1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Shapovalova K, Zorkina Y, Abramova O, Andryushchenko A, Chekhonin V, Kostyuk G. The Role of Neuropeptide Y in the Pathogenesis of Alzheimer's Disease: Diagnostic Significance and Neuroprotective Functions. Neurol Int 2024; 16:1318-1331. [PMID: 39585059 PMCID: PMC11587103 DOI: 10.3390/neurolint16060100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background. Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been suggested that the factors that cause pathologic changes and lead to the development of AD may also include changes in certain neuropeptides. The implication of the neuropeptide (NPY) in the pathogenesis of AD and its potential therapeutic role is possible due to the following properties: involvement in adult neurogenesis, regulatory effects on the immune system, the inhibition of potential-dependent Ca2+ channels, and the reduction in glutamate excitotoxicity. The aim of our review was to summarize recent data on the role of NPY in AD development and to explore its potential as a biomarker and a possible therapeutic target. Materials and methods. We performed a systematic review of studies, for which we search using the keywords "Alzheimer's disease and neuropeptide Y", "Alzheimer's disease and NPY", "AD and NPY", "Neuropeptide Y and Neurodegenerative disease". Nineteen articles were included in the review. Results. The NPY levels in cerebrospinal fluid and plasma have been found to be reduced or unchanged in AD patients; however, these findings need to be confirmed in more recent studies. Data obtained in transgenic animal models support the role of NPY in AD pathogenesis. The neuroprotective effects of NPY have been demonstrated in vitro and in vivo in AD models. Conclusion. The findings may open new possibilities for using NPY as a diagnostic marker to detect AD at earlier stages of the disease or as a potential therapeutic target due to its neuroprotective properties.
Collapse
Affiliation(s)
- Ksenia Shapovalova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
3
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Wang N, Jeong I, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Stenersen JM, Reddy JS, Qiao M, Flaherty D, Gunasekaran TI, Yang Z, Jurisch-Yaksi N, Teich AF, Kanekiyo T, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling. CELL GENOMICS 2024; 4:100642. [PMID: 39216475 PMCID: PMC11480862 DOI: 10.1016/j.xgen.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aβ42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.
Collapse
Affiliation(s)
- Hüseyin Tayran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Elanur Yilmaz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Prabesh Bhattarai
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yiyi Ma
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nastasia Nelson
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Nada Kassara
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Ruya Merve Dogru
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Jakob Mørkved Stenersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph S Reddy
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Min Qiao
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Delaney Flaherty
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Tamil Iniyan Gunasekaran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Zikun Yang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew F Teich
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Caghan Kizil
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
4
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
5
|
Palanivel V, Gupta V, Chitranshi N, Tietz O, Vander Wall R, Blades R, Maha Thananthirige KP, Salkar A, Shen C, Mirzaei M, Gupta V, Graham SL, Basavarajappa D. Neuropeptide Y receptor activation preserves inner retinal integrity through PI3K/Akt signaling in a glaucoma mouse model. PNAS NEXUS 2024; 3:pgae299. [PMID: 39114576 PMCID: PMC11305140 DOI: 10.1093/pnasnexus/pgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Neuropeptide Y (NPY), an endogenous peptide composed of 36 amino acids, has been investigated as a potential therapeutic agent for neurodegenerative diseases due to its neuroprotective attributes. This study investigated the neuroprotective effects of NPY in a mouse model of glaucoma characterized by elevated intraocular pressure (IOP) and progressive retinal ganglion cell degeneration. Elevated IOP in mice was induced through intracameral microbead injections, accompanied by intravitreal administration of NPY peptide. The results demonstrated that NPY treatment preserved both the structural and functional integrity of the inner retina and mitigated axonal damage and degenerative changes in the optic nerve under high IOP conditions. Further, NPY treatment effectively reduced inflammatory glial cell activation, as evidenced by decreased expression of glial fibrillary acidic protein and Iba-1. Notably, endogenous NPY expression and its receptors (NPY-Y1R and NPY-Y4R) levels were negatively affected in the retina under elevated IOP conditions. NPY treatment restored these changes to a significant extent. Molecular analysis revealed that NPY mediates its protective effects through the mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. These findings highlight the therapeutic potential of NPY in glaucoma treatment, underscoring its capacity to preserve retinal health, modulate receptor expression under stress, reduce neuroinflammation, and impart protection against axonal impairment.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ole Tietz
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Reuben Blades
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Kanishka Pushpitha Maha Thananthirige
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Chao Shen
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
6
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Reddy JS, Qiao M, Flaherty D, Teich AF, Gunasekaran TI, Yang Z, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573893. [PMID: 38260408 PMCID: PMC10802315 DOI: 10.1101/2024.01.02.573893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aβ42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience. Abstract Figure
Collapse
|
7
|
Al-Keilani MS, Almomani BA, Jaradat SA, Al-Sawalha NA, Qawasmeh MA. Alpha Calcitonin Gene-related Peptide, Neuropeptide Y, and Substance P as Biomarkers for Diagnosis and Disease Activity and Severity in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:512-524. [PMID: 37013432 DOI: 10.2174/1871527322666230403130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS). OBJECTIVE The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity. METHODS Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA. RESULTS We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (p < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (p = 0.007) and healthy controls (p = 0.001), and it positively correlated with EDSS (r = 0.270, p = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (p < 0.001 and p = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (p < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, p = 0.022) and duration of current DMT (r = -0.315, p = 0.042). CONCLUSION Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, College of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Majdi Al Qawasmeh
