1
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Yamashita F, Kaieda T, Shimomura T, Kawaguchi M, Lin C, Johnson MD, Tanaka H, Kiwaki T, Fukushima T, Kataoka H. Role of the polycystic kidney disease domain in matriptase chaperone activity and localization of hepatocyte growth factor activator inhibitor‐1. FEBS J 2022; 289:3422-3439. [DOI: 10.1111/febs.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takashi Kaieda
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
- Chitose Laboratory Corp Kanagawa Japan
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Chen‐Yong Lin
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Michael D Johnson
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| |
Collapse
|
3
|
Nonboe AW, Bald ZH, Vogel LK. Understanding HAIs: Ally proteins in the fight against cancer. FEBS J 2022; 289:3416-3418. [PMID: 35220685 PMCID: PMC9305204 DOI: 10.1111/febs.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Understanding how HAI‐1 and HAI‐2 regulate the epithelial serine protease matriptase may hold the key to curing epithelial‐derived cancer. HAIs are serine protease inhibitors that inhibit matriptase and have a poorly understood effect on the presence of matriptase protein in cells. In this issue of The FEBS Journal, Yamashita et al. provide much‐needed new insights into this effect, describing it as a ‘chaperone‐like function’ of HAI‐1. However, several observations suggest that matriptase folds correctly without HAIs and that HAIs are not chaperones. We introduce the concept of ‘ally proteins’ to categorize the poorly understood function of HAIs, distinguishing them from chaperones. Comment on: https://doi.org/10.1111/febs.16348
Collapse
Affiliation(s)
- Annika W. Nonboe
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Zuzanna H. Bald
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| |
Collapse
|
4
|
Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2020; 296:100135. [PMID: 33268377 PMCID: PMC7834812 DOI: 10.1074/jbc.rev120.015980] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
5
|
Chiu YL, Wu YY, Barndt RB, Lin YW, Sytwo HP, Cheng A, Yang K, Chan KS, Wang JK, Johnson MD, Lin CY. Differential subcellular distribution renders HAI-2 a less effective protease inhibitor than HAI-1 in the control of extracellular matriptase proteolytic activity. Genes Dis 2020; 9:1049-1061. [PMID: 35685459 PMCID: PMC9170578 DOI: 10.1016/j.gendis.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
|
6
|
Insights into the regulation of the matriptase-prostasin proteolytic system. Biochem J 2020; 477:4349-4365. [PMID: 33094801 DOI: 10.1042/bcj20200630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
The membrane-associated prostasin and matriptase belonging to the S1A subfamily of serine proteases, are critical for epithelial development and maintenance. The two proteases are involved in the activation of each other and are both regulated by the protease inhibitors, HAI-1 and HAI-2. The S1A subfamily of serine proteases are generally produced as inactive zymogens requiring a cleavage event to obtain activity. However, contrary to the common case, the zymogen form of matriptase exhibits proteolytic activity, which can be inhibited by HAI-1 and HAI-2, as for the activated counterpart. We provide strong evidence that also prostasin exhibits proteolytic activity in its zymogen form. Furthermore, we show that the activity of zymogen prostasin can be inhibited by HAI-1 and HAI-2. We report that zymogen prostasin is capable of activating zymogen matriptase, but unable to activate its own zymogen form. We propose the existence of an unusual enzyme-enzyme relationship consisting of proteolytically active zymogen forms of both matriptase and prostasin, kept under control by HAI-1 and HAI-2, and located at the pinnacle of an important proteolytic pathway in epithelia. Perturbed balance in this proteolytic system is likely to cause rapid and efficient activation of matriptase by the dual action of zymogen matriptase and zymogen prostasin. Previous studies suggest that the zymogen form of matriptase performs the normal proteolytic functions of the protease, whereas excess matriptase activation likely causes carcinogenesis. HAI-1 and HAI-2 are thus important for the prevention of matriptase activation whether catalysed by zymogen/activated prostasin (this study) or zymogen/activated matriptase (previous studies).
