1
|
Ramage DE, Grant DW, Timms RT. Loss-of-function mutations in the dystonia gene THAP1 impair proteasome function by inhibiting PSMB5 expression. Nat Commun 2025; 16:1511. [PMID: 39929834 PMCID: PMC11811203 DOI: 10.1038/s41467-025-56782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The 26S proteasome is a multi-catalytic protease that serves as the endpoint for protein degradation via the ubiquitin-proteasome system. Proteasome function requires the concerted activity of 33 distinct gene products, but how the expression of proteasome subunits is regulated in mammalian cells remains poorly understood. Leveraging coessentiality data from the DepMap project, here we characterize an essential role for the dystonia gene THAP1 in maintaining the basal expression of PSMB5. PSMB5 insufficiency resulting from loss of THAP1 leads to defects in proteasome assembly, impaired proteostasis and cell death. Exploiting the fact that the toxicity associated with loss of THAP1 can be rescued upon exogenous expression of PSMB5, we define the transcriptional targets of THAP1 through RNA-seq analysis and perform a deep mutational scan to systematically assess the function of thousands of single amino acid THAP1 variants. Altogether, these data identify THAP1 as a critical regulator of proteasome function and suggest that aberrant proteostasis may contribute to the pathogenesis of THAP1 dystonia.
Collapse
Affiliation(s)
- Dylan E Ramage
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Drew W Grant
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, UK.
| |
Collapse
|
2
|
Han Y, Han Q, Tang Q, Zhang Y, Liu K. Molecular basis for the stepwise and faithful maturation of the 20 S proteasome. SCIENCE ADVANCES 2025; 11:eadr7943. [PMID: 39792683 PMCID: PMC11721566 DOI: 10.1126/sciadv.adr7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20S proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive. Here, we captured endogenous maturation intermediates of human 20S proteasome, which are low abundance and highly dynamic, and determined their structures by cryo-electron microscopy. Through structure-based functional studies, we identified the key switches that remodel and activate the proteolytic sites. Our results also revealed that the POMP degradation is tightly controlled by a dual-checking mechanism, while the α5 subunit senses POMP degradation to induce PAC1/2 release, achieving the full maturation. These findings elucidate mechanisms directing and safeguarding the proteasome maturation and set basis for building proteasomes to counteract the decline of protein degradation in aging and disease.
Collapse
Affiliation(s)
- Yaoyao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qian Han
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Kai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Mark E, Ramos PC, Kayser F, Höckendorff J, Dohmen RJ, Wendler P. Structural roles of Ump1 and β-subunit propeptides in proteasome biogenesis. Life Sci Alliance 2024; 7:e202402865. [PMID: 39260885 PMCID: PMC11391049 DOI: 10.26508/lsa.202402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
The yeast pre1-1(β4-S142F) mutant accumulates late 20S proteasome core particle precursor complexes (late-PCs). We report a 2.1 Å cryo-EM structure of this intermediate with full-length Ump1 trapped inside, and Pba1-Pba2 attached to the α-ring surfaces. The structure discloses intimate interactions of Ump1 with β2- and β5-propeptides, which together fill most of the antechambers between the α- and β-rings. The β5-propeptide is unprocessed and separates Ump1 from β6 and β7. The β2-propeptide is disconnected from the subunit by autocatalytic processing and localizes between Ump1 and β3. A comparison of different proteasome maturation states reveals that maturation goes along with global conformational changes in the rings, initiated by structuring of the proteolytic sites and their autocatalytic activation. In the pre1-1 strain, β2 is activated first enabling processing of β1-, β6-, and β7-propeptides. Subsequent maturation of β5 and β1 precedes degradation of Ump1, tightening of the complex, and finally release of Pba1-Pba2.
Collapse
Affiliation(s)
- Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Paula C Ramos
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fleur Kayser
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Jörg Höckendorff
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - R Jürgen Dohmen
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. Nat Commun 2024; 15:8184. [PMID: 39294158 PMCID: PMC11410832 DOI: 10.1038/s41467-024-52513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Chenyu Zhou
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Zarith Mohammad
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Jianhua Zhao
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
5
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607236. [PMID: 39211201 PMCID: PMC11361150 DOI: 10.1101/2024.08.08.607236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. To understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observed an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
|
6
|
Velez B, Walsh RM, Rawson S, Razi A, Adams L, Perez EF, Jiao F, Blickling M, Rajakumar T, Fung D, Huang L, Hanna J. Mechanism of autocatalytic activation during proteasome assembly. Nat Struct Mol Biol 2024; 31:1167-1175. [PMID: 38600323 PMCID: PMC11705615 DOI: 10.1038/s41594-024-01262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Many large molecular machines are too elaborate to assemble spontaneously and are built through ordered pathways orchestrated by dedicated chaperones. During assembly of the core particle (CP) of the proteasome, where protein degradation occurs, its six active sites are simultaneously activated via cleavage of N-terminal propeptides. Such activation is autocatalytic and coupled to fusion of two half-CP intermediates, which protects cells by preventing activation until enclosure of the active sites within the CP interior. Here we uncover key mechanistic aspects of autocatalytic activation, which proceeds through alignment of the β5 and β2 catalytic triad residues, respectively, with these triads being misaligned before fusion. This mechanism contrasts with most other zymogens, in which catalytic centers are preformed. Our data also clarify the mechanism by which individual subunits can be added in a precise, temporally ordered manner. This work informs two decades-old mysteries in the proteasome field, with broader implications for protease biology and multisubunit complex assembly.