- Department of Neurology, College of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
8
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
9
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
10
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
11
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
12
|
Dong W, Lu Y, Zhai Y, Bi Y, Peng Y, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Plasma neuropeptide Y and cognitive impairment after acute ischemic stroke. J Affect Disord 2022; 317:221-227. [PMID: 36029875 DOI: 10.1016/j.jad.2022.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) has a modulatory role in learning and memory, and is involved in the pathophysiology of neurodegenerative diseases. However, there was no population-based evidence on the relationship between NPY and post-stroke cognitive impairment (PSCI). We aimed to prospectively examine the association between plasma NPY and cognitive impairment among patients with acute ischemic stroke. METHODS On the basis of samples from the China Antihypertensive Trial in Acute Ischemic Stroke, 593 patients with baseline plasma NPY levels were finally included in this study. The study outcome was cognitive impairment (Montreal Cognitive Assessment score < 26) at 3 months after ischemic stroke. Logistic regression models were used to estimate the risk of cognitive impairment. RESULTS After 3 months of follow-up, 422 participants (71.2 %) experienced cognitive impairment. Multivariable-adjusted odds ratio (95 % confidence interval) for the highest tertile of NPY was 0.58 (0.36-0.92) compared with the lowest tertile. Each 1-SD higher log-NPY was associated with a decreased risk of 20 % (95 % confidence interval 2 %-34 %) for PSCI. The addition of plasma NPY to the basic model with conventional risk factors improved the risk reclassification (continuous net reclassification index was 22.8 %, p = 0.01; integrated discrimination improvement was 0.9 %, p = 0.02) for PSCI. LIMITATIONS We measured plasma NPY only once at baseline and failed to explore the association between NPY changes and PSCI. CONCLUSIONS Elevated plasma NPY levels were associated with a decreased risk of cognitive impairment, suggesting plasma NPY may serve as a predictive factor and potential therapeutic target for PSCI.
Collapse
Affiliation(s)
- Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yujia Zhai
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yucong Bi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep 2022; 40:111433. [PMID: 36170830 DOI: 10.1016/j.celrep.2022.111433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.
Collapse
|
14
|
Yao Y, Hu Y, Yang J, Zhang C, He Y, Qi H, Zeng Y, Zhang A, Liu X, Zhu X. Inhibition of neuronal nitric oxide synthase protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in temporal lobe epilepsy mice. Free Radic Biol Med 2022; 188:45-61. [PMID: 35714846 DOI: 10.1016/j.freeradbiomed.2022.06.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a pivotal role in the pathological process of neuronal injury in the development of epilepsy. Our previous study has demonstrated that nitric oxide (NO) derived from nNOS in the epileptic brain is neurotoxic due to its reaction with the superoxide radical with the formation of peroxynitrite. Neuropeptide Y (NPY) is widely expressed in the mammalian brain, which has been implicated in energy homeostasis and neuroprotection. Recent studies suggest that nNOS may act as a mediator of NPY signaling. Here in this study, we sought to determine whether NPY expression is regulated by nNOS, and if so, whether the regulation of NPY by nNOS is associated with the neuronal injuries in the hippocampus of epileptic brain. Our results showed that pilocarpine-induced temporal lobe epilepsy (TLE) mice exhibited an increased level of nNOS expression and a decreased level of NPY expression along with hippocampal neuronal injuries and cognition deficit. Genetic deletion of nNOS gene, however, significantly upregulated hippocampal NPY expression and reduced TLE-induced hippocampal neuronal injuries and cognition decline. Knockdown of NPY abolished nNOS depletion-induced neuroprotection and cognitive improvement in the TLE mice, suggesting that inhibition of nNOS protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in TLE mice. Targeting nNOS-NPY signaling pathway in the epileptic brain might provide clinical benefit by attenuating neuronal injuries and preventing cognitive deficits in epilepsy patients.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yang Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuqi He
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yu Zeng
- National Residents Clinical Skills Training Center, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
15
|
Baik JY, Kim M, Bao J, Long Q, Shen L. Identifying Alzheimer's genes via brain transcriptome mapping. BMC Med Genomics 2022; 15:116. [PMID: 35590321 PMCID: PMC9118564 DOI: 10.1186/s12920-022-01260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most common neurodegenerative disorders characterized by progressive decline in cognitive function. Targeted genetic analyses, genome-wide association studies, and imaging genetic analyses have been performed to detect AD risk and protective genes and have successfully identified dozens of AD susceptibility loci. Recently, brain imaging transcriptomics analyses have also been conducted to investigate the relationship between neuroimaging traits and gene expression measures to identify interesting gene-traits associations. These imaging transcriptomic studies typically do not involve the disease outcome in the analysis, and thus the identified brain or transcriptomic markers may not be related or specific to the disease outcome. RESULTS We propose an innovative two-stage approach to identify genes whose expression profiles are related to diagnosis phenotype via brain transcriptome mapping. Specifically, we first map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model. Then, the gene-diagnosis association is assessed by spatially correlating the brain transcriptome map with the diagnostic effect map on the brain-wide imaging traits. To demonstrate the promise of our approach, we apply it to the integrative analysis of the brain transcriptome data from the Allen Human Brain Atlas (AHBA) and the amyloid imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our method identifies 12 genes whose brain-wide transcriptome patterns are highly correlated with six different diagnostic effect maps on the amyloid imaging traits. These 12 genes include four confirmatory findings (i.e., AD genes reported in DisGeNET) and eight novel genes that have not be associated with AD in DisGeNET. CONCLUSION We have proposed a novel disease-related brain transcriptomic mapping method to identify genes whose expression profiles spatially correlated with regional diagnostic effects on a studied brain trait. Our empirical study on the AHBA and ADNI data shows the promise of the approach, and the resulting AD gene discoveries provide valuable information for better understanding biological pathways from transcriptomic signatures to intermediate brain traits and to phenotypic disease outcomes.