Collapse
|
7
|
Wang D, Liu W, Wang L, Wang Y, Liao CK, Chen J, Hu P, Hong W, Huang M, Chen Z, Xu P. Suppression of cancer proliferation and metastasis by a versatile nanomedicine integrating photodynamic therapy, photothermal therapy, and enzyme inhibition. Acta Biomater 2020; 113:541-553. [PMID: 32562802 DOI: 10.1016/j.actbio.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer therapeutics are varied and target diverse processes in cancer progression. Photodynamic therapy (PDT), photothermal therapy (PTT), and the inhibition of pro-cancer proteases are non-invasive anticancer therapeutics that attract increasing attentions for their enhanced specificities and milder systemic toxicities compared to traditional therapeutics. These modalities offer advantages to compensate for the shortcomings of their counterparts. For instance, PDT or PTT efficiently eliminates locally confined tumor cells while exhibiting no effect on metastatic tumor cells. In contrast, the inhibition of pro-cancer proteases systemically suppresses the proliferation and metastasis of cancer cells but does not eradicate existing cancer cells. To synergize these therapeutics, we hereby report a versatile nanoparticle that integrates the effects of PDT, PTT, and enzyme-inhibition. This nanoparticle (CIKP-NP) was synthesized by covalently or non-covalently modifying a photothermal nanoparticle with a photosensitizer, a pro-cancer protease inhibitor, and an albumin-binding molecule. After confirming the PDT, PTT, albumin-binding, and enzyme-inhibition properties at the molecular level, we demonstrated that CIKP-NP killed tumor cells through PDT or PTT and suppressed tumor cell invasion through enzyme-inhibition. In addition, through a breast cancer xenograft mouse model, we demonstrated that CIKP-NP suppressed tumor growth by PDT or PTT effect. Notably, the synergism of PDT and PTT significantly enhanced its anticancer efficiency. Furthermore, CIKP-NP significantly suppressed cancer metastasis in a lung metastatic mouse model. Last, biodistribution and the in vivo retention of CIKP-NP confirmed the tumor-targeting property. Beyond demonstrating the anti-tumor and anti-metastatic efficacy of CIKP-NP, our study also suggests a new strategy to synergize multiple anticancer therapeutics.
Collapse
|
8
|
Inhibition of an active zymogen protease: the zymogen form of matriptase is regulated by HAI-1 and HAI-2. Biochem J 2020; 477:1779-1794. [PMID: 32338287 DOI: 10.1042/bcj20200182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022]
Abstract
The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.
Collapse
|
9
|
Zuo K, Qi Y, Yuan C, Jiang L, Xu P, Hu J, Huang M, Li J. Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer Metastasis Rev 2020; 38:507-524. [PMID: 31471691 DOI: 10.1007/s10555-019-09802-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matriptase is a type II transmembrane serine protease, which has been suggested to play critical roles in numerous pathways of biological developments. Matriptase is the activator of several oncogenic proteins, including urokinase-type plasminogen activator (uPA), hepatocyte growth factor (HGF) and protease-activated receptor 2 (PAR-2). The activations of these matriptase substrates subsequently lead to the generation of plasmin, matrix metalloproteases (MMPs), and the triggers for many other signaling pathways related to cancer proliferation and metastasis. Accordingly, matriptase is considered an emerging target for the treatments of cancer. Thus far, inhibitors of matriptase have been developed as potential anti-cancer agents, which include small-molecule inhibitors, peptide-based inhibitors, and monoclonal antibodies. This review covers established literature to summarize the chemical and biochemical aspects, especially the inhibitory mechanisms and structure-activity relationships (SARs) of matriptase inhibitors with the goal of proposing the strategies for their future developments in anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Zuo
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Yingying Qi
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, People's Republic of China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Hu P, Shang L, Chen J, Chen X, Chen C, Hong W, Huang M, Xu P, Chen Z. A nanometer-sized protease inhibitor for precise cancer diagnosis and treatment. J Mater Chem B 2020; 8:504-514. [PMID: 31840729 DOI: 10.1039/c9tb02081k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of pro-cancer proteases is a potent anticancer strategy. However, protease inhibitors are mostly developed in the forms of small molecules or peptides, which normally suffer from insufficient metabolic stability. The fast clearance significantly impairs the antitumor effects of these inhibitors. In this study, we report a nanometer-sized inhibitor of a pro-cancer protease, suppressor of tumorigenicity 14 (st14), which has been reported as a potent prognostic marker for multiple cancers. This st14 inhibitor was fabricated by conjugating a recombinant st14 inhibitor (KD1) with carbon quantum dots (CQDs). CQD-KD1 not only demonstrated high potency of inhibiting st14 activity in biochemical experiments, but also remarkably suppressed the invasion of breast cancer cells. In contrast to the original recombinant KD1, CQD-KD1 demonstrated a prolonged retention time in plasma and at the tumor site because of the reduced renal clearance. Consistently, CQD-KD1 demonstrated enhanced efficacies of suppressing tumor growth and cancer metastases in vivo. In addition, CQD-KD1 precisely imaged tumor tissues in cancer-grafted mice by specifically targeting the over-expressed st14 on the tumor cell surface, which indicates CQD-KD1 as a potent probe for the fluorescence guided surgery of tumor resection. In conclusion, this study demonstrates that CQD-KD1 is a highly potent diagnostic and therapeutic agent for cancer treatments.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Structural Chemistry, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jendroszek A, Madsen JB, Chana-Muñoz A, Dupont DM, Christensen A, Panitz F, Füchtbauer EM, Lovell SC, Jensen JK. Biochemical and structural analyses suggest that plasminogen activators coevolved with their cognate protein substrates and inhibitors. J Biol Chem 2019; 294:3794-3805. [PMID: 30651349 DOI: 10.1074/jbc.ra118.005419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/11/2019] [Indexed: 11/06/2022] Open
