole exon sequencing was employed for screening the disease-causing gene mutations in the proband, and Sanger sequencing was used for other members of the family and a control group of 500 healthy individuals. Bioinformatics analysis and three-dimensional structure predictions were used to predict the impact of amino acid changes on protein structure and function. Results The candidate genes of cataract and iris coloboma were successfully screened out. A heterozygote mutation, CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, Conclusions We report a novel mutation, WFS1 p.C505S, and a known mutation, CRYGD p.P24T, that cosegregate with iris coloboma and congenital cataract, respectively, in a Chinese family. This is the first time the association of WFS1 p.C505S with iris coloboma has been demonstrated, although CRYGD p.P24T has been widely reported as being associated with congenital cataract, especially in the Eastern Asian population. These findings may have future therapeutic benefit for the diagnosis of iris coloboma and congenital cataract. The results may also be relevant in further studies aiming to investigate the molecular pathogenesis of iris coloboma and congenital cataract.WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation,
Collapse
|
20
|
Lafita A, Tian P, Best RB, Bateman A. Tandem domain swapping: determinants of multidomain protein misfolding. Curr Opin Struct Biol 2019; 58:97-104. [PMID: 31260947 PMCID: PMC6863430 DOI: 10.1016/j.sbi.2019.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022]
Abstract
Domain swapping refers to the exchange of structural elements between protein domains. Experiments show that tandem homologous domains are prone to domain swapping. Recent studies establish a framework to understand the formation of tandem domain swaps. Prediction of tandem domain swaps is possible but hindered by the amount of available data.
Tandem homologous domains in proteins are susceptible to misfolding through the formation of domain swaps, non-native conformations involving the exchange of equivalent structural elements between adjacent domains. Cutting-edge biophysical experiments have recently allowed the observation of tandem domain swapping events at the single molecule level. In addition, computer simulations have shed light into the molecular mechanisms of domain swap formation and serve as the basis for methods to systematically predict them. At present, the number of studies on tandem domain swaps is still small and limited to a few domain folds, but they offer important insights into the folding and evolution of multidomain proteins with applications in the field of protein design.
Collapse
Affiliation(s)
- Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Pengfei Tian
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
21
|
Mills-Henry IA, Thol SL, Kosinski-Collins MS, Serebryany E, King JA. Kinetic Stability of Long-Lived Human Lens γ-Crystallins and Their Isolated Double Greek Key Domains. Biophys J 2019; 117:269-280. [PMID: 31266635 DOI: 10.1016/j.bpj.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/25/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
The γ-crystallins of the eye lens nucleus are among the longest-lived proteins in the human body. Synthesized in utero, they must remain folded and soluble throughout adulthood to maintain lens transparency and avoid cataracts. γD- and γS-crystallin are two major monomeric crystallins of the human lens. γD-crystallin is concentrated in the oldest lens fiber cells, the lens nucleus, whereas γS-crystallin is concentrated in the younger cells of the lens cortex. The kinetic stability parameters of these two-domain proteins and their isolated domains were determined and compared. Kinetic unfolding experiments monitored by fluorescence spectroscopy in varying concentrations of guanidinium chloride were used to extrapolate unfolding rate constants and half-lives of the crystallins in the absence of the denaturant. Consistent with their long lifespans in the lens, extrapolated half-lives for the initial unfolding step were on the timescale of years. Both proteins' isolated N-terminal domains were less kinetically stable than their respective C-terminal domains at denaturant concentrations predicted to disrupt the domain interface, but at low denaturant concentrations, the relative kinetic stabilities were reversed. Cataract-associated aggregation has been shown to proceed from partially unfolded intermediates in these proteins; their extreme kinetic stability likely evolved to protect the lens from the initiation of aggregation reactions. Our findings indicate that the domain interface is the source of significant kinetic stability. The gene duplication and fusion event that produced the modern two-domain architecture of vertebrate lens crystallins may be the origin of their high kinetic as well as thermodynamic stability.