Collapse
Affiliation(s)
- Jae Young Baik
- grid.25879.310000 0004 1936 8972School of Arts and Sciences, University of Pennsylvania, Philadelphia, USA
| | - Mansu Kim
- grid.411947.e0000 0004 0470 4224Department of Artificial intelligence, Catholic University of Korea, Bucheon, Republic of Korea
| | - Jingxuan Bao
- grid.25879.310000 0004 1936 8972Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Qi Long
- grid.25879.310000 0004 1936 8972Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | | |
Collapse
|
16
|
Development of Neuropeptide Y and Cell-Penetrating Peptide MAP Adsorbed onto Lipid Nanoparticle Surface. Molecules 2022; 27:molecules27092734. [PMID: 35566093 PMCID: PMC9101637 DOI: 10.3390/molecules27092734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.
Collapse
|
17
|
Sunkaria A, Bhardwaj S. Sleep Disturbance and Alzheimer's Disease: The Glial Connection. Neurochem Res 2022; 47:1799-1815. [PMID: 35303225 DOI: 10.1007/s11064-022-03578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
18
|
Kaur R, Arora N, Nair MG, Prasad A. The interplay of helminthic neuropeptides and proteases in parasite survival and host immunomodulation. Biochem Soc Trans 2022; 50:107-118. [PMID: 35076687 PMCID: PMC9042389 DOI: 10.1042/bst20210405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Neuropeptides comprise a diverse and broad group of neurotransmitters in vertebrates and invertebrates, with critical roles in neuronal signal transduction. While their role in controlling learning and memory in the brains of mammals is known, their extra-synaptic function in infection and inflammation with effects on distinct tissues and immune cells is increasingly recognized. Helminth infections especially of the central nervous system (CNS), such as neurocysticercosis, induce neuropeptide production by both host and helminth, but their role in host-parasite interplay or host inflammatory response is unclear. Here, we review the neurobiology of helminths, and discuss recent studies on neuropeptide synthesis and function in the helminth as well as the host CNS and immune system. Neuropeptides are summarized according to structure and function, and we discuss the complex enzyme processing for mature neuropeptides, focusing on helminth enzymes as potential targets for novel anthelminthics. We next describe known immunomodulatory effects of mammalian neuropeptides discovered from mouse infection models and draw functional parallels with helminth neuropeptides. Last, we discuss the anti-microbial properties of neuropeptides, and how they may be involved in host-microbiota changes in helminth infection. Overall, a better understanding of the biology of helminth neuropeptides, and whether they affect infection outcomes could provide diagnostic and therapeutic opportunities for helminth infections.
Collapse
Affiliation(s)
- Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Meera G. Nair
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
19
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
20
|
Spencer B, Rissman RA, Overk C, Masliah E. Novel Brain-Penetrating Single Chain Antibodies Directed Against 3RTau for the Treatment of Alzheimer's Disease and Related Dementias. Methods Mol Biol 2022; 2383:447-457. [PMID: 34766306 DOI: 10.1007/978-1-0716-1752-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD), Pick's disease, fronto-temporal lobar degeneration, cortico-basal degeneration, and primary age related tauopathy are examples of neurodegenerative disorders with tau accumulation and jointly referred as "tauopathies." The mechanisms through which tau leads to neurodegeneration are not fully understood but include conversion into toxic oligomers and protofibrils, cell-to-cell propagation, post-transcriptional modifications and as a mediator of cell death signals among others. Potential therapeutics includes reducing tau synthesis (e.g., anti-sense); targeting selective tau species and aggregates or blocking cell-to-cell transmission (e.g., antibodies) or by promoting clearance of tau (e.g., autophagy activators). Among them, immunotherapy is currently one of the approaches most actively explored including active, passive, and cellular. A potential problem with immunotherapy has been the trafficking of the antibodies into the CNS. In this chapter, we describe a method for the production and testing of viral vector driven, brain-penetrating, single chain antibodies that specifically recognize 3RTau. These single chain antibodies are modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments recognize tau with potential value for the treatment of AD and related dementias.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Cui C, Wang LF, Huang SB, Zhao P, Chen YQ, Wu YB, Qiao CM, Zhao WJ, Shen YQ. Adequate expression of neuropeptide Y is essential for the recovery of zebrafish motor function following spinal cord injury. Exp Neurol 2021; 345:113831. [PMID: 34363807 DOI: 10.1016/j.expneurol.2021.113831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