Abstract
Protein sequences of members of the plasminogen activation system are present throughout the entire vertebrate phylum. This important and well-described proteolytic cascade is governed by numerous protease-substrate and protease-inhibitor interactions whose conservation is crucial to maintaining unchanged protein function throughout evolution. The pressure to preserve protein-protein interactions may lead to either co-conservation or covariation of binding interfaces. Here, we combined covariation analysis and structure-based prediction to analyze the binding interfaces of urokinase (uPA):plasminogen activator inhibitor-1 (PAI-1) and uPA:plasminogen complexes. We detected correlated variation between the S3-pocket-lining residues of uPA and the P3 residue of both PAI-1 and plasminogen. These residues are known to form numerous polar interactions in the human uPA:PAI-1 Michaelis complex. To test the effect of mutations that correlate with each other and have occurred during mammalian diversification on protein-protein interactions, we produced uPA, PAI-1, and plasminogen from human and zebrafish to represent mammalian and nonmammalian orthologs. Using single amino acid point substitutions in these proteins, we found that the binding interfaces of uPA:plasminogen and uPA:PAI-1 may have coevolved to maintain tight interactions. Moreover, we conclude that although the interaction areas between protease-substrate and protease-inhibitor are shared, the two interactions are mechanistically different. Compared with a protease cleaving its natural substrate, the interaction between a protease and its inhibitor is more complex and involves a more fine-tuned mechanism. Understanding the effects of evolution on specific protein interactions may help further pharmacological interventions of the plasminogen activation system and other proteolytic systems.
Collapse
Affiliation(s)
- Agnieszka Jendroszek
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Jeppe B Madsen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Andrés Chana-Muñoz
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Daniel M Dupont
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Anni Christensen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Frank Panitz
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Ernst-Martin Füchtbauer
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Simon C Lovell
- the School of Biological Sciences, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Jan K Jensen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| |
Collapse
|
12
|
Tamberg T, Hong Z, De Schepper D, Skovbjerg S, Dupont DM, Vitved L, Schar CR, Skjoedt K, Vogel LK, Jensen JK. Blocking the proteolytic activity of zymogen matriptase with antibody-based inhibitors. J Biol Chem 2018; 294:314-326. [PMID: 30409910 DOI: 10.1074/jbc.ra118.004126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022] Open
Abstract
Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.
Collapse
Affiliation(s)
- Trine Tamberg
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Zebin Hong
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Daphné De Schepper
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Lars Vitved
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Christine R Schar
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark.
| |
Collapse
|
13
|
Mitchell AC, Kannan D, Hunter SA, Parra Sperberg RA, Chang CH, Cochran JR. Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. J Biol Chem 2018; 293:4969-4980. [PMID: 29386351 DOI: 10.1074/jbc.m117.815142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/17/2018] [Indexed: 01/17/2023] Open
Abstract
Dysregulated matriptase activity has been established as a key contributor to cancer progression through its activation of growth factors, including the hepatocyte growth factor (HGF). Despite its critical role and prevalence in many human cancers, limitations to developing an effective matriptase inhibitor include weak binding affinity, poor selectivity, and short circulating half-life. We applied rational and combinatorial approaches to engineer a potent inhibitor based on the hepatocyte growth factor activator inhibitor type-1 (HAI-1), a natural matriptase inhibitor. The first Kunitz domain (KD1) of HAI-1 has been well established as a minimal matriptase-binding and inhibition domain, whereas the second Kunitz domain (KD2) is inactive and involved in negative regulation. Here, we replaced the inactive KD2 domain of HAI-1 with an engineered chimeric variant of KD2/KD1 domains and fused the resulting construct to an antibody Fc domain to increase valency and circulating serum half-life. The final protein variant contains four stoichiometric binding sites that we showed were needed to effectively inhibit matriptase with a Ki of 70 ± 5 pm, an increase of 120-fold compared with the natural HAI-1 inhibitor, to our knowledge making it one of the most potent matriptase inhibitors identified to date. Furthermore, the engineered inhibitor demonstrates a protease selectivity profile similar to that of wildtype KD1 but distinct from that of HAI-1. It also inhibits activation of the natural pro-HGF substrate and matriptase expressed on cancer cells with at least an order of magnitude greater efficacy than KD1.
