1
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. Proc Natl Acad Sci U S A 2024; 121:e2315472121. [PMID: 38377203 PMCID: PMC10907259 DOI: 10.1073/pnas.2315472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Kainomyx, Inc., Palo Alto, CA94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Colby J. Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Greg R. Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
2
|
Annicchiarico-López W, Peña-Pardo LX, Miranda-Quintero JE. Prenatal diagnosis of Freeman-Sheldon syndrome using ultrasound and genetic testing. Case report. REVISTA COLOMBIANA DE OBSTETRICIA Y GINECOLOGIA 2023; 74:310-316. [PMID: 38421226 PMCID: PMC10911420 DOI: 10.18597/rcog.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
Objectives To describe a case of prenatal diagnosis of Freeman-Sheldon syndrome based on ultrasound findings and complete fetal exome sequencing. Materials and methods A 33-year-old patient currently on treatment for hypothyroidism in whom a 19-week detailed anatomical ultrasound scan showed fetal deformities in more than two body areas (upper and lower limbs), suggesting a diagnosis of arthrogryposis. Genetic counseling was provided and amniocentesis was performed at 20 weeks for fluorescence in situ hybridization (FISH) analysis and complete fetal exome sequencing, with the latter allowing the identification of a heterozygous pathogenic variant of the MYH3 gene which is associated with type 2A distal arthrogryposis. Conclusions Complete fetal exome sequencing was a key factor in identifying the MYH3 gene mutation and confirmed that the deformities seen on ultrasound were associated with type 2A distal arthrogryposis. It is important to perform complete fetal exome sequencing in cases of joint malformations seen on prenatal ultrasound.
Collapse
|
3
|
Smerdu V. Expression of MyHC-15 and -2x in human muscle spindles: An immunohistochemical study. J Anat 2023; 243:826-841. [PMID: 37420120 PMCID: PMC10557391 DOI: 10.1111/joa.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
To build on the existing data on the pattern of myosin heavy chain (MyHC) isoforms expression in the human muscle spindles, we aimed to verify whether the 'novel' MyHC-15, -2x and -2b isoforms are co-expressed with the other known isoforms in the human intrafusal fibres. Using a set of antibodies, we attempted to demonstrate nine isoforms (15, slow-tonic, 1, α, 2a, 2x, 2b, embryonic, neonatal) in different regions of intrafusal fibres in the biceps brachii and flexor digitorum profundus muscles. The reactivity of some antibodies with the extrafusal fibres was also tested in the masseter and laryngeal cricothyreoid muscles. In both upper limb muscles, the expression of slow-tonic isoform was a reliable marker for differentiating positive bag fibres from negative chain fibres. Generally, bag1 and bag2 fibres were distinguished in isoform 1 expression; the latter consistently expressed this isoform over their entire length. Although isoform 15 was not abundantly expressed in intrafusal fibres, its expression was pronounced in the extracapsular region of bag fibres. Using a 2x isoform-specific antibody, this isoform was demonstrated in the intracapsular regions of some intrafusal fibres, particularly chain fibres. To the best of our knowledge, this study is the first to demonstrate 15 and 2x isoforms in human intrafusal fibres. However, whether the labelling with an antibody specific for rat 2b isoform reflects the expression of this isoform in bag fibres and some extrafusal ones in the specialised cranial muscles requires further evaluation. The revealed pattern of isoform co-expression only partially agrees with the results of previous, more extensive studies. Nevertheless, it may be inferred that MyHC isoform expression in intrafusal fibres varies along their length, across different muscle spindles and muscles. Furthermore, the estimation of expression may also depend on the antibodies utilised, which may also react differently with intrafusal and extrafusal fibres.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
4
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547385. [PMID: 37425764 PMCID: PMC10327197 DOI: 10.1101/2023.07.02.547385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β -cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β , embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β , myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Colby J Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Greg R Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
5
|
Brooks SV, Guzman SD, Ruiz LP. Skeletal muscle structure, physiology, and function. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:3-16. [PMID: 37562874 DOI: 10.1016/b978-0-323-98818-6.00013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Contractions of skeletal muscles provide the stability and power for all body movements. Consequently, any impairment in skeletal muscle function results in some degree of instability or immobility. Factors that influence skeletal muscle structure and function are therefore of great interest scientifically and clinically. Injury, neuromuscular disease, and old age are among the factors that commonly contribute to impairments in skeletal muscle function. The goal of this chapter is to summarize the fundamentals of skeletal muscle structure and function to provide foundational knowledge for this Handbook volume. We examine the molecular interactions that provide the basis for the generation of force and movement, discuss mechanisms of the regulation of contraction at the level of myofibers, and introduce concepts of the activation and control of muscle function in vivo. Where appropriate, the chapter updates the emerging science that will increase understanding of muscle function.
