1
|
Lindquist KA, Mecklenburg J, Hovhannisyan AH, Ruparel S, Akopian AN. Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616876. [PMID: 39416195 PMCID: PMC11482751 DOI: 10.1101/2024.10.06.616876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Introduction Pain sensation has predominantly mechanical modalities in many pain conditions. Mechanically activated (MA) ion channels on sensory neurons underly responsiveness to mechanical stimuli. The study aimed to address gaps in knowledge regarding MA current properties in higher order species such as non-human primates (NHP; common marmosets), and characterization of MA currents in trigeminal (TG) neuronal subtypes. Methods We employed patch clamp electrophysiology and immunohistochemistry (IHC) to associate MA current types to different marmoset TG neuronal groups. TG neurons were grouped according to presumed marker expression, action potential (AP) width, characteristic AP features, after-hyperpolarization parameters, presence/absence of AP trains and transient outward currents, and responses to mechanical stimuli. Results Marmoset TG were clustered into 5 C-fiber and 5 A-fiber neuronal groups. The C1 group likely represent non-peptidergic C-nociceptors, the C2-C4 groups resembles peptidergic C-nociceptors, while the C5 group could be either cold-nociceptors or C-low-threshold-mechanoreceptors (C-LTMR). Among C-fiber neurons only C4 were mechanically responsive. The A1 and A2 groups are likely A-nociceptors, while the A3-A5 groups probably denote different subtypes of A-low-threshold-mechanoreceptors (A-LTMRs). Among A-fiber neurons only A1 was mechanically unresponsive. IHC data was correlated with electrophysiology results and estimates that NHP TG has ∼25% peptidergic C-nociceptors, ∼20% non-peptidergic C-nociceptors, ∼30% A-nociceptors, ∼5% C-LTMR, and ∼20% A-LTMR. Conclusion Overall, marmoset TG neuronal subtypes and their associated MA currents have common and unique properties compared to previously reported data. Findings from this study could be the basis for investigation on MA current sensitizations and mechanical hypersensitivity during head and neck pain conditions.
Collapse
|
2
|
Hussain S, Sedlacek M, Cui R, Zhang-Hooks W, Bergles D, Bum-Shin J, Kindt KS, Kachar B. Spontaneous calcium transients in hair cell stereocilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607658. [PMID: 39185174 PMCID: PMC11343103 DOI: 10.1101/2024.08.12.607658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The hair bundle of auditory and vestibular hair cells converts mechanical stimuli into electrical signals through mechanoelectrical transduction (MET). The MET apparatus is built around a tip link that connects neighboring stereocilia that are aligned in the direction of mechanosensitivity of the hair bundle. Upon stimulation, the MET channel complex responds to changes in tip-link tension and allows a cation influx into the cell. Ca2+ influx in stereocilia has been used as a signature of MET activity. Using genetically encoded Ca2+ sensors (GCaMP3, GCaMP6s) and high-performance fluorescence confocal microscopy, we detect spontaneous Ca2+ transients in individual stereocilia in developing and fully formed hair bundles. We demonstrate that this activity is abolished by MET channel blockers and thus likely originates from putative MET channels. We observe Ca2+ transients in the stereocilia of mice in tissue explants as well as in vivo in zebrafish hair cells, indicating this activity is functionally conserved. Within stereocilia, the origin of Ca2+ transients is not limited to the canonical MET site at the stereocilia tip but is also present along the stereocilia length. Remarkably, we also observe these Ca2+ transients in the microvilli-like structures on the hair cell surface in the early stages of bundle development, prior to the onset of MET. Ca2+ transients are also present in the tallest rows of stereocilia in auditory hair cells, structures not traditionally thought to contain MET channels. We hypothesize that this newly described activity may reflect stochastic and spontaneous MET channel opening. Localization of these transients to other regions of the stereocilia indicates the presence of a pool of channels or channel precursors. Our work provides insights into MET channel assembly, maturation, function, and turnover.