Collapse
Affiliation(s)
| | | | - Sean A Hunter
- Cancer Biology Program, Stanford University, Stanford, California 94305
| | | | | | - Jennifer R Cochran
- From the Departments of Bioengineering and .,Cancer Biology Program, Stanford University, Stanford, California 94305.,Chemical Engineering and
| |
Collapse
|
14
|
Ishikawa T, Kimura Y, Hirano H, Higashi S. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1. J Biol Chem 2017; 292:20769-20784. [PMID: 29046355 DOI: 10.1074/jbc.m117.796789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) plays important roles in tumor progression and metastasis. Our previous studies have demonstrated that MMP-7 binds to colon cancer cells via cell surface-bound cholesterol sulfate and induces significant cell aggregation by cleaving cell-surface protein(s). These aggregated cells exhibit a dramatically enhanced metastatic potential. However, the molecular mechanism inducing this cell-cell adhesion through the proteolytic action of MMP-7 remained to be clarified. Here, we explored MMP-7 substrates on the cell surface; the proteins on the cell surface were first biotinylated, and a labeled protein fragment specifically released from the cells after MMP-7 treatment was analyzed using LC-MS/MS. We found that hepatocyte growth factor activator inhibitor type 1 (HAI-1), a membrane-bound Kunitz-type serine protease inhibitor, is an MMP-7 substrate. We also found that the cell-bound MMP-7 cleaves HAI-1 mainly between Gly451 and Leu452 and thereby releases the extracellular region as soluble HAI-1 (sHAI-1). We further demonstrated that this sHAI-1 can induce cancer cell aggregation and determined that the HAI-1 region corresponding to amino acids 141-249, which does not include the serine protease inhibitor domain, has the cell aggregation-inducing activity. Interestingly, a cell-surface cholesterol sulfate-independent proteolytic action of MMP-7 is critical for the sHAI-1-mediated induction of cell aggregation, whereas cholesterol sulfate is needed for the MMP-7-catalyzed generation of sHAI-1. Considering that MMP-7-induced cancer cell aggregation is an important mechanism in cancer metastasis, we propose that sHAI-1 is an essential component of MMP-7-induced stimulation of cancer metastasis and may therefore represent a suitable target for antimetastatic therapeutic strategies.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- From the Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 and
| | - Yayoi Kimura
- the Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hisashi Hirano
- the Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shouichi Higashi
- From the Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 and
| |
Collapse
|
15
|
Liu M, Yuan C, Jensen JK, Zhao B, Jiang Y, Jiang L, Huang M. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. J Biol Chem 2017; 292:8412-8423. [PMID: 28348076 DOI: 10.1074/jbc.m117.779256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development and is also important in maintaining postnatal homeostasis in many tissues. HAI-1 is a Kunitz-type serine protease inhibitor, and soluble fragments of HAI-1 with variable lengths have been identified in vivo The full-length extracellular portion of HAI-1 (sHAI-1) shows weaker inhibitory activity toward target proteases than the smaller fragments, suggesting auto-inhibition of HAI-1. However, this possible regulatory mechanism has not yet been evaluated. Here, we solved the crystal structure of sHAI-1 and determined the solution structure by small-angle X-ray scattering. These structural analyses revealed that, despite the presence of long linkers, sHAI-1 exists in a compact conformation in which sHAI-1 active sites in Kunitz domain 1 are sterically blocked by neighboring structural elements. We also found that in the presence of target proteases, sHAI-1 adopts an extended conformation that disables the auto-inhibition effect. Our results also reveal the roles of non-inhibitory domains of this multidomain protein and explain the low activity of the full-length protein. The structural insights gained here improve our understanding of the regulation of HAI-1 inhibitory activities and point to new approaches for better controlling these activities.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Yuan
- College of Bioscience and Biotechnology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Liu M, Yuan C, Jiang Y, Jiang L, Huang M. Recombinant hepatocyte growth factor activator inhibitor 1: expression in Drosophila S2 cells, purification and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2017; 73:45-50. [PMID: 28045393 DOI: 10.1107/s2053230x16020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a multi-domain membrane-associated protease inhibitor that potently inhibits a variety of serine proteases such as hepatocyte growth factor activator and matriptase. Different truncates of HAI-1 show varying potencies for inhibition of target proteases, suggesting that the domain organization of HAI-1 plays a critical role in its function. Here, the soluble full-length extracellular part of HAI-1 (sHAI-1) was expressed using the Drosophila S2 insect-cell expression system. Diffraction-quality crystals of sHAI-1 were produced using ammonium sulfate as precipitant. The crystal diffracted to 3.8 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 95.42, c = 124.50 Å. The asymmetric unit contains one sHAI-1 molecule.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|