Collapse
Affiliation(s)
- Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Steve D Guzman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Lloyd P Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Whittle J, Johnson A, Dobbs MB, Gurnett CA. Models of Distal Arthrogryposis and Lethal Congenital Contracture Syndrome. Genes (Basel) 2021; 12:genes12060943. [PMID: 34203046 PMCID: PMC8234565 DOI: 10.3390/genes12060943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of disease have been demonstrated, including key effects on peripheral nerve function. While Distal Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this review, we discuss the important insights gained into these human genetic diseases resulting from in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Aaron Johnson
- Department of Developmental Biology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Matthew B. Dobbs
- Paley Orthopaedic and Spine Institute, West Palm Beach, FL 33407, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
- Correspondence:
| |
Collapse
|
7
|
Johnson CA, McGreig JE, Jeanfavre ST, Walklate J, Vera CD, Farré M, Mulvihill DP, Baines AJ, Ridout M, Leinwand LA, Wass MN, Geeves MA. Identification of sequence changes in myosin II that adjust muscle contraction velocity. PLoS Biol 2021; 19:e3001248. [PMID: 34111116 PMCID: PMC8191873 DOI: 10.1371/journal.pbio.3001248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (β/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of β-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human β-myosin to match the rat sequence. Biochemical analysis revealed that the rat-human β-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin-myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of β-myosin as species mass increased to enable a reduced contraction velocity and heart rate.
Collapse
Affiliation(s)
- Chloe A. Johnson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jake E. McGreig
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Carlos D. Vera
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Colorado, United States of America
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Anthony J. Baines
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Ridout
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, United Kingdom
| | - Leslie A. Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Colorado, United States of America
| | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
8
|
Prolonged myosin binding increases muscle stiffness in Drosophila models of Freeman-Sheldon syndrome. Biophys J 2021; 120:844-854. [PMID: 33524372 DOI: 10.1016/j.bpj.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Freeman-Sheldon syndrome (FSS) is characterized by congenital contractures resulting from dominant point mutations in the embryonic isoform of muscle myosin. To investigate its disease mechanism, we used Drosophila models expressing FSS myosin mutations Y583S or T178I in their flight and jump muscles. We isolated these muscles from heterozygous mutant Drosophila and performed skinned fiber mechanics. The most striking mechanical alteration was an increase in active muscle stiffness. Y583S/+ and T178I/+ fibers' elastic moduli increased 70 and 77%, respectively. Increased stiffness contributed to decreased power generation, 49 and 66%, as a result of increased work absorbed during the lengthening portion of the contractile cycle. Slower muscle kinetics also contributed to the mutant phenotype, as shown by 17 and 32% decreases in optimal frequency for power generation, and 27 and 41% slower muscle apparent rate constant 2πb. Combined with previous measurements of slower in vitro actin motility, our results suggest a rate reduction of at least one strongly bound cross-bridge cycle transition that increases the time myosin spends strongly bound to actin, ton. Increased ton was further supported by decreased ATP affinity and a 16% slowing of jump muscle relaxation rate in T178I heterozygotes. Impaired muscle function caused diminished flight and jump ability of Y583S/+ and T178I/+ Drosophila. Based on our results, assuming that our model system mimics human skeletal muscle, we propose that one mechanism driving FSS is elevated muscle stiffness arising from prolonged ton in developing muscle fibers.