Collapse
Affiliation(s)
- Saman Hussain
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miloslav Sedlacek
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Zhang-Hooks
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dwight Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jung Bum-Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Katie S. Kindt
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Zhang X, Shao J, Wang C, Liu C, Hao H, Li X, An Y, He J, Zhao W, Zhao Y, Kong Y, Jia Z, Wan S, Yuan Y, Zhang H, Zhang H, Du X. TMC7 functions as a suppressor of Piezo2 in primary sensory neurons blunting peripheral mechanotransduction. Cell Rep 2024; 43:114014. [PMID: 38568807 DOI: 10.1016/j.celrep.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
The transmembrane channel-like (TMC) protein family comprises eight members, with TMC1 and TMC2 being extensively studied. This study demonstrates substantial co-expression of TMC7 with the mechanosensitive channel Piezo2 in somatosensory neurons. Genetic deletion of TMC7 in primary sensory ganglia neurons in vivo enhances sensitivity in both physiological and pathological mechanosensory transduction. This deletion leads to an increase in proportion of rapidly adapting (RA) currents conducted by Piezo2 in dorsal root ganglion (DRG) neurons and accelerates RA deactivation kinetics. In HEK293 cells expressing both proteins, TMC7 significantly suppresses the current amplitudes of co-expressed Piezo2. Our findings reveal that TMC7 and Piezo2 exhibit physical interactions, and both proteins also physically interact with cytoskeletal β-actin. We hypothesize that TMC7 functions as an inhibitory modulator of Piezo2 in DRG neurons, either through direct inhibition or by disrupting the transmission of mechanical forces from the cytoskeleton to the channel.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jichen Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- Department of Animal Care, The Key Laboratory of Experimental Animal, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanfeng Jia
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaopo Wan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Huiran Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
5
|
Duan M, Jia Y, Huo L, Gao Y, Wang J, Zhang W, Jia Z. Potentiation of PIEZO2 mechanically-activated currents in sensory neurons mediates vincristine-induced mechanical hypersensitivity. Acta Pharm Sin B 2023; 13:3365-3381. [PMID: 37655331 PMCID: PMC10466006 DOI: 10.1016/j.apsb.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 09/02/2023] Open
Abstract
Vincristine, a widely used chemotherapeutic agent for treating different cancer, often induces severe peripheral neuropathic pain. A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodynia and hyperalgesia. However, mechanisms underlying vincristine-induced mechanical allodynia and hyperalgesia are not well understood. In the present study, we show with behavioral assessment in rats that vincristine induces mechanical allodynia and hyperalgesia in a PIEZO2 channel-dependent manner since gene knockdown or pharmacological inhibition of PIEZO2 channels alleviates vincristine-induced mechanical hypersensitivity. Electrophysiological results show that vincristine potentiates PIEZO2 rapidly adapting (RA) mechanically-activated (MA) currents in rat dorsal root ganglion (DRG) neurons. We have found that vincristine-induced potentiation of PIEZO2 MA currents is due to the enhancement of static plasma membrane tension (SPMT) of these cells following vincristine treatment. Reducing SPMT of DRG neurons by cytochalasin D (CD), a disruptor of the actin filament, abolishes vincristine-induced potentiation of PIEZO2 MA currents, and suppresses vincristine-induced mechanical hypersensitivity in rats. Collectively, enhancing SPMT and subsequently potentiating PIEZO2 MA currents in primary afferent neurons may be an underlying mechanism responsible for vincristine-induced mechanical allodynia and hyperalgesia in rats. Targeting to inhibit PIEZO2 channels may be an effective analgesic method to attenuate vincristine-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mingli Duan
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Yurui Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Lifang Huo
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Jia Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Wei Zhang