Collapse
Affiliation(s)
- Ishara A Mills-Henry
- Department of Chemistry and Food Science, Framingham State University, Framingham, Massachusetts
| | | | | | - Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
22
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
23
|
Kumar V, Chaudhuri TK. Spontaneous refolding of the large multidomain protein malate synthase G proceeds through misfolding traps. J Biol Chem 2018; 293:13270-13283. [PMID: 29959230 DOI: 10.1074/jbc.ra118.003903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Most protein folding studies until now focus on single domain or truncated proteins. Although great insights in the folding of such systems has been accumulated, very little is known regarding the proteins containing multiple domains. It has been shown that the high stability of domains, in conjunction with inter-domain interactions, manifests as a frustrated energy landscape, causing complexity in the global folding pathway. However, multidomain proteins despite containing independently foldable, loosely cooperative sections can fold into native states with amazing speed and accuracy. To understand the complexity in mechanism, studies were conducted previously on the multidomain protein malate synthase G (MSG), an enzyme of the glyoxylate pathway with four distinct and adjacent domains. It was shown that the protein refolds to a functionally active intermediate state at a fast rate, which slowly produces the native state. Although experiments decoded the nature of the intermediate, a full description of the folding pathway was not elucidated. In this study, we use a battery of biophysical techniques to examine the protein's folding pathway. By using multiprobe kinetics studies and comparison with the equilibrium behavior of protein against urea, we demonstrate that the unfolded polypeptide undergoes conformational compaction to a misfolded intermediate within milliseconds of refolding. The misfolded product appears to be stabilized under moderate denaturant concentrations. Further folding of the protein produces a stable intermediate, which undergoes partial unfolding-assisted large segmental rearrangements to achieve the native state. This study reveals an evolved folding pathway of the multidomain protein MSG, which involves surpassing the multiple misfolding traps during refolding.
Collapse
Affiliation(s)
- Vipul Kumar
- From the Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- From the Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
24
|
Kang H, Yang Z, Zhou R. Lanosterol Disrupts Aggregation of Human γD-Crystallin by Binding to the Hydrophobic Dimerization Interface. J Am Chem Soc 2018; 140:8479-8486. [DOI: 10.1021/jacs.8b03065] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongsuk Kang
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
25
|
Nadler H, Shaulov L, Blitsman Y, Mordechai M, Jopp J, Sal-Man N, Berkovich R. Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6261-6270. [PMID: 29726683 DOI: 10.1021/acs.langmuir.8b01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial pathogens inject virulence factors into host cells during bacterial infections using type III secretion systems. In enteropathogenic Escherichia coli, this system contains an external filament, formed by a self-oligomerizing protein called E. coli secreted protein A (EspA). The EspA filament penetrates the thick viscous mucus layer to facilitate the attachment of the bacteria to the gut-epithelium. To do that, the EspA filament requires noteworthy mechanical endurance considering the mechanical shear stresses found within the intestinal tract. To date, the mechanical properties of the EspA filament and the structural and biophysical knowledge of monomeric EspA are very limited, mostly due to the strong tendency of the protein to self-oligomerize. To overcome this limitation, we employed a single molecule force spectroscopy (SMFS) technique and studied the mechanical properties of EspA. Force extension dynamic of (I91)4-EspA-(I91)4 chimera revealed two structural unfolding events occurring at low forces during EspA unfolding, thus indicating no unique mechanical stability of the monomeric protein. SMFS examination of purified monomeric EspA protein, treated by a gradually refolding protocol, exhibited similar mechanical properties as the EspA protein within the (I91)4-EspA-(I91)4 chimera. Overall, our results suggest that the mechanical integrity of the EspA filament likely originates from the interactions between EspA monomers and not from the strength of an individual monomer.
Collapse
Affiliation(s)
- Hila Nadler
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Lihi Shaulov
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Yossi Blitsman
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Moran Mordechai
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Jürgen Jopp
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Ronen Berkovich
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| |
Collapse
|
26
|
Black JW, Kamenetska M, Ganim Z. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. NANO LETTERS 2017; 17:6598-6605. [PMID: 28972764 DOI: 10.1021/acs.nanolett.7b02413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.