Collapse
Affiliation(s)
- Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lea Adams
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Erignacio Fermin Perez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Fenglong Jiao
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Marie Blickling
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Darlene Fung
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Watanabe A, Yashiroda H, Ishihara S, Lo M, Murata S. The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes. Cells 2022; 11:cells11091580. [PMID: 35563886 PMCID: PMC9105311 DOI: 10.3390/cells11091580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The proteasome is a large protein complex responsible for proteolysis in cells. Though the proteasome is widely conserved in all eukaryotes, vertebrates additionally possess tissue-specific proteasomes, termed immunoproteasomes and thymoproteasomes. These specialized proteasomes diverge from constitutive proteasomes in the makeup of their catalytic 20S core particle (CP), whereby the constitutive β1, β2, and β5 catalytic subunits are replaced by β1i, β2i, and β5i in immunoproteasomes, or β1i, β2i, and β5t in thymoproteasomes. However, as constitutive β1, β2, and β5 are also present in tissues and cells expressing immuno- and thymoproteasomes, the specialized proteasomes must be able to selectively incorporate their specific subunits. Here, we review the mechanisms governing the assembly of constitutive and specialized proteasomes elucidated thus far. Studies have revealed that β1i and β2i are added onto the α-ring of the CP prior to the other β subunits. Furthermore, β5i and β5t can be incorporated independent of β4, whereas constitutive β5 incorporation is dependent on β4. These mechanisms allow the immuno- and thymoproteasomes to integrate tissue-specific β-subunits without contamination from constitutive β1, β2, and β5. We end the review with a brief discussion on the diseases caused by mutations to the immunoproteasome and the proteins involved with its assembly.
Collapse
|
8
|
Schnell HM, Walsh RM, Rawson S, Hanna J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J Cell Sci 2022; 135:275096. [PMID: 35451017 PMCID: PMC9080555 DOI: 10.1242/jcs.259622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of cellular activity is mediated by large multisubunit complexes. However, many of these complexes are too complicated to assemble spontaneously. Instead, their biogenesis is facilitated by dedicated chaperone proteins, which are themselves excluded from the final product. This is the case for the proteasome, a ubiquitous and highly conserved cellular regulator that mediates most selective intracellular protein degradation in eukaryotes. The proteasome consists of two subcomplexes: the core particle (CP), where proteolysis occurs, and the regulatory particle (RP), which controls substrate access to the CP. Ten chaperones function in proteasome biogenesis. Here, we review the pathway of CP biogenesis, which requires five of these chaperones and proceeds through a highly ordered multistep pathway. We focus on recent advances in our understanding of CP assembly, with an emphasis on structural insights. This pathway of CP biogenesis represents one of the most dramatic examples of chaperone-mediated assembly and provides a paradigm for understanding how large multisubunit complexes can be produced.
Collapse
Affiliation(s)
- Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Richard M Walsh
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
9
|
Interaction with the Assembly Chaperone Ump1 Promotes Incorporation of the β7 Subunit into Half-Proteasome Precursor Complexes Driving Their Dimerization. Biomolecules 2022; 12:biom12020253. [PMID: 35204754 PMCID: PMC8961534 DOI: 10.3390/biom12020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong defects in the autocatalytic processing of β subunits, and consequently have lower proteolytic activity. Here, we dissect an important interaction of Ump1 with the β7 subunit that is critical for proteasome biogenesis. Functional domains of Ump1 and the interacting proteasome subunit β7 were mapped, and the functional consequences of their deletion or mutation were analyzed. Cells in which the first sixteen Ump1 residues were deleted display growth phenotypes similar to ump1∆, but massively accumulate 15S PC and distinct proteasome intermediate complexes containing the truncated protein. The viability of these cells depends on the transcription factor Rpn4. Remarkably, β7 subunit overexpression re-established viability in the absence of Rpn4. We show that an N-terminal domain of Ump1 and the propeptide of β7 promote direct interaction of the two polypeptides in vitro. This interaction is of critical importance for the recruitment of β7 precursor during proteasome assembly, a step that drives dimerization of 15S PCs and the formation of 20S CPs.