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Young MN, Sindoni MJ, Lewis AH, Zauscher S, Grandl J. The energetics of rapid cellular mechanotransduction. Proc Natl Acad Sci U S A 2023; 120:e2215747120. [PMID: 36795747 PMCID: PMC9974467 DOI: 10.1073/pnas.2215747120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Cells throughout the human body detect mechanical forces. While it is known that the rapid (millisecond) detection of mechanical forces is mediated by force-gated ion channels, a detailed quantitative understanding of cells as sensors of mechanical energy is still lacking. Here, we combine atomic force microscopy with patch-clamp electrophysiology to determine the physical limits of cells expressing the force-gated ion channels (FGICs) Piezo1, Piezo2, TREK1, and TRAAK. We find that, depending on the ion channel expressed, cells can function either as proportional or nonlinear transducers of mechanical energy and detect mechanical energies as little as ~100 fJ, with a resolution of up to ~1 fJ. These specific energetic values depend on cell size, channel density, and cytoskeletal architecture. We also make the surprising discovery that cells can transduce forces either nearly instantaneously (<1 ms) or with a substantial time delay (~10 ms). Using a chimeric experimental approach and simulations, we show how such delays can emerge from channel-intrinsic properties and the slow diffusion of tension in the membrane. Overall, our experiments reveal the capabilities and limits of cellular mechanosensing and provide insights into molecular mechanisms that different cell types may employ to specialize for their distinct physiological roles.
Collapse
Affiliation(s)
- Michael N. Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Michael J. Sindoni
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27710
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
7
|
Vaden RJ, Gu JG. Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity. Mol Pain 2023; 19:17448069221148958. [PMID: 36526445 PMCID: PMC9829874 DOI: 10.1177/17448069221148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.
Collapse
Affiliation(s)
| | - Jianguo G Gu
- Jianguo G Gu, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Del Rosario JS, Gabrielle M, Yudin Y, Rohacs T. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels. J Gen Physiol 2022; 154:e202213164. [PMID: 35819364 PMCID: PMC9280072 DOI: 10.1085/jgp.202213164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
PIEZO2 channels mediate rapidly adapting mechanically activated currents in peripheral sensory neurons of the dorsal root ganglia (DRG), and they are indispensable for light touch and proprioception. Relatively little is known about what other proteins regulate PIEZO2 activity in a cellular context. TMEM120A (TACAN) was proposed to act as a high threshold mechanically activated ion channel in nociceptive DRG neurons. Here, we find that Tmem120a coexpression decreased the amplitudes of mechanically activated PIEZO2 currents and increased their threshold of activation. TMEM120A did not inhibit mechanically activated PIEZO1 and TREK1 channels and TMEM120A alone did not result in the appearance of mechanically activated currents above background. Tmem120a and Piezo2 expression in mouse DRG neurons overlapped, and siRNA-mediated knockdown of Tmem120a increased the amplitudes of rapidly adapting mechanically activated currents and decreased their thresholds to mechanical activation. Our data identify TMEM120A as a negative modulator of PIEZO2 channel activity, and do not support TMEM120A being a mechanically activated ion channel.
Collapse
Affiliation(s)
- John Smith Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
9
|
Wilkinson KA. Molecular determinants of mechanosensation in the muscle spindle. Curr Opin Neurobiol 2022; 74:102542. [PMID: 35430481 PMCID: PMC9815952 DOI: 10.1016/j.conb.2022.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Collapse
|
10
|
Ozkan AD, Gettas T, Sogata A, Phaychanpheng W, Zhou M, Lacroix JJ. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J Cell Sci 2021; 134:271846. [PMID: 34322699 DOI: 10.1242/jcs.255455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
G-protein-coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically encoded fluorescent reporter of GPR68 activation we call 'iGlow'. iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.