In strong contrast to limited repair within the mammalian central nervous system, the spinal cord of adult zebrafish is capable of almost complete recovery following injury. Understanding the mechanism underlying neural repair and functional recovery in zebrafish may lead to innovative therapies for human spinal cord injury (SCI). Since neuropeptide Y (NPY) plays a protective role in the pathogenesis of several neurological diseases, in the present study, we evaluated the effects of NPY on neuronal repair and subsequent recovery of motor function in adult zebrafish following SCI. Real-time quantitative PCR (qRT-PCR), in situ hybridization and immunostaining for NPY revealed decreased NPY expression at 12 hours (h), 6 and 21 days (d) after SCI. Double-immunostaining for NPY and islet-1, a motoneuron marker, showed that NPY was expressed in spinal cord motoneurons. Morpholino (MO) treatment for suppressing the expression of NPY inhibited supraspinal axon regrowth and locomotor recovery, in which double-staining for proliferating cell nuclear antigen (PCNA) and islet-1 showed a reduction in motoneuron proliferation. Similarly, a downregulated mRNA level of Y1 receptor of NPY (NPY1R) was also detected at 12 h, 6 and 21 d after injury. Immunostaining for NPY and in situ hybridization for NPY1R revealed that NPY1R was co-localized with NPY. Collectively, the results suggest that NPY expression in motoneurons promotes descending axon regeneration and locomotor recovery in adult zebrafish after SCI, possibly by regulating motoneuron proliferation through activation of NPY1R.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lin-Fang Wang
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shu-Bing Huang
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong-Quan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi-Bo Wu
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
22
|
Luckey AM, Robertson IH, Lawlor B, Mohan A, Vanneste S. Sex Differences in Locus Coeruleus: A Heuristic Approach That May Explain the Increased Risk of Alzheimer's Disease in Females. J Alzheimers Dis 2021; 83:505-522. [PMID: 34334399 DOI: 10.3233/jad-210404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article aims to reevaluate our approach to female vulnerability to Alzheimer's disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOEɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Ian H Robertson
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anusha Mohan
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Whole Blood Transcriptome Characterization of 3xTg-AD Mouse and Its Modulation by Transcranial Direct Current Stimulation (tDCS). Int J Mol Sci 2021; 22:ijms22147629. [PMID: 34299250 PMCID: PMC8306644 DOI: 10.3390/ijms22147629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/05/2022] Open
Abstract
The 3xTg-AD mouse is a widely used model in the study of Alzheimer’s Disease (AD). It has been extensively characterized from both the anatomical and behavioral point of view, but poorly studied at the transcriptomic level. For the first time, we characterize the whole blood transcriptome of the 3xTg-AD mouse at three and six months of age and evaluate how its gene expression is modulated by transcranial direct current stimulation (tDCS). RNA-seq analysis revealed 183 differentially expressed genes (DEGs) that represent a direct signature of the genetic background of the mouse. Moreover, in the 6-month-old 3xTg-AD mice, we observed a high number of DEGs that could represent good peripheral biomarkers of AD symptomatology onset. Finally, tDCS was associated with gene expression changes in the 3xTg-AD, but not in the control mice. In conclusion, this study provides an in-depth molecular characterization of the 3xTg-AD mouse and suggests that blood gene expression can be used to identify new biomarkers of AD progression and treatment effects.
Collapse
|
24
|
Reid HMO, Chen-Mack N, Snowden T, Christie BR. Understanding Changes in Hippocampal Interneurons Subtypes in the Pathogenesis of Alzheimer's Disease: A Systematic Review. Brain Connect 2021; 11:159-179. [PMID: 33559520 DOI: 10.1089/brain.2020.0879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: It is becoming increasingly recognized that there is significant interneuron degeneration in Alzheimer's disease. As the hippocampus is integral for learning and memory, we performed a systematic review of primary literature focused on the relationship between Alzheimer's and hippocampal interneurons. In this study, we summarize the experimental work performed to date and identify opportunities for future experiments. Objectives: This PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-style systematic review seeks to summarize the findings of all accessible research focused on cholecystokinin (CCK), neuropeptide Y (NPY), parvalbumin (PV), and somatostatin (SOM) interneurons in the hippocampal formation. Results: One thousand five hundred ninety-three articles were pulled from PubMed, PsycInfo, and Web of Science, based on three blocks of search terms. There were 45 articles that met all the predetermined inclusion/exclusion criteria. There is strong evidence that PV interneurons are affected early in the disease by toxic amyloid beta (Aβ) fragments; SOM interneurons are affected indirectly while the SOM neuropeptide may act to slowly worsen toxic Aβ fragment accumulation, whereas NPY- and CCK-positive interneurons are affected later in the progression of the disease. Conclusions: Fewer studies have been performed on NPY and CCK interneurons, and there is room for further investigations regarding the role of PV interneurons in Alzheimer's to help resolve contradictory findings. This review found that PV interneurons are affected early in the disease, but only in Alzheimer's precursor protein but not tau models. NPY and CCK interneurons were found to be affected later in the disease, and SOM interneurons vary greatly. Future studies may consider reporting immunohistochemical studies inclusive of either cell location or morphology-as well as marker to give a more robust picture of the disease.