Collapse
|
9
|
Zhang N, Mendieta-Esteban J, Magli A, Lilja KC, Perlingeiro RCR, Marti-Renom MA, Tsirigos A, Dynlacht BD. Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology. Nat Commun 2020; 11:6222. [PMID: 33277476 PMCID: PMC7718254 DOI: 10.1038/s41467-020-19999-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Julen Mendieta-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karin C Lilja
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Aristotelis Tsirigos
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Ma W, Childers M, Murray J, Moussavi-Harami F, Gong H, Weiss R, Daggett V, Irving T, Regnier M. Myosin dynamics during relaxation in mouse soleus muscle and modulation by 2'-deoxy-ATP. J Physiol 2020; 598:5165-5182. [PMID: 32818298 PMCID: PMC7719615 DOI: 10.1113/jp280402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Skeletal muscle relaxation has been primarily studied by assessing the kinetics of force decay. Little is known about the resultant dynamics of structural changes in myosin heads during relaxation. The naturally occurring nucleotide 2-deoxy-ATP (dATP) is a myosin activator that enhances cross-bridge binding and kinetics. X-ray diffraction data indicate that with elevated dATP, myosin heads were extended closer to actin in relaxed muscle and myosin heads return to an ordered, resting state after contraction more quickly. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin heads that increase the surface area of the actin-binding regions promoting myosin interaction with actin, which could explain the observed delays in the onset of relaxation. This study of the dATP-induced changes in myosin may be instructive for determining the structural changes desired for other potential myosin-targeted molecular compounds to treat muscle diseases. ABSTRACT Here we used time-resolved small-angle X-ray diffraction coupled with force measurements to study the structural changes in FVB mouse skeletal muscle sarcomeres during relaxation after tetanus contraction. To estimate the rate of myosin deactivation, we followed the rate of the intensity recovery of the first-order myosin layer line (MLL1) and restoration of the resting spacing of the third and sixth order of meridional reflection (SM3 and SM6 ) following tetanic contraction. A transgenic mouse model with elevated skeletal muscle 2-deoxy-ATP (dATP) was used to study how myosin activators may affect soleus muscle relaxation. X-ray diffraction evidence indicates that with elevated dATP, myosin heads were extended closer to actin in resting muscle. Following contraction, there is a slight but significant delay in the decay of force relative to WT muscle while the return of myosin heads to an ordered resting state was initially slower, then became more rapid than in WT muscle. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin that increase the surface area of the actin-binding regions, promoting myosin interaction with actin. With dATP, myosin heads may remain in an activated state near the thin filaments following relaxation, accounting for the delay in force decay and the initial delay in recovery of resting head configuration, and this could facilitate subsequent contractions.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Matthew Childers
- Department of Bioengineering, University of Washington, Seattle WA
| | - Jason Murray
- Department of Bioengineering, University of Washington, Seattle WA
| | | | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Robert Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca NY
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA
| | - Thomas Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle WA
| |
Collapse
|
11
|
Findings, Phenotypes, Diagnostic Accuracy, and Treatment in Freeman-Burian Syndrome. J Craniofac Surg 2020; 31:1063-1069. [PMID: 32149971 DOI: 10.1097/scs.0000000000006299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Freeman-Burian syndrome (FBS) is a rare congenital myopathic craniofacial syndrome. Since publication of the genotype-correlated clinical diagnostic criteria, no complete survey of the literature has been accomplished. As part of the clinical practice guideline development, we evaluate diagnostic accuracy for FBS from 1938 to 2019 and range of findings, complications, treatments, and outcomes. Published manuscripts in PubMed, Google Scholar, and OMIM describing cases with a reported diagnosis of FBS, Sheldon-Hall syndrome, and distal arthrogryposes type 1 and 3 are initially included. Articles with sufficient case-level data for diagnosis verification are analyzed further. Of 724 unique papers considered, 188 papers describing 304 unique patients are included; 101 papers and 119 patients reflect an FBS diagnosis, with 80 patients meeting the full diagnostic criteria. Most cases are re-screened as distal arthrogryposis type 1. Among all cases re-screened as FBS, the presence of FBS pathognomonic craniofacial findings is not correlated with other physical findings. There are no significant differences between patients meeting the full diagnostic criteria and those not, but both are distinct from other diagnoses. Plastic surgery demonstrates the highest cumulative diagnostic accuracy for FBS overall (86.66%), while orthopedic surgery shows the lowest (44.83%). No statistically usable treatment-related or psychosocial data are available. Quality of case reports and patient data vary widely, reducing the statistical strength and significance. Major knowledge gaps exist in treatment, psychosocial, and longitudinal outcomes. At this point, it is impossible to derive clinical practice guidelines exclusively from the literature.