Collapse
Affiliation(s)
- Jacob W Black
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Maria Kamenetska
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Ziad Ganim
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Whitley MJ, Xi Z, Bartko JC, Jensen MR, Blackledge M, Gronenborn AM. A Combined NMR and SAXS Analysis of the Partially Folded Cataract-Associated V75D γD-Crystallin. Biophys J 2017; 112:1135-1146. [PMID: 28355541 DOI: 10.1016/j.bpj.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
A cataract is a pathological condition characterized by the clouding of the normally clear eye lens brought about by deposition of crystallin proteins in the lens fiber cells. These protein aggregates reduce visual acuity by scattering or blocking incoming light. Chemical damage to proteins of the crystallin family, accumulated over a lifetime, leads to age-related cataract, whereas inherited mutations are associated with congenital or early-onset cataract. The V75D mutant of γD-crystallin is associated with congenital cataract in mice and was previously shown to un/fold via a partially folded intermediate. Here, we structurally characterized the stable equilibrium urea unfolding intermediate of V75D at the ensemble level using solution NMR and small-angle x-ray scattering. Our data show that, in the intermediate, the C-terminal domain retains a folded conformation that is similar to the native wild-type protein, whereas the N-terminal domain is unfolded and comprises an ensemble of random conformers, without any detectable residual structural propensities.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan C Bartko
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Martin Blackledge
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
28
|
Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH. Nat Commun 2017; 8:15137. [PMID: 28474685 PMCID: PMC5424181 DOI: 10.1038/ncomms15137] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 01/14/2023] Open
Abstract
Cataracts cause vision loss through the large-scale aggregation of eye lens proteins as a result of ageing or congenital mutations. The development of new treatments is hindered by uncertainty about the nature of the aggregates and their mechanism of formation. We describe the structure and morphology of aggregates formed by the P23T human γD-crystallin mutant associated with congenital cataracts. At physiological pH, the protein forms aggregates that look amorphous and disordered by electron microscopy, reminiscent of the reported formation of amorphous deposits by other crystallin mutants. Surprisingly, solid-state NMR reveals that these amorphous deposits have a high degree of structural homogeneity at the atomic level and that the aggregated protein retains a native-like conformation, with no evidence for large-scale misfolding. Non-physiological destabilizing conditions used in many in vitro aggregation studies are shown to yield qualitatively different, highly misfolded amyloid-like fibrils. Aggregation of eye lens proteins leads to cataracts, a major cause of blindness. Here the authors use solid state NMR to probe the structure of γD-crystallin eye lens proteins aggregates, which are found to retain a native-like conformation.
Collapse
|
29
|
The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy. J Mol Biol 2016; 428:4245-4257. [PMID: 27639437 DOI: 10.1016/j.jmb.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
One of the major challenges in modern biophysics is observing and understanding conformational changes during complex molecular processes, from the fundamental protein folding to the function of molecular machines. Single-molecule techniques have been one of the major driving forces of the huge progress attained in the last few years. Recent advances in resolution of the experimental setups, aided by theoretical developments and molecular dynamics simulations, have revealed a much higher degree of complexity inside these molecular processes than previously reported using traditional ensemble measurements. This review sums up the evolution of these developments and gives an outlook on prospective discoveries.
Collapse
|
30
|
Serebryany E, Woodard JC, Adkar BV, Shabab M, King JA, Shakhnovich EI. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin. J Biol Chem 2016; 291:19172-83. [PMID: 27417136 DOI: 10.1074/jbc.m116.735977] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jaie C Woodard
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Bharat V Adkar
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mohammed Shabab
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Eugene I Shakhnovich
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
31
|
Scholl ZN, Josephs EA, Marszalek PE. Modular, Nondegenerate Polyprotein Scaffolds for Atomic Force Spectroscopy. Biomacromolecules 2016; 17:2502-5. [PMID: 27276010 PMCID: PMC4940236 DOI: 10.1021/acs.biomac.6b00548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zackary N. Scholl
- Computational Biology and Bioinformatics Program, Edmund
T. Pratt, Jr. School of Engineering, Duke University, Durham, North Carolina, United
States
| | - Eric A. Josephs
- Department of Mechanical Engineering and Materials
Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, North
Carolina, United States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials
Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, North
Carolina, United States
| |
Collapse
|
32
|
Scholl ZN, Li Q, Yang W, Marszalek PE. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein. J Biol Chem 2016; 291:18263-75. [PMID: 27378818 DOI: 10.1074/jbc.m116.729525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand.
Collapse
Affiliation(s)
| | - Qing Li
- the Department of Mechanical Engineering and Materials Science, and
| | - Weitao Yang
- the Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
33
|
Tian P, Best RB. Structural Determinants of Misfolding in Multidomain Proteins. PLoS Comput Biol 2016; 12:e1004933. [PMID: 27163669 PMCID: PMC4862688 DOI: 10.1371/journal.pcbi.1004933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|