Collapse
Affiliation(s)
- Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathan Chen-Mack
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
25
|
Ben-Shushan S, Miller Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J Phys Chem B 2021; 125:2796-2811. [PMID: 33570949 PMCID: PMC8389909 DOI: 10.1021/acs.jpcb.0c11151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by deposits of amyloid proteins. The homeostasis of metal ions is crucial for the normal biological functions in the brain. However, in AD and PD, the imbalance of metal ions leads to formation of amyloid deposits. In the past four decades, there has been extensive effort to design compound agents than can chelate metal ions with the aim of preventing the formation of the amyloid deposits. Unfortunately, the compounds to date that were designed were not successful candidates to be used in clinical trials. Neuropeptides are small molecules that are produced and released by neurons. It has been shown that neuropeptides have neuroprotective effects in the brain and reduce the formation of amyloid deposits. This Review Article is focused on the function of neuropeptides as metal chelators. Experimental and computational studies demonstrated that neuropeptides could bind metal ions, such as Cu2+ and Zn2+. This Review Article provides perspectives and initiates future studies to investigate the role of neuropeptides as metal chelators in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shira Ben-Shushan
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
26
|
Bioque M, González-Rodríguez A, Garcia-Rizo C, Cobo J, Monreal JA, Usall J, Soria V, Labad J. Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110130. [PMID: 33045322 DOI: 10.1016/j.pnpbp.2020.110130] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive impairment has been consistently found to be a core feature of serious mental illnesses such as schizophrenia and major mood disorders (major depression and bipolar disorder). In recent years, a great effort has been made in elucidating the biological causes of cognitive deficits and the search for new biomarkers of cognition. Microbiome and gut-brain axis (MGB) hormones have been postulated to be potential biomarkers of cognition in serious mental illnesses. The main aim of this review was to synthesize current evidence on the association of microbiome and gut-brain hormones on cognitive processes in schizophrenia and major mood disorders and the association of MGB hormones with stress and the immune system. Our review underscores the role of the MGB axis on cognitive aspects of serious mental illnesses with the potential use of agents targeting the gut microbiota as cognitive enhancers. However, the current evidence for clinical trials focused on the MGB axis as cognitive enhancers in these clinical populations is scarce. Future clinical trials using probiotics, prebiotics, antibiotics, or faecal microbiota transplantation need to consider potential mechanistic pathways such as the HPA axis, the immune system, or gut-brain axis hormones involved in appetite control and energy homeostasis.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clinic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona (UB), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Alexandre González-Rodríguez
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona (UB), IDIBAPS, CIBERSAM, Barcelona, Spain.
| | - Jesús Cobo
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - José Antonio Monreal
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - Judith Usall
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, University of Barcelona (UB), CIBERSAM, Barcelona, Spain
| | - Virginia Soria
- Department of Psychiatry, Hospital Universitari Bellvitge, Hospitalet de Llobregat, University of Barcelona (UB), IDIBELL, CIBERSAM, Spain
| | | | - Javier Labad
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| |
Collapse
|
27
|
Peyton L, Oliveros A, Choi DS, Jang MH. Hippocampal regenerative medicine: neurogenic implications for addiction and mental disorders. Exp Mol Med 2021; 53:358-368. [PMID: 33785869 PMCID: PMC8080570 DOI: 10.1038/s12276-021-00587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Psychiatry & Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
28
|
Mataram MBA, Hening P, Harjanti FN, Karnati S, Wasityastuti W, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer's disease. J Chem Neuroanat 2020; 111:101885. [PMID: 33188864 DOI: 10.1016/j.jchemneu.2020.101885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022]
Abstract
The aim of this study was to identify the effects of Ocimum sanctum Linn. ethanolic extract (OSE) on the neurons of the CA1, CA3, and DG hippocampal areas with the use of in vivo and in vitro models of Alzheimer's diseases (AD). Twenty-one two-month-old male rats were divided into three groups: untreated (Group A, n = 3), AD rats model pretreated with OSE followed by induction for Trimethyltin (TMT) on day 7 (group B, n = 9), and AD rats model treated with OSE both as pre-TMT introduction for 7 days and post-TMT induction for 21 days (group C, n = 9). AD rats were sacrificed on days 7, 14, and 21, and brain samples were collected and analyzed for neuronal density and neuropeptide Y (NPY) immunoreactivity. To corroborate the in vivo observations, HEK-293 cells were treated with TMT and used as an in vitro model of AD. The results were then analyzed using FITC Annexin V and flow cytometry. Nuclear fragmentation was observed in cells stained with Hoechst 33342 by confocal microscopy. The results showed a significant increase in the number of neurons and NPY expression in the AD rats that were pre- and post-treated with OSE (p < 0.05). Indeed, OSE was able to retain and promote neuronal density in the rat model of AD. Further studies of an in vitro model of neurodegeneration with Ocimum sanctum Linn. ethanolic extract inhibited apoptosis in TMT-induced HEK-293 cells. Moreover, OSE prevented nuclear fragmentation, which was confirmed by staining the nuclei of HEK-293 cells. Taken together, there findings suggest that OSE has the potential as a neuroprotective agent (retaining the autobiographical memory),and the neuroproliferation of neurons in the CA1, CA3, and DG hippocampal areas in the rats¡ model of neurodegeneration was mediated by activation of NPY expression.