Collapse
|
12
|
Whittle J, Antunes L, Harris M, Upshaw Z, Sepich DS, Johnson AN, Mokalled M, Solnica-Krezel L, Dobbs MB, Gurnett CA. MYH3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin. EMBO Mol Med 2020; 12:e12356. [PMID: 33016623 PMCID: PMC7645368 DOI: 10.15252/emmm.202012356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/03/2023] Open
Abstract
Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H). We simultaneously created a smyhc1 null allele (smyhc1−), which allowed us to compare the effects of both mutant alleles on muscle and bone development, and model the closely related disorder, spondylocarpotarsal synostosis syndrome. Heterozygous smyhc1R673H/+ embryos developed notochord kinks that progressed to scoliosis with vertebral fusions; motor deficits accompanied the disorganized and shortened slow‐twitch skeletal muscle myofibers. Increased dosage of the mutant allele in both homozygous smyhc1R673H/R673H and transheterozygous smyhc1R673H/− embryos exacerbated the notochord and muscle abnormalities, causing early lethality. Treatment of smyhc1R673H/R673H embryos with the myosin ATPase inhibitor, para‐aminoblebbistatin, which decreases actin–myosin affinity, normalized the notochord phenotype. Our zebrafish model of MYH3‐associated DA2A provides insight into pathogenic mechanisms and suggests a beneficial therapeutic role for myosin inhibitors in treating disabling contractures.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mya Harris
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Zachary Upshaw
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane S Sepich
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mayssa Mokalled
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Guo Y, Kronert WA, Hsu KH, Huang A, Sarsoza F, Bell KM, Suggs JA, Swank DM, Bernstein SI. Drosophila myosin mutants model the disparate severity of type 1 and type 2B distal arthrogryposis and indicate an enhanced actin affinity mechanism. Skelet Muscle 2020; 10:24. [PMID: 32799913 PMCID: PMC7429702 DOI: 10.1186/s13395-020-00241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/28/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Distal arthrogryposis (DA) is a group of autosomal dominant skeletal muscle diseases characterized by congenital contractures of distal limb joints. The most common cause of DA is a mutation of the embryonic myosin heavy chain gene, MYH3. Human phenotypes of DA are divided into the weakest form-DA1, a moderately severe form-DA2B (Sheldon-Hall Syndrome), and a severe DA disorder-DA2A (Freeman-Sheldon Syndrome). As models of DA1 and DA2B do not exist, their disease mechanisms are poorly understood. METHODS We produced the first models of myosin-based DA1 (F437I) and DA2B (A234T) using transgenic Drosophila melanogaster and performed an integrative analysis of the effects of the mutations. Assessments included lifespan, locomotion, ultrastructural analysis, muscle mechanics, ATPase activity, in vitro motility, and protein modeling. RESULTS We observed significant defects in DA1 and DA2B Drosophila flight and jump ability, as well as myofibril assembly and stability, with homozygotes displaying more severe phenotypes than heterozygotes. Notably, DA2B flies showed dramatically stronger phenotypic defects compared to DA1 flies, mirroring the human condition. Mechanical studies of indirect flight muscle fibers from DA1 heterozygotes revealed reduced power output along with increased stiffness and force production, compared to wild-type controls. Further, isolated DA1 myosin showed significantly reduced myosin ATPase activity and in vitro actin filament motility. These data in conjunction with our sinusoidal analysis of fibers suggest prolonged myosin binding to actin and a slowed step associated with Pi release and/or the power stroke. Our results are supported by molecular modeling studies, which indicate that the F437I and A234T mutations affect specific amino acid residue interactions within the myosin motor domain that may alter interaction with actin and nucleotide. CONCLUSIONS The allele-specific ultrastructural and locomotory defects in our Drosophila DA1 and DA2B models are concordant with the differential severity of the human diseases. Further, the mechanical and biochemical defects engendered by the DA1 mutation reveal that power production, fiber stiffness, and nucleotide handling are aberrant in F437I muscle and myosin. The defects observed in our DA1 and DA2B Drosophila models provide insight into DA phenotypes in humans, suggesting that contractures arise from prolonged actomyosin interactions.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Alice Huang
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Kaylyn M Bell
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Douglas M Swank
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
14
|
Parker F, Peckham M. Disease mutations in striated muscle myosins. Biophys Rev 2020; 12:887-894. [PMID: 32651905 PMCID: PMC7429545 DOI: 10.1007/s12551-020-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Over 1000 disease-causing missense mutations have been found in human β-cardiac, α-cardiac, embryonic and adult fast myosin 2a myosin heavy chains. Most of these are found in human β-cardiac myosin heavy chain. Mutations in β-cardiac myosin cause hypertrophic cardiomyopathy predominantly, whereas those in α-cardiac are associated with many types of heart disease, of which the most common is dilated cardiomyopathy. Mutations in embryonic and fast myosin 2a affect skeletal muscle function. This review provides a short overview of the mutations in the different myosin isoforms and their disease-causing effects.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
Poling MI, Dufresne CR, McCormick RJ. Identification and Recent Approaches for Evaluation and Management of Rehabilitation Concerns for Patients with Freeman-Burian Syndrome: Principles for Global Treatment. J Pediatr Genet 2020; 9:158-163. [PMID: 32714615 DOI: 10.1055/s-0040-1710339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Freeman-Burian syndrome, formerly Freeman-Sheldon syndrome, is a rare congenital complex myopathic craniofacial syndrome that frequently involves extremity joint deformities, abnormal spinal curvatures, and chest wall mechanical problems that, together with spinal deformities, impair pulmonary function. As part of a clinical practice guideline development, we evaluated 19 rehabilitation-related articles from our formal systematic review, and from these and our experience, we describe rehabilitation considerations. Research in this area has widespread methodologic problems. While many challenges are present, much can be done to afford these patients a good quality of life through careful planning.