Collapse
Affiliation(s)
- Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Audrey Sogata
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Wynn Phaychanpheng
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| |
Collapse
|
11
|
Ikeda R, Arimura D, Saito M. Expression of Piezo mRNA is unaffected in a rat model of knee osteoarthritis. Mol Pain 2021; 17:17448069211014059. [PMID: 33910401 PMCID: PMC8107928 DOI: 10.1177/17448069211014059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis of the knee impairs activities of daily living of those affected. Its
irreversible degenerative changes to the knee joint induce functional disturbance and
unpleasant arthralgia. The pain has inflammatory components and often is manifested with
mechanical allodynia and hyperalgesia. Sustained weight bearing and joint movements
increase pain sensitivity in knee osteoarthritis. Understanding the mechanisms underlying
the mechanical allodynia and hyperalgesia might provide a therapeutical target for pain
relief in patients with such symptoms. Piezo channel is a mechanically activated ion
channel that may be involved in mechanical transduction in the articular cartilage.
Although it has been shown that inflammation potentiates Piezo channel current induced by
mechanical stimulation, whether Piezo expression levels are influenced by knee
osteoarthritis has remained unknown. We measured Piezo mRNA in knee joints and dorsal root
ganglia after establishing a model of knee osteoarthritis in rats using monosodium
iodoacetate and found Piezo mRNA level is not upregulated. This finding raises a question
as whether and how Piezo channels may be involved in mechanically induced pain in
osteoarthritis.
Collapse
Affiliation(s)
- Ryo Ikeda
- Department of Orthopaedic Surgery, The 12839Jikei University School of Medicine, Tokyo, Japan
| | - Daigo Arimura
- Department of Orthopaedic Surgery, The 12839Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The 12839Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, Yang Z, Qin X, Wang R, Kong D, Bai H, Zhang H, Zhang W, Jia Z. Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 2021; 164:105391. [PMID: 33352230 DOI: 10.1016/j.phrs.2020.105391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
Abstract
Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Lifang Huo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yiting Gao
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dongfang Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Shengnan Wang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yu Han
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacy, Children's Hospital of Hebei Province, China
| | - Hongchao Men
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Ri Wang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Hailin Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Zhanfeng Jia
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
13
|
Chang W, Gu JG. Role of microtubules in Piezo2 mechanotransduction of mouse Merkel cells. J Neurophysiol 2020; 124:1824-1831. [PMID: 33085566 DOI: 10.1152/jn.00502.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Piezo2 channels are expressed in Merkel cells and somatosensory neurons to mediate mechanotransduction leading to the sense of touch. Components of the cytoskeleton including microtubules are key intracellular structures that maintain cellular membrane mechanics and thereby may be important in mechanotransduction. In the present study, we have explored, with microtubule-targeting agents, the potential role of microtubules in Piezo2-mediated mechanotransduction in Merkel cells of mouse whisker hair follicles. Applying patch-clamp recordings to Merkel cells in situ in whisker hair follicles, we show that Piezo2-mediated mechanically activated (MA) currents in Merkel cells are significantly potentiated by the microtubule stabilizer paclitaxel but reduced by the microtubule destabilizer vincristine. Furthermore, electrophysiological recordings made from whisker hair follicle afferent nerves show that mechanically evoked whisker afferent impulses are significantly enhanced by paclitaxel and its analog docetaxel but significantly suppressed by vincristine and its analog vinblastine. Our findings suggest that microtubules play an essential role in Piezo2 mechanotransduction in Merkel cells.NEW & NOTEWORTHY Piezo2 channels are expressed in Merkel cells to mediate mechanotransduction leading to the sense of touch. Here we determined the role of microtubules in regulating Piezo2-mediated mechanotransduction in Merkel cells. Piezo2-mediated currents in Merkel cells are potentiated by microtubule stabilizer paclitaxel but reduced by microtubule destabilizer vincristine. Mechanically evoked afferent impulses are also enhanced by microtubule stabilizers and suppressed by microtubule destabilizers. Microtubules may play an essential role in Piezo2 mechanotransduction in Merkel cells.