Collapse
|
10
|
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes. Cells 2021; 10:cells10113049. [PMID: 34831272 PMCID: PMC8616536 DOI: 10.3390/cells10113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.
Collapse
|
11
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Suppahia A, Itagi P, Burris A, Kim FMG, Vontz A, Kante A, Kim S, Im W, Deeds EJ, Roelofs J. Cooperativity in Proteasome Core Particle Maturation. iScience 2020; 23:101090. [PMID: 32380419 PMCID: PMC7210456 DOI: 10.1016/j.isci.2020.101090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Proteasomes are multi-subunit protease complexes found in all domains of life. The maturation of the core particle (CP), which harbors the active sites, involves dimerization of two half CPs (HPs) and an autocatalytic cleavage that removes β propeptides. How these steps are regulated remains poorly understood. Here, we used the Rhodococcus erythropolis CP to dissect this process in vitro. Our data show that propeptides regulate the dimerization of HPs through flexible loops we identified. Furthermore, N-terminal truncations of the propeptides accelerated HP dimerization and decelerated CP auto-activation. We identified cooperativity in autocatalysis and found that the propeptide can be partially cleaved by adjacent active sites, potentially aiding an otherwise strictly autocatalytic mechanism. We propose that cross-processing during bacterial CP maturation is the underlying mechanism leading to the observed cooperativity of activation. Our work suggests that the bacterial β propeptide plays an unexpected and complex role in regulating dimerization and autocatalytic activation.
Collapse
Affiliation(s)
- Anjana Suppahia
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Pushpa Itagi
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Faith Mi Ge Kim
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Alexander Vontz
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Anupama Kante
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Seonghoon Kim
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA 18105, USA; Department of Chemistry, Lehigh University, Bethlehem, PA 18105, USA
| | - Eric J Deeds
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 99024, USA.
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
13
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
14
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
15
|
Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci Rep 2019; 9:3170. [PMID: 30816680 PMCID: PMC6395709 DOI: 10.1038/s41598-019-39508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
The β5 subunit of the proteasome has been shown in worms and in human cell lines to be regulatory. In these models, β5 overexpression results in upregulation of the entire proteasome complex which is sufficient to increase proteotoxic stress resistance, improve metabolic parameters, and increase longevity. However, fundamental questions remain unanswered, including the temporal requirements for β5 overexpression and whether β5 overexpression can extend lifespan in other species. To determine if adult-only overexpression of the β5 subunit can increase proteasome activity in a different model, we characterized phenotypes associated with β5 overexpression in Drosophila melanogaster adults. We find that adult-only overexpression of the β5 subunit does not result in transcriptional upregulation of the other subunits of the proteasome as they do in nematodes and human cell culture. Despite this lack of a regulatory role, boosting β5 expression increases the chymotrypsin-like activity associated with the proteasome, reduces both the size and number of ubiquitinated protein aggregates in aged flies, and increases longevity. Surprisingly, these phenotypes were not associated with increased resistance to acute proteotoxic insults or improved metabolic parameters.
Collapse
|
16
|
Spits M, Janssen LJ, Voortman LM, Kooij R, Neefjes ACM, Ovaa H, Neefjes J. Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. J Cell Sci 2019; 132:jcs.225524. [DOI: 10.1242/jcs.225524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Upon Nuclear envelope (NE) fragmentation in the prometaphase the nuclear and cytosolic proteomes blend and must be redefined to reinstate homeostasis. Using a molecular GFP ladder, we show that in early mitosis, condensed chromatin excludes cytosolic proteins. When the NE reforms tightly around condensed chromatin in late mitosis, large GFP multimers are automatically excluded from the nucleus. This can be circumvented by limiting DNA condensation with Q15, a Condensin II inhibitor. Soluble small and other NLS-targeted proteins then swiftly enter the expanding nuclear space. We then examined the proteasome, located in cytoplasm and nucleus. A significant fraction of 20S proteasomes is imported by importin IPO5 within 20 minutes following reformation of the nucleus, after which import comes to an abrupt halt. This suggests that maintaining the nuclear-cytosol distribution after mitosis requires chromatin condensation to exclude cytosolic material from the nuclear space and specialized machineries for nuclear import of large protein complexes such as the proteasome.
Collapse
Affiliation(s)
- Menno Spits
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lennert J. Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lenard M. Voortman
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Raymond Kooij
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Anna C. M. Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| |
Collapse
|
17
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
20
|
A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun 2016; 7:10900. [PMID: 26964885 PMCID: PMC4792962 DOI: 10.1038/ncomms10900] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/31/2016] [Indexed: 11/28/2022] Open
Abstract
Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease. The proteasome, an essential molecular machine, is a threonine protease, but the evolution and the components of its proteolytic centre are unclear. Here, the authors use structural biology and biochemistry to investigate the role of proteasome active site residues on maturation and activity.
Collapse
|