Collapse
Affiliation(s)
| | - Craig R Dufresne
- Private Practice, Fairfax, Virginia, United States.,Department of Surgery, Georgetown University, Washington, District of Columbia, United States
| | - Rodger J McCormick
- Department of Applied Physiology, FSRG deGruyter-McKusick Institute of Health Sciences, Buckhannon, West Virginia, United States
| |
Collapse
|
16
|
Identification and Recent Approaches for Evaluation and Management of Dentofacial and Otolaryngologic Concerns for Patients With Freeman-Burian Syndrome: Principles for Global Treatment. J Craniofac Surg 2020; 31:787-790. [PMID: 31985597 DOI: 10.1097/scs.0000000000006155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Li S, Wen H, Du S. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J 2020; 34:1378-1397. [PMID: 31914689 PMCID: PMC6956737 DOI: 10.1096/fj.201900935rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/11/2022]
Abstract
Zebrafish skeletal muscles are broadly divided into slow-twitch and fast-twitch muscle fibers. The slow fibers, which express a slow fiber-specific myosin heavy chain 1 (Smyhc1), are the first group of muscle fibers formed during myogenesis. To uncover Smyhc1 function in muscle growth, we generated three mutant alleles with reading frame shift mutations in the zebrafish smyhc1 gene using CRISPR. The mutants showed shortened sarcomeres with no thick filaments and M-lines in slow fibers of the mutant embryos. However, the formation of slow muscle precursors and expression of other slow muscle genes were not affected and fast muscles appeared normal. The smyhc1 mutant embryos and larvae showed reduced locomotion and food intake. The mutant larvae exhibited increased lethality of incomplete penetrance. Approximately 2/5 of the homozygous mutants were viable and grew into reproductive adults. These adult mutants displayed a typical pattern of slow and fast muscle fiber distribution, and regained normal slow muscle formation. Together, our studies indicate that Smyhc1 is essential for myogenesis in embryonic slow muscles, and loss of Smyhc1 results in defective sarcomere assembly, reduces larval motility and fish survival, but has no visible impact on muscle growth in juvenile and adult zebrafish that escape the larval lethality.
Collapse
Affiliation(s)
- Siping Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
18
|
Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 2019; 10:4781. [PMID: 31636255 PMCID: PMC6803673 DOI: 10.1038/s41467-019-12667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans. Myosin, a motor protein essential for intracellular transport to muscle contraction, requires a chaperone UNC-45 for folding and assembly. Here authors use in vitro reconstitution and structural biology to characterize the interplay between UNC-45 and muscle myosin MHC-B.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | | | - Nina Franicevic
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Chloe Johnson
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Medical University Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Vera CD, Johnson CA, Walklate J, Adhikari A, Svicevic M, Mijailovich SM, Combs AC, Langer SJ, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties. J Biol Chem 2019; 294:17451-17462. [PMID: 31582565 DOI: 10.1074/jbc.ra119.010563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the β-cardiac myosin heavy chain gene (β-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any β-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 K app along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.
Collapse
Affiliation(s)
- Carlos D Vera
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Chloe A Johnson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Arjun Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | | | | | - Ariana C Combs
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Stephen J Langer
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Leslie A Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
20
|
Pettinger KJ, McKelvie L, Johnson K, Breeze A, Berry I, Campbell J. Genetic disorder plus prematurity: a diagnostic challenge. Arch Dis Child Educ Pract Ed 2019; 104:252-253. [PMID: 30032109 DOI: 10.1136/archdischild-2018-315179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | - Andrew Breeze
- Fetal Medicine Unit, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ian Berry
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | - Jennifer Campbell
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
21
|
Identification and Recent Approaches for Evaluation, Operative Counseling, and Management in Patients With Freeman-Burian Syndrome: Principles for Global Treatment. J Craniofac Surg 2019; 30:2502-2508. [PMID: 31567769 DOI: 10.1097/scs.0000000000005968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For many, the experience of a complex craniofacial malformation condition, such as Freeman-Burian syndrome (FBS), formerly Freeman-Sheldon syndrome, is deeply distressing. There are few references in the literature addressing initial evaluation and operative counseling for FBS, and guidance is absent. Two major outcomes of FBS are explored, namely diagnostic accuracy and therapeutic result, to identify factors influencing optimal clinical care in (1) diagnosis, (2) evaluation, (3) general and craniofacial operative counseling, and (4) craniofacial management.PubMed searches have yielded 15 results describing craniofacial surgery in FBS and 29 manuscripts describing psychosocial aspects of surgery and patient and family counseling and education in other non-intellectually impairing craniofacial malformation conditions. Research in this area of scholarship is plagued by problems, especially considerable knowledge gaps and an absence of study data for operative outcomes. As a result, the literature remains unsettled, though our experience presents a much more clear picture of the clinical reality for this challenging patient population. While many challenges and limitations to treatment are present, much can be done to afford these patients a good and productive quality of life through operative intervention and longitudinal psychosocial support.