Collapse
Affiliation(s)
- Weipang Chang
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama
| |
Collapse
|
14
|
Sonekatsu M, Kanno S, Yamada H, Gu JG. Selective impairment of slowly adapting type 1 mechanoreceptors in mice following vincristine treatment. Neurosci Lett 2020; 738:135355. [PMID: 32905836 DOI: 10.1016/j.neulet.2020.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Loss of the sense of touch in fingertips and toes is one of the earliest sensory dysfunctions in patients receiving chemotherapy with anti-cancer drugs such as vincristine. However, mechanisms underlying this chemotherapy-induced sensory dysfunction is incompletely understood. Whisker hair follicles are tactile organs in non-primate mammals which are functionally equivalent to human fingertips. Here we used mouse whisker hair follicles as a model system and applied the pressure-clamped single-fiber recording technique to explore how vincristine treatment affect mechanoreceptors in whisker hair follicles. We showed that in vivo treatment of mice with vincristine impaired whisker tactile behavioral responses. The pressure-clamped single-fiber recordings made from whisker hair follicle afferent nerves showed that mechanical stimulations evoked three types of mechanical responses, rapidly adapting response (RA), slowly adapting type 1 response (SA1) and slowly adapting type 2 response (SA2). Vincristine treatment significantly reduced SA1 responses but did not significantly affect RA and SA2 responses. Our findings suggest that SA1 mechanoreceptors were selectively impaired by vincristine leading to the impairment of in vivo whisker tactile behavioral responses.
Collapse
Affiliation(s)
- Mayumi Sonekatsu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Seiji Kanno
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States.
| |
Collapse
|
15
|
Michel N, Narayanan P, Shomroni O, Schmidt M. Maturational Changes in Mouse Cutaneous Touch and Piezo2-Mediated Mechanotransduction. Cell Rep 2020; 32:107912. [PMID: 32697985 DOI: 10.1016/j.celrep.2020.107912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
The age of studied animals has a profound impact on experimental outcomes in animal-based research. In mice, age influences molecular, morphological, physiological, and behavioral parameters, particularly during rapid postnatal growth and maturation until adulthood (at 12 weeks of age). Despite this knowledge, most biomedical studies use a wide-spanning age range from 4 to 12 weeks, raising concerns about reproducibility and potential masking of relevant age differences. Here, using mouse behavior and electrophysiology in cultured dorsal root ganglia (DRG), we reveal a decline in behavioral cutaneous touch sensitivity and Piezo2-mediated mechanotransduction in vitro during mouse maturation but not thereafter. In addition, we identify distinct transcript changes in individual Piezo2-expressing mechanosensitive DRG neurons by combining electrophysiology with single-cell RNA sequencing (patch-seq). Taken together, our study emphasizes the need for accurate age matching and uncovers hitherto unknown maturational plasticity in cutaneous touch at the level of behavior, mechanotransduction, and transcripts.
Collapse
Affiliation(s)
- Niklas Michel
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany
| | - Pratibha Narayanan
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Goettingen (UMG), 37075 Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany.
| |
Collapse
|
16
|
Xiao B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev Pharmacol Toxicol 2020; 60:195-218. [DOI: 10.1146/annurev-pharmtox-010919-023703] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Collapse
Affiliation(s)
- Bailong Xiao
- State Key Laboratory of Membrane Biology; Tsinghua-Peking Joint Center for Life Sciences; IDG/McGovern Institute for Brain Research; Beijing Advanced Innovation Center for Structural Biology; and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron 2018; 100:799-815.e7. [DOI: 10.1016/j.neuron.2018.09.046] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 01/28/2023]
|
19
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
20
|
Miller JJ, Aoki K, Moehring F, Murphy CA, O’Hara CL, Tiemeyer M, Stucky CL, Dahms NM. Neuropathic pain in a Fabry disease rat model. JCI Insight 2018; 3:99171. [PMID: 29563343 PMCID: PMC5926911 DOI: 10.1172/jci.insight.99171] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Fabry disease, the most common lysosomal storage disease, affects multiple organs and results in a shortened life span. This disease is caused by a deficiency of the lysosomal enzyme α-galactosidase A, which leads to glycosphingolipid accumulation in many cell types. Neuropathic pain is an early and severely debilitating symptom in patients with Fabry disease, but the cellular and molecular mechanisms that cause the pain are unknown. We generated a rat model of Fabry disease, the first nonmouse model to our knowledge. Fabry rats had substantial serum and tissue accumulation of α-galactosyl glycosphingolipids and had pronounced mechanical pain behavior. Additionally, Fabry rat dorsal root ganglia displayed global N-glycan alterations, sensory neurons were laden with inclusions, and sensory neuron somata exhibited prominent sensitization to mechanical force. We found that the cation channel transient receptor potential ankyrin 1 (TRPA1) is sensitized in Fabry rat sensory neurons and that TRPA1 antagonism reversed the behavioral mechanical sensitization. This study points toward TRPA1 as a potentially novel target to treat the pain experienced by patients with Fabry disease.