Collapse
Affiliation(s)
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fitria N Harjanti
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Srikanth Karnati
- Department of Anatomy and Cell Biology, Julius Maxilimilian University Wurzburg, Germany
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
29
|
Press-Sandler O, Miller Y. Assessments of the Effect of Neurokinin B on Toxic Aβ Aggregates in Alzheimer's Disease with the Molecular Mechanisms' Action. ACS Chem Neurosci 2020; 11:3418-3429. [PMID: 32986399 DOI: 10.1021/acschemneuro.0c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of past and current treatments for Alzheimer's disease (AD) patients on the market suffer from the dual drawbacks of a lack of efficacy and side effects. Neuropeptides have been highlighted by their potential to protect cells against AD and can reverse the toxic effect induced by Aβ in cultured neurons. One of the neuropeptides that has insufficient attention in the literature as a potential treatment for prevention of the progression of AD is neurokinin B (NKB). There are critical and unresolved questions concerning the activation, and the molecular mechanisms underlying NKB effect on prevention of Aβ aggregation remain unknown. The current work identifies for the first time the specific interactions that contribute to the inhibition and prevention of initial seeding of polymorphic early-stage dimers. Three main conclusions are observed in this work. First, NKB inhibits formation of polymorphic early-stage fibrillar Aβ dimers. The efficiency of the inhibition depends on the concentration of NKB (i.e., NKB:Aβ ratio). Second, NKB has an excellent effect of preventing the formation of initial seeding of early-stage nonfibrillar Aβ dimers. Third, NKB peptides may self-assemble to form cross-α fibril-like structure during the inhibition activity of the polymorphic early-stage fibrillar Aβ dimers but not during the prevention activity of early-stage nonfibrillar Aβ dimers. The work provides crucial information for future experimental studies to approve the functional effect of NKB on inhibition and prevention of Aβ polymorphic early-stage oligomers.
Collapse
Affiliation(s)
- Olga Press-Sandler
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| |
Collapse
|
30
|
Shabani Z, Jafarzadeh Gharehziaaddin M. Effects and Potential Mechanisms of Alcohol Use Disorder on the Fate Determination of Newly Born Neurons in the Hippocampus. Alcohol Alcohol 2020; 55:598-602. [PMID: 32814954 DOI: 10.1093/alcalc/agaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
In the adult mammalian brain, new functional neurons are generated throughout life because of sustained proliferation and differentiation of neural stem cells (NSCs). The subventricular zone (SVZ), lining the lateral ventricle, and the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus are the two major neurogenic regions in the adult brain. This process is not fixed but is highly modulated by numerous intrinsic and extrinsic factors. Neurogenesis has become in the focus of interest for its involvement in repairing the damaged brain and this motivates researchers to detect controlling mechanisms of this process. Recent evidence suggests that alcohol usage can directly influence adult hippocampal neurogenesis, but its mechanisms remain a matter for debate. Thus, this review summarizes in vivo/in vitro studies on the role of alcohol in hippocampal neurogenesis during adulthood and clarifies its underlying mechanisms by highlighting neurotransmitters and their receptors.
Collapse
Affiliation(s)
- Zahra Shabani
- Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Azadi Avenue, Tabriz 51656-87386, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Golgasht Street, Azadi Avenue, Tabriz 51666-14756, Iran
| | - Mohsen Jafarzadeh Gharehziaaddin
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, No 2, Bakeri Blvd, Tabriz 51666-14756, Iran
| |
Collapse
|
31
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
32
|
A multi-staged neuropeptide response to traumatic brain injury. Eur J Trauma Emerg Surg 2020; 48:507-517. [DOI: 10.1007/s00068-020-01431-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
|
33
|
Can dipeptidyl peptidase-4 inhibitors treat cognitive disorders? Pharmacol Ther 2020; 212:107559. [PMID: 32380197 DOI: 10.1016/j.pharmthera.2020.107559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The linkage of neurodegenerative diseases with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), including oxidative stress, mitochondrial dysfunction, excessive inflammatory responses and abnormal protein processing, and the correlation between cerebrovascular diseases and hyperglycemia has opened a new window for novel therapeutics for these cognitive disorders. Various antidiabetic agents have been studied for their potential treatment of cognitive disorders, among which the dipeptidyl peptidase-4 (DPP-4) inhibitors have been investigated more recently. So far, DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models, and cognitive benefits in diabetic patients with or without cognitive impairments. This review aims to summarize the potential mechanisms, advantages and limitations, and currently available evidence for developing DPP-4 inhibitors as a treatment of cognitive disorders.