Collapse
|
22
|
Walklate J, Ujfalusi Z, Behrens V, King EJ, Geeves MA. A micro-volume adaptation of a stopped-flow system; use with μg quantities of muscle proteins. Anal Biochem 2019; 581:113338. [PMID: 31201789 DOI: 10.1016/j.ab.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Stopped-flow spectroscopy is a powerful method for measuring very fast biological and chemical reactions. The technique however is often limited by the volumes of reactants needed to load the system. Here we present a simple adaptation of commercial stopped-flow system that reduces the volume needed by a factor of 4 to ≈120 μl. After evaluation the volume requirements of the system we show that many standard myosin based assays can be performed using <100 μg of myosin. This adaptation both reduces the volume and therefore mass of protein required and also produces data of similar quality to that produced using the standard set up. The 100 μg of myosin required for these assays is less than that which can be isolated from 100 mg of muscle tissue. With this reduced quantity of myosin, assays using biopsy samples become possible. This will allow assays to be used to assist diagnoses, to examine the effects of post translational modifications on muscle proteins and to test potential therapeutic drugs using patient derived samples.
Collapse
Affiliation(s)
- J Walklate
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Zoltan Ujfalusi
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom; Department of Biophysics, University of Pécs, Medical School, Szigeti Street 12, H-7624, Pécs, Hungary
| | - Vincent Behrens
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Edward J King
- TgK Scientific Limited, 7 Long's Yard, St. Margaret's Street, Bradford on Avon, BA15 1DH, United Kingdom
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom.
| |
Collapse
|
23
|
Johnson CA, Walklate J, Svicevic M, Mijailovich SM, Vera C, Karabina A, Leinwand LA, Geeves MA. The ATPase cycle of human muscle myosin II isoforms: Adaptation of a single mechanochemical cycle for different physiological roles. J Biol Chem 2019; 294:14267-14278. [PMID: 31387944 DOI: 10.1074/jbc.ra119.009825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Striated muscle myosins are encoded by a large gene family in all mammals, including humans. These isoforms define several of the key characteristics of the different striated muscle fiber types, including maximum shortening velocity. We have previously used recombinant isoforms of the motor domains of seven different human myosin isoforms to define the actin·myosin cross-bridge cycle in solution. Here, we present data on an eighth isoform, the perinatal, which has not previously been characterized. The perinatal is distinct from the embryonic isoform, appearing to have features in common with the adult fast-muscle isoforms, including weak affinity of ADP for actin·myosin and fast ADP release. We go on to use a recently developed modeling approach, MUSICO, to explore how well the experimentally defined cross-bridge cycles for each isoform in solution can predict the characteristics of muscle fiber contraction, including duty ratio, shortening velocity, ATP economy, and load dependence of these parameters. The work shows that the parameters of the cross-bridge cycle predict many of the major characteristics of each muscle fiber type and raises the question of what sequence changes are responsible for these characteristics.
Collapse
Affiliation(s)
- Chloe A Johnson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Marina Svicevic
- Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Carlos Vera
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Anastasia Karabina
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Leslie A Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| |
Collapse
|
24
|
Das S, Kumar P, Verma A, Maiti TK, Mathew SJ. Myosin heavy chain mutations that cause Freeman-Sheldon syndrome lead to muscle structural and functional defects in Drosophila. Dev Biol 2019; 449:90-98. [PMID: 30826400 PMCID: PMC7015705 DOI: 10.1016/j.ydbio.2019.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/24/2019] [Accepted: 02/27/2019] [Indexed: 01/18/2023]
Abstract
Missense mutations in the MYH3 gene encoding myosin heavy chain-embryonic (MyHC-embryonic) have been reported to cause two skeletal muscle contracture syndromes, Freeman Sheldon Syndrome (FSS) and Sheldon Hall Syndrome (SHS). Two residues in MyHC-embryonic that are most frequently mutated, leading to FSS, R672 and T178, are evolutionarily conserved across myosin heavy chains in vertebrates and Drosophila. We generated transgenic Drosophila expressing myosin heavy chain (Mhc) transgenes with the FSS mutations and characterized the effect of their expression on Drosophila muscle structure and function. Our results indicate that expressing these mutant Mhc transgenes lead to structural abnormalities in the muscle, which increase in severity with age and muscle use. We find that flies expressing the FSS mutant Mhc transgenes in the muscle exhibit shortening of the inter-Z disc distance of sarcomeres, reduction in the Z-disc width, aberrant deposition of Z-disc proteins, and muscle fiber splitting. The ATPase activity of the three FSS mutant MHC proteins are reduced compared to wild type MHC, with the most severe reduction observed in the T178I mutation. Structurally, the FSS mutations occur close to the ATP binding pocket, disrupting the ATPase activity of the protein. Functionally, expression of the FSS mutant Mhc transgenes in muscle lead to significantly reduced climbing capability in adult flies. Thus, our findings indicate that the FSS contracture syndrome mutations lead to muscle structural defects and functional deficits in Drosophila, possibly mediated by the reduced ATPase activity of the mutant MHC proteins.