Collapse
Affiliation(s)
- James J. Miller
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Francie Moehring
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carly A. Murphy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Crystal L. O’Hara
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nancy M. Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
21
|
Narayanan P, Hütte M, Kudryasheva G, Taberner FJ, Lechner SG, Rehfeldt F, Gomez-Varela D, Schmidt M. Myotubularin related protein-2 and its phospholipid substrate PIP 2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. eLife 2018. [PMID: 29521261 PMCID: PMC5898911 DOI: 10.7554/elife.32346] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons. We often take our sense of touch for granted. Yet, our every-day life greatly depends on the ability to perceive our environment to alert us of danger or to further social interactions, such as mother-child bonding. Our sense of touch relies on the conversion of mechanical stimuli to electrical signals (this is known as mechanotransduction), which then travel to brain to be processed. This task is fulfilled by specific ion channels called Piezo2, which are activated when cells are exposed to pressure and other mechanical forces. These channels can be found in sensory nerves and specialized structures in the skin, where they help to detect physical contact, roughness of surfaces and the position of our body parts. It is still not clear how Piezo2 channels are regulated but previous research by several laboratories suggests that they work in conjunction with other proteins. One of these proteins is the myotubularin related protein-2, or Mtmr2 for short. Now, Narayanan et al. – including some of the researchers involved in the previous research – set out to advance our understanding of the molecular basis of touch and looked more closely at Mtmr2. To test if Mtmr2 played a role in mechanotransduction, Narayanan et al. both increased and reduced the levels of this protein in sensory neurons of mice grown in the laboratory. When Mtmr2 levels were low, the activity of Piezo2 channels increased. However, when the protein levels were high, Piezo2 channels were inhibited. These results suggest that Mtmr2 can control the activity of Piezo2. Further experiments, in which Mtmr2 was genetically modified or sensory neurons were treated with chemicals, revealed that Mtmr2 reduces a specific fatty acid in the membrane of nerve cells, which in turn attenuates the activity of Piezo2. This study identified Mtmr2 and distinct fatty acids in the cell membrane as new components of the complex setup required for the sense of touch. A next step will be to test if these molecules also influence the activity of Piezo2 when the skin has become injured or upon inflammation.