Collapse
|
34
|
Wang JL, Ren CH, Feng J, Ou CH, Liu L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed Pharmacother 2020; 123:109752. [PMID: 31924596 DOI: 10.1016/j.biopha.2019.109752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is reported as a devastating disease, leading to tissue loss and neurologic dysfunction. However, there is no effective therapeutic strategy for SCI treatment. Oleanolic acid (OA), as a triterpenoid, has anti-oxidant, anti-inflammatory, and anti-apoptotic activities. However, its regulatory effects on SCI have little to be elucidated, as well as the underlying molecular mechanisms. In this study, we attempted to explore the role of OA in SCI progression. Behavior tests suggested that OA treatments markedly alleviated motor function in SCI mice. Evans blue contents up-regulated in spinal cords of SCI mice were significantly reduced by OA in a dose-dependent manner, demonstrating the improved blood-spinal cord barrier. Moreover, we found that OA treatments significantly reduced the apoptotic cell death in spinal cord samples of SCI mice through decreasing the expression of cleaved Caspase-3. In addition, pro-inflammatory response in SCI mice was significantly attenuated by OA treatments. Furthermore, SCI mice exhibited higher activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways, but these effects were clearly blocked in SCI mice with OA treatments, as evidenced by the down-regulated phosphorylation of p38, c-Jun-NH 2 terminal kinase (JNK), IκB kinase α (IKKα), inhibitor of nuclear factor κB-α (IκBα) and NF-κB. The protective effects of OA against SCI were confirmed in lipopolysaccharide (LPS)-stimulated mouse neurons mainly through the suppression of apoptosis and inflammatory response, which were tightly associated with the blockage of p38 and JNK activation. Together, our data demonstrated that OA treatments could dose-dependently ameliorate spinal cord damage through impeding p38- and JNK-regulated apoptosis and inflammation, and therefore OA might be served as an effective therapeutic agent for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Chang-He Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
35
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
36
|
Giorgi FS, Saccaro LF, Galgani A, Busceti CL, Biagioni F, Frati A, Fornai F. The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer’s disease. Brain Res Bull 2019; 153:47-58. [DOI: 10.1016/j.brainresbull.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
|
37
|
Li C, Wu X, Liu S, Zhao Y, Zhu J, Liu K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front Neurosci 2019; 13:869. [PMID: 31481869 PMCID: PMC6710390 DOI: 10.3389/fnins.2019.00869] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropeptide Y (NPY) is a neurotransmitter or neuromodulator that mainly exists in the nervous system. It plays a neuroprotective role in organisms and widely participates in the regulation of various physiological processes in vivo. Studies in both humans and animal models have been revealed that NPY levels are altered in some neurodegenerative and neuroimmune disorders. NPY plays various roles in these diseases, such as exerting a neuroprotective effect, increasing trophic support, decreasing excitotoxicity, regulating calcium homeostasis, and attenuating neuroinflammation. In this review, we will focus on the roles of NPY in the pathological mechanisms of neurodegenerative and neuroimmune diseases, highlighting NPY as a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Zhao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
38
|
Spencer B, Trinh I, Rockenstein E, Mante M, Florio J, Adame A, El-Agnaf OMA, Kim C, Masliah E, Rissman RA. Systemic peptide mediated delivery of an siRNA targeting α-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis 2019; 127:163-177. [PMID: 30849508 PMCID: PMC6588505 DOI: 10.1016/j.nbd.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Changyoun Kim
- Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System San Diego, CA, USA.
| |
Collapse
|
39
|
Positron emission tomography reporter gene strategy for use in the central nervous system. Proc Natl Acad Sci U S A 2019; 116:11402-11407. [PMID: 31123153 DOI: 10.1073/pnas.1901645116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a growing need for monitoring or imaging gene therapy in the central nervous system (CNS). This can be achieved with a positron emission tomography (PET) reporter gene strategy. Here we report the development of a PET reporter gene system using the PKM2 gene with its associated radiotracer [18F]DASA-23. The PKM2 reporter gene was delivered to the brains of mice by adeno-associated virus (AAV9) via stereotactic injection. Serial PET imaging was carried out over 8 wk to assess PKM2 expression. After 8 wk, the brains were excised for further mRNA and protein analysis. PET imaging at 8 wk post-AAV delivery showed an increase in [18F]DASA-23 brain uptake in the transduced site of mice injected with the AAV mice over all controls. We believe PKM2 shows great promise as a PET reporter gene and to date is the only example that can be used in all areas of the CNS without breaking the blood-brain barrier, to monitor gene and cell therapy.
Collapse
|
40
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Spencer B, Brüschweiler S, Sealey-Cardona M, Rockenstein E, Adame A, Florio J, Mante M, Trinh I, Rissman RA, Konrat R, Masliah E. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 2018; 136:69-87. [PMID: 29934874 PMCID: PMC6112111 DOI: 10.1007/s00401-018-1869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of β-amyloid (Aβ) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Sven Brüschweiler
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Exp Neurol 2018; 302:112-128. [DOI: 10.1016/j.expneurol.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022]
|
43
|
Identification of Insulin Receptor Splice Variant B in Neurons by in situ Detection in Human Brain Samples. Sci Rep 2018; 8:4070. [PMID: 29511314 PMCID: PMC5840297 DOI: 10.1038/s41598-018-22434-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Insulin and its receptor are widely expressed in a variety of tissues throughout the body including liver, adipose tissue, liver and brain. The insulin receptor is expressed as two functionally distinct isoforms, differentiated by a single 12 amino acid exon. The two receptor isoforms, designated IR/A and IR/B, are expressed in a highly tissue and cell specific manner and relative proportions of the different isoforms vary during development, aging and disease states. The high degree of similarity between the two isoforms has prevented detailed studies as differentiation of the two isoforms by traditional immunological methods cannot be achieved. We describe here a new in situ RT-PCR/ FISH assay that allows for the visualization of IR/A and IR/B in tissue along with tissue specific markers. We used this new method to show for the first time that IR/A and IR/B are both expressed in neurons in the adult human brain. Thus, we present a method that enables the investigation of IR/A and IR/B insulin receptor isoform expression in situ in various tissues.