Collapse
Affiliation(s)
- Shreyasi Das
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Pankaj Kumar
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India; Affiliated to Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aakanksha Verma
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Tushar K Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sam J Mathew
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India; Affiliated to Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Olkun HK, Poling MI. Nonoperative Orthodontic Therapy for Retrognathia and Finding of Sella Turcica Bridging in a 16-Year-Old Girl With Freeman-Burian Syndrome. Cleft Palate Craniofac J 2019; 56:1107-1114. [PMID: 30852918 DOI: 10.1177/1055665619833855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the context of a case presentation of a 16-year-old girl treated for retrognathia associated with Freeman-Burian syndrome (FBS), importance of early orthodontic evaluation and unique problems posed by FBS are discussed. Freeman-Burian syndrome universally presents limited oral access and risk of pulmonary complications, making immaculate oral health-care arduous but mandatory. With early identification and conscientious planning, satisfactory orthodontic and overall health outcomes can be achieved. Sella turcica bridging, when presenting in FBS in the absence of endocrine pathology, may be related to the underlying myopathy of FBS.
Collapse
Affiliation(s)
- Hatice K Olkun
- 1 Department of Orthodontics, School of Dentistry, İstanbul Okan University, Istanbul, Turkey
| | - Mikaela I Poling
- 2 FSRG deGruyter-McKusick Institute of Health Sciences, Buckhannon, WV, USA
| |
Collapse
|
26
|
Poling MI, Dufresne CR, Chamberlain RL. Freeman-Burian syndrome. Orphanet J Rare Dis 2019; 14:14. [PMID: 30630514 PMCID: PMC6327538 DOI: 10.1186/s13023-018-0984-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Clinical description Freeman-Burian syndrome (FBS) is a rare congenital myopathic craniofacial syndrome. Considerable variability in severity is seen, but diagnosis requires the following: microstomia, whistling-face appearance (pursed lips), H or V-shaped chin defect, and prominent nasolabial folds. Some patients do not have limb malformations, but essentially all do, typically camptodactyly with ulnar deviation of the hand and talipes equinovarus. Neuro-cognitive function is not impaired. Epidemiology Population prevalence of FBS is unknown. Aetiology Environmental and parental factors are not implicated in pathogenesis. Allelic variations in embryonic myosin heavy chain gene are associated with FBS. White fibrous tissue within histologically normal muscle fibres and complete replacement of muscle by fibrous tissue, which behaves like tendinous tissue, are observed. Management Optimal care seems best achieved through a combination of early craniofacial reconstructive surgery and intensive physiotherapy for most other problems. Much of the therapeutic focus is on the areas of fibrous tissue replacement, which are either operatively released or gradually stretched with physiotherapy to reduce contractures. Operative procedures and techniques that do not account for the unique problems of the muscle and fibrous tissue replacement have poor clinical and functional outcomes. Important implications exist to facilitate patients’ legitimate opportunity to meaningfully overcome functional limitations and become well.
Collapse
Affiliation(s)
- Mikaela I Poling
- FSRG deGruyter-McKusick Institute of Health Sciences, Buckhannon, USA.
| | - Craig R Dufresne
- Department of Surgery, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
27
|
Abstract
While officially designated as distal arthrogryposis type 2A, the condition commonly referred to as Freeman-Sheldon syndrome (FSS) also historically has been termed craniocarpotarsal dystrophy, whistling face syndrome, and craniocarpotarsal dysplasia and classified at different times as a skeletal dysplasia, nonprogressive myopathy, craniofacial syndrome, and distal arthrogryposis. Having previously provided evidence for FSS being a complex myopathic craniofacial syndrome with extra-craniofacial features in most patients, the rationale for revising the FSS eponym and supplanting the current official designation with a new one was based on considerations for educational usefulness, historical accuracy, communication fluency, and nosologic clarity underpinned by genetic, pathologic, and operative experience and outcomes.