Collapse
Affiliation(s)
- Pratibha Narayanan
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Meike Hütte
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Galina Kudryasheva
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | | | | | - Florian Rehfeldt
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | - David Gomez-Varela
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Manuela Schmidt
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
22
|
Alshawaf AJ, Viventi S, Qiu W, D'Abaco G, Nayagam B, Erlichster M, Chana G, Everall I, Ivanusic J, Skafidas E, Dottori M. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep 2018; 8:603. [PMID: 29330377 PMCID: PMC5766621 DOI: 10.1038/s41598-017-19093-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022] Open
Abstract
The dorsal root ganglia (DRG) consist of a multitude of sensory neuronal subtypes that function to relay sensory stimuli, including temperature, pressure, pain and position to the central nervous system. Our knowledge of DRG sensory neurons have been predominantly driven by animal studies and considerably less is known about the human DRG. Human embryonic stem cells (hESC) are valuable resource to help close this gap. Our previous studies reported an efficient system for deriving neural crest and DRG sensory neurons from hESC. Here we show that this differentiation system gives rise to heterogeneous populations of sensory neuronal subtypes as demonstrated by phenotypic and functional analyses. Furthermore, using microelectrode arrays the maturation rate of the hESC-derived sensory neuronal cultures was monitored over 8 weeks in culture, showing their spontaneous firing activities starting at about 12 days post-differentiation and reaching maximum firing at about 6 weeks. These studies are highly valuable for developing an in vitro platform to study the diversity of sensory neuronal subtypes found within the human DRG.
Collapse
Affiliation(s)
- Abdullah Jawad Alshawaf
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Serena Viventi
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Wanzhi Qiu
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia
| | - Giovanna D'Abaco
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Bryony Nayagam
- Departments of Audiology and Speech Pathology and Ophthalmology, The University of Melbourne, Melbourne, Australia
| | - Michael Erlichster
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Ian Everall
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Jason Ivanusic
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, Australia.
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia.
- Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
23
|
Schneider ER, Anderson EO, Mastrotto M, Matson JD, Schulz VP, Gallagher PG, LaMotte RH, Gracheva EO, Bagriantsev SN. Molecular basis of tactile specialization in the duck bill. Proc Natl Acad Sci U S A 2017; 114:13036-13041. [PMID: 29109250 PMCID: PMC5724259 DOI: 10.1073/pnas.1708793114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Evan O Anderson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Marco Mastrotto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Jon D Matson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Robert H LaMotte
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
24
|
Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol 2017; 18:771-783. [PMID: 28974772 DOI: 10.1038/nrm.2017.92] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular mechanotransduction, the process of translating mechanical forces into biological signals, is crucial for a wide range of physiological processes. A role for ion channels in sensing mechanical forces has been proposed for decades, but their identity in mammals remained largely elusive until the discovery of Piezos. Recent research on Piezos has underscored their importance in somatosensation (touch perception, proprioception and pulmonary respiration), red blood cell volume regulation, vascular physiology and various human genetic disorders.
Collapse
|
25
|
Kanda H, Gu JG. Membrane Mechanics of Primary Afferent Neurons in the Dorsal Root Ganglia of Rats. Biophys J 2017; 112:1654-1662. [PMID: 28445756 DOI: 10.1016/j.bpj.2017.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 10/24/2022] Open
Abstract
Membrane mechanics is an important biological factor regulating many cellular functions including cell motility, intercellular and intracellular signaling, gene expression, and membrane ion channel activity. Primary afferent neurons transduce sensory information about temperature, touch, and pain. These sensory functions may be profoundly affected by the states of primary afferent neuron mechanics. However, membrane mechanics of primary afferent neurons is largely unknown. In this study, we established the optical trapping technique for determining membrane mechanics of cultured primary afferent neurons of the dorsal root ganglia (DRG). We further determined the roles of cytoskeleton and membrane lipids in DRG neuron mechanics. We found that DRG neurons had a plasma membrane tension of ∼54 pN/μm, and the tension was significantly decreased to ∼29 pN/μm by cytochalasin D treatment to disrupt actin cytoskeleton and increased to ∼79 pN/μm by methyl-β-cyclodextrin treatment to sequester membrane cholesterol. DRG neuron membrane stiffness was not significantly affected by the cytoskeleton disruption but was significantly increased after cholesterol sequestration. Our findings elucidate membrane mechanical properties of primary afferent neurons, which provide, to our knowledge, a new perspective on their sensory functions.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
26
|
Yamaguchi S, Otsuguro KI. A mechanically activated ion channel is functionally expressed in the MrgprB4 positive sensory neurons, which detect stroking of hairy skin in mice. Neurosci Lett 2017; 653:139-145. [DOI: 10.1016/j.neulet.2017.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022]
|
27
|
Abstract
Mutations in the genes encoding the mechanosensitive cation channels PIEZO1 and PIEZO2 are responsible for multiple hereditary human diseases. Loss-of-function mutations in the human PIEZO1 gene cause autosomal recessive congenital lymphatic dysplasia. Gain-of-function mutations in the human PIEZO1 gene cause the autosomal dominant hemolytic anemia, hereditary xerocytosis (also known as dehydrated stomatocytosis). Loss-of-function mutations in the human PIEZO2 gene cause an autosomal recessive syndrome of muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Gain-of-function mutations in the human PIEZO2 gene cause three clinical types of autosomal dominant distal arthrogryposis. This chapter will review the hereditary diseases caused by mutations in the PIEZO genes and will discuss additional physiological systems in which PIEZO channel dysfunction may contribute to human disease pathophysiology.