Collapse
|
44
|
Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Front Neurosci 2017; 11:608. [PMID: 29163012 PMCID: PMC5672019 DOI: 10.3389/fnins.2017.00608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Targeting neuropeptide systems is important for future advancements in treatment of neurological and psychiatric illnesses. However, many of the peptides and their analogs do not cross the blood-brain barrier (BBB) efficiently. Nanoparticles such as iron oxide can cross the BBB, and here we describe a novel method for the conjugation of a peptide antisauvagine-30 (ASV-30) to iron oxide nanoparticles. Previous research has shown that direct infusion of ASV-30 into the brain reduces anxiety-like behavior in animal models via actions on corticotropin releasing factor type 2 (CRF2) receptors. Therefore, we tested whether iron oxide+ASV-30 complexes cross the BBB of rats and then determined whether iron oxide+ASV-30 nanoparticles are localized with CRF2-expressing neurons. Finally we tested the hypothesis that systemic infusion of iron oxide+ASV-30 can reduce anxiety-like behavior. First we describe the synthesis and demonstrate the stability of iron oxide-peptide nanoparticle complexes. Next, nanoparticles (87.7 μg/kg Fe2O3) with or without ASV-30 (200 μg/kg, ip) were injected into male rats 30 min prior to transcardial perfusion and brain fixation for immunohistochemical analysis, or before testing on the elevated plus maze (EPM) in an amphetamine withdrawal model of anxiety. Systemically administered iron oxide+ASV-30 particles were present in the brain and associated with neurons, including those that express CRF2 receptors, but did not localize with the iron storage protein ferritin. Furthermore, systemic administration of ironoxide+ASV-30 reduced amphetamine withdrawal-induced anxiety without affecting locomotion, suggesting that the anxiolytic effects of ASV-30 were preserved and the bioavailability of ASV-30 was sufficient. The findings demonstrate a novel approach to peptide delivery across the BBB and provide insight as to the neural distribution and efficacy of this nanotechnology.
Collapse
Affiliation(s)
- Nathan Vinzant
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Chia-Ming Wu
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Trevor Kindle
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Ranjit Koodali
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
45
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
46
|
Kim DY, Yu J, Mui RK, Niibori R, Taufique HB, Aslam R, Semple JW, Cordes SP. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ( anx) mutation. Dis Model Mech 2017; 10:581-595. [PMID: 28093506 PMCID: PMC5451163 DOI: 10.1242/dmm.027433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
Collapse
Affiliation(s)
- Dennis Y Kim
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Joanna Yu
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Ryan K Mui
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hamza Bin Taufique
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
47
|
Domin H, Piergies N, Święch D, Pięta E, Proniewicz E. SERS characterization of neuropeptide Y and its C-terminal fragments deposited onto colloidal gold nanoparticle surface. Colloids Surf B Biointerfaces 2017; 149:80-88. [PMID: 27736725 DOI: 10.1016/j.colsurfb.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
|
48
|
Kosaraju J, Holsinger RMD, Guo L, Tam KY. Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2016; 54:6074-6084. [PMID: 27699599 DOI: 10.1007/s12035-016-0125-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone shown to be active in the treatment of type-2 diabetes (T2D) and has also been shown as efficacious in Alzheimer's disease (AD). Dipeptidyl peptidase-4 (DPP-4), an enzyme that is expressed in numerous cells, rapidly inactivates endogenous GLP-1. Therefore, DPP-4 inhibition is employed as a therapeutic avenue to increase GLP-1 levels in the management of T2D. The effectiveness of DPP-4 inhibitors in the treatment of AD has been reported in various animal models of AD. With this background, the present study was designed to examine the effectiveness of linagliptin, a DPP-4 inhibitor in the 3xTg-AD mouse model of Alzheimer's disease. Nine-month-old 3xTg-AD mice were administered linagliptin orally (5, 10, and 20 mg/kg) for 8 weeks. At the end of the linagliptin treatment, mice were evaluated for cognitive ability on the Morris Water Maze and Y-maze. Following cognitive evaluation, mice were sacrificed to determine the effect of the linagliptin on brain incretin levels, amyloid burden, tau phosphorylation, and neuroinflammation. We confirm that linagliptin treatment for 8 weeks mitigates the cognitive deficits present in 3xTg-AD mice. Moreover, linagliptin also improves brain incretin levels and attenuates amyloid beta, tau phosphorylation as well as neuroinflammation. In conclusion, linagliptin possesses neuroprotective properties that may be attributed to the improvement of incretin levels in the brain.
Collapse
Affiliation(s)
- Jayasankar Kosaraju
- Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, The Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.,The Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Lidcombe, NSW, 1875, Australia
| | - Lixia Guo
- Chongqing Key Lab of Natural Medicine Research, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|