Collapse
|
28
|
Rao DS, Kronert WA, Guo Y, Hsu KH, Sarsoza F, Bernstein SI. Reductions in ATPase activity, actin sliding velocity, and myofibril stability yield muscle dysfunction in Drosophila models of myosin-based Freeman-Sheldon syndrome. Mol Biol Cell 2018; 30:30-41. [PMID: 30379605 PMCID: PMC6337914 DOI: 10.1091/mbc.e18-08-0526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using Drosophila melanogaster, we created the first animal models for myosin-based Freeman–Sheldon syndrome (FSS), a dominant form of distal arthrogryposis defined by congenital facial and distal skeletal muscle contractures. Electron microscopy of homozygous mutant indirect flight muscles showed normal (Y583S) or altered (T178I, R672C) myofibril assembly followed by progressive disruption of the myofilament lattice. In contrast, all alleles permitted normal myofibril assembly in the heterozygous state but caused myofibrillar disruption during aging. The severity of myofibril defects in heterozygotes correlated with the level of flight impairment. Thus our Drosophila models mimic the human condition in that FSS mutations are dominant and display varied degrees of phenotypic severity. Molecular modeling indicates that the mutations disrupt communication between the nucleotide-binding site of myosin and its lever arm that drives force production. Each mutant myosin showed reduced in vitro actin sliding velocity, with the two more severe alleles significantly decreasing the catalytic efficiency of actin-activated ATP hydrolysis. The observed reductions in actin motility and catalytic efficiency may serve as the mechanistic basis of the progressive myofibrillar disarray observed in the Drosophila models as well as the prolonged contractile activity responsible for skeletal muscle contractures in FSS patients.
Collapse
Affiliation(s)
- Deepti S Rao
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| |
Collapse
|
29
|
Ujfalusi Z, Vera CD, Mijailovich SM, Svicevic M, Yu EC, Kawana M, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Dilated cardiomyopathy myosin mutants have reduced force-generating capacity. J Biol Chem 2018; 293:9017-9029. [PMID: 29666183 PMCID: PMC5995530 DOI: 10.1074/jbc.ra118.001938] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/14/2018] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human β-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.
Collapse
Affiliation(s)
- Zoltan Ujfalusi
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- the Department of Biophysics, University of Pécs, Medical School, Szigeti Street 12, H-7624 Pécs, Hungary
| | - Carlos D Vera
- the BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | | | - Marina Svicevic
- the Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Masataka Kawana
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Kathleen M Ruppel
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - James A Spudich
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Michael A Geeves
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom,
| | - Leslie A Leinwand
- the BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309,
| |
Collapse
|
30
|
Poling MI, Dufresne CR. Head First, Not Feet First: Freeman-Sheldon Syndrome as Primarily a Craniofacial Condition. Cleft Palate Craniofac J 2018; 55:787-788. [PMID: 29370530 DOI: 10.1177/1055665617753482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The historical and clinical basis for classification of Freeman-Sheldon syndrome as a craniofacial syndrome and explanation of the rationale underlying this decision is provided. Correctly classifying the condition will avoid confusion and may help to clarify the vernacular employed and eventually aid in improving diagnosis.
Collapse
Affiliation(s)
- Mikaela I Poling
- 1 Department of Applied Physiology, FSRG deGruyter-McKusick Institute of Health Sciences, Buckhannon, WV, USA
| | - Craig R Dufresne
- 2 Department of Surgery, Georgetown University, Washington, DC, USA
| |
Collapse
|
31
|
Chen Q, Hu X, Zhang DD, Chen XW, Wang JH. Selective Isolation of Myosin Subfragment-1 with a DNA-Polyoxovanadate Bioconjugate. Bioconjug Chem 2017; 28:2976-2984. [PMID: 29161498 DOI: 10.1021/acs.bioconjchem.7b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bioconjugation of a polyoxometalate (POMs), i.e., dodecavanadate (V12O32), to DNA strands produces a functional labeled DNA primer, V12O32-DNA. The grafting of DNA primer onto streptavidin-coated magnetic nanoparticles (SVM) produces a novel composite, V12O32-DNA@SVM. The high binding-affinity of V12O32 with the ATP binding site in myosin subfragment-1 (S1) facilitates favorable adsorption of myosin, with an efficiency of 99.4% when processing 0.1 mL myosin solution (100 μg mL-1) using 0.1 mg composite. Myosin adsorption fits the Langmuir model, corresponding to a theoretical adsorption capacity of 613.5 mg g-1. The retained myosin is readily recovered by 1% SDS (m/m), giving rise to a recovery of 58.7%. No conformational change is observed for myosin after eliminating SDS by ultrafiltration. For practical use, high-purity myosin S1 is obtained by separation of myosin from the rough protein extract from porcine left ventricle, followed by digestion with α-chymotryptic and further isolation of S1 subfragment. The purified myosin S1 is identified with matrix-assisted laser desorption/ionization time-of-flight/mass spectrometry, giving rise to a sequence coverage of 38%.
Collapse
Affiliation(s)
- Qing Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| | - Xue Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| | - Dan-Dan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| |
Collapse
|