Collapse
Affiliation(s)
- S L Alper
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
28
|
Anderson E, Schneider E, Bagriantsev S. Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in Vertebrates. CURRENT TOPICS IN MEMBRANES 2017; 79:197-217. [PMID: 28728817 PMCID: PMC5630267 DOI: 10.1016/bs.ctm.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensitivity is a fundamental physiological capacity, which pertains to all life forms. Progress has been made with regard to understanding mechanosensitivity in bacteria, flies, and worms. In vertebrates, however, the molecular identity of mechanotransducers in somatic and neuronal cells has only started to appear. The Piezo family of mechanogated ion channels marks a pivotal milestone in understanding mechanosensitivity. Piezo1 and Piezo2 have now been shown to participate in a number of processes, ranging from arterial modeling to sensing muscle stretch. In this review, we focus on Piezo2 and its role in mediating mechanosensation and proprioception in vertebrates.
Collapse
|
29
|
|
30
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
31
|
Wu J, Lewis AH, Grandl J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. Trends Biochem Sci 2016; 42:57-71. [PMID: 27743844 DOI: 10.1016/j.tibs.2016.09.004] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/03/2023]
Abstract
In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function.
Collapse
Affiliation(s)
- Jason Wu
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Amanda H Lewis
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Jörg Grandl
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Mechanical sensitivity and electrophysiological properties of acutely dissociated dorsal root ganglion neurons of rats. Neurosci Lett 2016; 634:70-75. [PMID: 27720807 DOI: 10.1016/j.neulet.2016.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022]
Abstract
Primary afferent fibers use mechanically activated (MA) currents to transduce innocuous and noxious mechanical stimuli. However, it is largely unknown about the differences in MA currents between the afferents for sensing innocuous and noxious stimuli. In the present study, we used dorsal root ganglion (DRG) neurons acutely dissociated from rats and studied their MA currents and also their intrinsic membrane properties. Recorded from small-sized DRG neurons, we found that most of these neurons were mechanically sensitive (MS) showing MA currents. The MS neurons could be classified into nociceptive-like mechanically sensitive (Noci-MS) and non-nociceptive-like mechanically sensitive (nonNoci-MS) neurons based on their action potential shapes. Noci-MS neurons responded to mechanical stimulation with three types of MA currents, rapidly adapting (RA), intermediately adapting (IA), and slowly adapting (SA) currents. In contrast, almost all nonNoci-MS neurons showed RA current type in response to mechanical stimulation. Mechanical thresholds had a broad range for both nonNoci-MS and Noci-MS neurons, and the thresholds were not significantly different between them. However, MA current densities were significantly smaller in Noci-MS than in nonNoci-MS neurons. Noci-MS and nonNoci-MS neurons also showed significant differences in their electrophysiological properties including action potential (AP) thresholds and AP firing patterns. These differences may contribute to the differential sensory encoding for innocuous and noxious mechanical stimuli.
Collapse
|